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Please don’t hesitate to
stop me and ask questions.



The success we dreamed of
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Language models that are
remarkably capable at solving
many important NLP benchmarks.



The success we dreamed of

[Bubeck et al. 2023]

Prompt: Can you generate a pyplot for the following data: = = [1,3,5,6,8],y1 = [2,3,5,18,1],y2 = [3,5,6,8,1],y3 =
[5,1,2,3,4],y4 = [9,7,2,3,1]. I want y1,y2 to be in the same plot, but y3 is in another plot next to that plot, y4 is in
below. I want the legend of y1 to be ”bob”, y2 to be ”alice”, y3 to be ”bilbo”, y4 to be ”allie”. I want the x-axis to be
labeled with ”time” and vy axis to be labeled with ”money”. I want to add a 10 %-40% random error bar to each curve,
through all times (including non-integers). I want smoothed curves to show the plot, and smoothed error bar. Do not
use linear interpolation, use smooth interpolation! I want to also add some small zig-zag to the smoothed curve to make
it look more real. I want to put a baseline as the mean of each line. I want to put a pie chart below indicating the
fraction of the four people in each time step. I also want an animation to show how the fractions are changing in the
pie chart in **continuous time**. Interpolate the missing fractions! I also want vertical line animation in other three

plots to match the pie chart. I want the fanciest plot. Please add as many fancy things as possible.

Here is a possible code to generate a pyplot for the following data, with some comments to explain the steps:

GPT-4: [We give two snapshots from the animation resulting from the produced code]
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Accelerated Industrialization of Al

Al investment is likely to grow in the next three years
Private Al investment (dotted lines show GS revenue projections®)
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Accelerated Industrialization of Al

Al investment is likely to grow in the next three years
Private Al investment (dotted lines show GS revenue projections*)
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Accelerated industrialization of Al based on market competition
entails diverging missions.



Remarkable progress
but many questions remain open.

* Questions about
» optimality of architectures,
e limits of their controllability,
* scope of machine innovations,
« effective interaction with humans, ... .

» Today: Revisit two interrelated technological pieces that
deserve further deliberation.



Today

* Revisiting ...

In-Context Alignment
Learning of chatbots



Today

* Revisiting ...

In-Context
Learning



Language Models

Input Output
text text

[Bengio et al. ‘04, Peters et al. ‘18, Raffel et al. ‘20, Brown et al. ‘20, many others]
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Language Models

Input
text

[Bengio et al. ‘04, Peters et al. ‘18, Raffel et al. ‘20, Brown et al

Output
text

. '20, many others]
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Language Models

Johns Hopkins ,
University is i Baltimore
niversity Is in .

Simple facts J

[Bengio et al. ‘04, Peters et al. ‘18, Raffel et al. ‘20, Brown et al. ‘20, many others]
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-context learning emerges from pre-training

Input: JHU Output: Baltimore
Input: UMD Output: DC L M New York
Input: NYU Output:

[Brown et al., 2020]
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-context learning emerges from pre-training

Input: JHU Output: Baltimore
Input: UMD Output: DC L M New York
Input: NYU Output:

Input: JHU Output: private
Input: UMD Output: public L M private

Input: NYU Output:

[Brown et al., 2020]
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This is an old dream come true!

Case-based reasoning, rule-induction, dynamic memory, analogical
reasoning, ...

0.0000120% - Deep Learning
0.0000100% -
0.0000080% —
0.0000060% —

0.0000040% - : .
rule induction

0.0000020% - Case - Based Reasoning

0.0000000% —f==— P L L
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

(click on line/label for focus)

[Google n-grams]




In-context learning: well-studied yet elusive.

* What we understand:
* [CL improves with scale. [Brown et al. 2020: Srivastava et al. 2023]

e |CL is brittle. [Min et al., 2022: Mishra et al., 2022]

* |CL as a probabilistic inference. [Muller et al. 2021; Xie et al. 2021]

» Still no framework that fully explains and predicts its nuts and
bolts.
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Explaining ICL via Gradient Descent

* |s it possible that ICL is sec ecuting GD during inference?

Johannes von Oswald ' 2 Eyvind Niklase# { .J
Alexander Mordvintsev2 Ap’

g RITHM IS IN-CONTEXT LEARN-
_WITH LINEAR MODELS

%9 Dale Schuurmans' Jacob Andreas*? Tengyu Ma*!3® Denny Zhou*!

Dai et al. 2022; Garg et al. 2022; Zhang et al. 2023; ICLR 2023

Ahn et al. 2023; Raventos et al. 2023; Li et al. 2023; Guo et al. 2023; ... .



Basic idea: gradient computation in forward process
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A Self-Attention (SA) Layer

h't = SA(h™; W, W, W)
hout

4 )

Self-Attention Layer
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A Self-Attention (SA) Layer

hoUt = B + SA(h™; W, W), W)

hout
1 1 1 1

4 )

Self-Attention Layer
N\ y

| | | |
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A SA Layer vs. a GD update

hoUt = B + SA(h™; W, W), W)
N _

—

Each layer simulate an
implicit gradient update?

1 //\
wt =wt —nxve
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_ 0\()65 [Von Oswald et al. 2023; others]

Results: Transformers can implement GD
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_ 0\()65 [Von Oswald et al. 2023; others]

Results: Transformers can implement GD

Theorem [von Oswald et al., among others]: There exists self-attention weights
that, ICL simulates GD, for a fixed well-defined task family.

— \

How strong of a claim are we
making here?
Do they hold in real practice?

- J
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What existing work shows:

=

Theorem [von Oswald et al., among others]: There exists self-attention Weights
that, ICL simulates GD, for a fixed well-defined task family.

