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The success we dreamed of
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Language models that are
remarkably capable at solving
many important NLP benchmarks.



Model capabilities—haves vs have-nots

* v Fluent generation
* v Instruction following
» V' Several rounds of conversation
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LLMs produce false information
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Google Rolls Back A.I. Search Feature
EheNew ork Eimes  After Flubs and Flaws

June 1, 2024 Google appears to have turned off its new A.I. Overviews for a
number of searches as it works to minimize errors.



Will “scaling” solve LLM brittleness?
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[Diminishing returns w/ scaling (compute, data, human supervision.) }




Model capabilities—haves vs have-nots

* v Fluent generation

* V Instruction following

' Several rounds of conversation

« X Cost-inefficient to scale (exponential scale for linear gains)



Long-tail of problems:
There are many infrequent concepts/problems
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Infrequent things are challenging for LLMs

frequent (head) infrequent (tail)

Who was the

-
director of W Response
The Titanic?

accuracy

query log-popularity

Factual accuracy of LLMs is positively correlated
with "popularity” of the input prompts.

Mallen et al. When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories, ACL 2023



Models are unsafe in low-resource languages
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Temporal misalignment: LLMs stale over time

 Fact: Their quality degrade after their cut off date.
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Are LLMs' knowledge before cutoff date consistently good?

Luu et al. Time Waits for No One! Analysis and Challenges of Temporal Misalignment., NAACL 2022
Lazaridou et al. Mind the Gap: Assessing Temporal Generalization in Neural Language Models, NeurIPS 2021



(lower is better)

LLM quality in older time-stamped data

* We evaluate LLaMA model on past version of Wikipedia.
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Cheng et al. Dated Data: Tracing Knowledge Cutoffs in Large Language Models.., arXiv 2024
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popularly used as part of pre-training.

The distribution of older/stale data in C4 which is

LLaMA-7B
fLQ

T T T T T T AV/\
e @ v ¥ o Q9 %
— o o o o o

sol1xa|diad aAIle|9Yy

(193199 S1 1aMoO]))

Pre-training data contain lots of old/stale data

Cheng et al. Dated Data: Tracing Knowledge Cutoffs in Large Language Models.., arXiv 2024
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Model capabilities—haves vs have-nots

* v Fluent generation

* V Instruction following

* V' Several rounds of conversation
« X Cost-inefficient to scale

X Long tail of problems

X Interference of stale knowledge

\ [- General-purpose uses of LMs will remain brittle (at least, in short term)}

* What matters is “containing” them.




We should make “veritiability” easier

 The burden of LLM mistakes falls on the users.

LLM verification

2 Water is an unusual substance in many ways, and one
Why does the water of its peculiarities is that it has its lowest density at 4

have the lowest 1OAOF °C. As water cools from room temperature, it becomes

N (e]
density at 4°C? denser and denser until it reaches 4 °C. After that, as it
continues to cool, it becomes less dense again.... _—

* A good interface should allow easy “verification” of responses.



Veritying LLM outputs by citing sources?

Liu et al. Evaluating Verifiability in Generative
Search Engines. In Findings of EMNLP 2023

b Bi n g Citation Precision (%; 1)

Average Over

Why does water have the lowest density at 4 °C?

(fetched on Aug 30, 2023) All Queries
Bing Chat 89.5
Water is an un;xS'Us{ substance in many ways, and one of its peculiarities is that it has its lowest NeevaAl 72.0
density at 4°& . ;As water cools from room temperature, it becomes denset7ed denser until it perplexity.ai 72.7
N
reaches 4°C. After that, as it continues to cool, it becomes less dense agaik B’ YouChat 63.6
N
Average 74.5

Retrieval-augmentation helps, but not guaranteed to be correct.




Veritying LLM outputs via “quoting”?

Hypothesis: Verbatim quotes from trusted sources
make verifiability trivial.

High-quality subset of
pre-training corpus
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Water is an unusual substance in many ways, and one of its
peculiarities is that it has its lowest density at 4 °C. As water cools
from room temperature, it becomes denser and denser until it reaches
4 °C. After that, as it continues to cool, it becomes less dense again.

» Users can focus on verifying the non-quoted portions.

Zhang et al. Verifiable by Design: Aligning Language Models to Quote from Pre-Training Data, 2024
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Quote-tuning: LLMs with quoted responses

High-quality subset of :_]] 9 ———
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\ quoted statements

LLM that can quote \
Why does the water ‘é)a )] Water is an unusual substance in many ways, and one of its
40

from room temperature, it becomes denser and denser until it reaches
4 °C. After that, as it continues to cool, it becomes less dense again.

have the lowest peculiarities is that it has its lowest density at 4 °C. As water cools
density at 4°C? w

* We have introduced Quote-tuning, a pipeline for training LLMs to
produce quoted responses from sources trusted by users.

* Not a mature technology, but we are making fast progress on this.

Zhang et al. Verifiable by Design: Aligning Language Models to Quote from Pre-Training Data, 2024 18



Not AGI:

elpful, specialized applications

* Specialized models that are robust within well-defined domain,
might be better alternatives to generalist brittle models.

* This will allow us to harness specialized feedback.
* For example, LLMs as part of research cycle.

 Growing LLMs as part of data ecosystem

generation

* Requires extensive safety considerations [ Hypothesis }
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