Do the existing results

generalize to realistic settings?

What is more interesting and realistic:

\4
I Hypothesis [ICL~GD hypothesis]: For any pre-trained Transformer weights ,

° ICL is equivalent to GD, for any well-defined task family.
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Do Pretrained Transformers Really
Learn In-Context by Gradient Descent?

Lingfeng Shen, Aayush Mishra, Daniel Khashabi

https://arxiv.org/abs/2310.08540



https://arxiv.org/abs/2310.08540

How realistic is it to proves ICL=GD for fixed weights?

« GPT-J's ICL ability does not
change much over time
during training, while the ,
parameters change steadily. !

— N N
&) o &)

3
Parameter difference (1e-4)

* There are many ICL-inducing
parameters.

&)

» e-- Parameter Diff.
32 34 36 38
Number of pre-training steps (1€5)
4 )
Therefore, to prove ICL=GD hypothesis,

showing it for a single choice of parameters is not enough.
N Y

(@)




ICL vs GD: End task comparison

Possible values:
World, Sports, Business, Tech

Input: Rookie Taylor Wins Playoff at Tahoe
Output:

[ Input: Apple recalls 15in PowerBook batteries
Output: Tech
Input: Major attack by rebels on Nepalese town
Output: World

demonstrations

B
Input: Rookie Taylor Wins Playoff at Reno-Tahoe
Output:

Input: Rookie Taylor Wins Playoff at Tahoe
Output:

LM

In-context

LM

Gradient-descent

LM

World
Sports
Business
Tech

World
Sports
Business
Tech

Prob

Prob
0.2 0.4 0.6

(o]
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demonstrations

ICL vs GD: End task comparison

Possible values:

World, Sports, Business, Tech
[ Input: Apple recalls 15in PowerBook batteries In-context o om0
Output: Tech World
Input: Major attack by rebels on Nepalese town oot
Output: World LM '_OO ’
Business

\Input: Rookie Taylor Wins Playoff at Reno-Tahoe Tech
Output: L . Prob

/ . o 0.2 04 06
Input: | Hypothesis: If two adapﬁatlpn a.Igorlthms
output| consistently lead to the same distribution on any tasks,

they must be equivalent.

N
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ICL vs GD: End task comparison

Possible values:
World, Sports, Business, Tech

Prob

0.2 0.4 0.6

demonstrations

b2
L )
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[ Input: Apple recalls 15in PowerBook batteries In-context o
Output: Tech World
Input: Major attack by rebels on Nepalese town
Output: World LM S'_Oorts

Business

\Input: Rookie Taylor Wins Playoff at Reno-Tahoe Tech
Output:

Gradient-descent 0
World

Input: Rookie Taylor Wins Playoff at Tahoe Sports

Output: L M Business
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Can we take this

-

as an evidence for ICL =GD?

%
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FU” distributions over In-context Gradient-descent
. . prob b
vocabulary are quite different! o s oo S
N ) Foot Bus
Prob World F
In-context o 02 o4 06 Sports Foot
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distributions differently. e S




In-context Gradient-descent
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ICL vs GD modity LLM distributions differently.

1.0- —— ICL vs GD (Ir=1e-3)
——— ICL vs GD (Ir=1e-4)

0.8 — ICL vs GD (Ir=1e-5)
I —— ICL vs GD (Ir=1e-6)
=< 0.6- ———— [CL vs ICL
o
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ICL vs GD have different order-sensitivity.

* Prior research has demonstrated that ICL is highly sensitive to
the order of in-context sample [Lu et al. 2022].

 GD and its variants is more order-stable (less STD).

0.200
0.175
0.150 1

Standard deviation token 0.125 -
probabilities, for different S 0.100+
choices of demonstrations. N 5.075-

o

0.050 1
0.025 1
0.000 -

0 25 50 75 100 125 150 175
Epoch
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Summary Thus Far

The explanations of ICL based on GD are quite intriguing — do they
hold in practice?

In practice, we did not see any evidence that ICL simulates GD.

e See the paper for more arguments and analysis.

Note, we're not refuting it. It's left open for future research.
e Deep inside, | believe that there must be a connection between ICL and

optimization algorithms — we're just not looking at it right.

35



ICL remains understudied and elusive.

* ICL is the most important & mysterious phenomenon.
* ... we don’t know how to explain it.
e ... and we are getting used to it.

* Many open problems:
* Under what conditions does it emerge? (e.g., distributional properties)

* Does ICL need natural language? Can it emerge, e.g., on brain
signals?

36



ICL is likely what makes “alignment” effective.

* The success of LLMs in following instructions can be viewed
from the lens of ICL.

* Being able to make LLMs adapt to various in-context
demonstration was an early sign that LLMs can be controlled.

 To understand limits of controlling LLMs, we must understand
limits of ICL.

37



* Revisiting ...

In-Context
Learning

Today
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* Revisiting ...

Today

Alignment
of chatbots

39



Language Modeling # Following User Intents

Explain gravity to a 6-year-old.

Explain “space elevators” L M Explain black-holes to a 6-year-old.
to a 6-year-old. Explain big bang to a 6-year-old.

{ LMs are not “aligned” with user intents mwzz].J

[Training language models to follow instructions with human feedback, Ouyang et al. 2022] 40



https://arxiv.org/abs/2203.02155

O
Qo
O\)

N
&2
Q0

How do we “align” LMs with our
articulated intents?



Please answer the following question.

What is the boiling point of Nitrogen?
5

-320.4F

)

Answer the following question by
reasoning step-by-step.
The cafeteria had 23 apples. If they

used 20 for lunch and bought 6 more,
\how many apples do they have?

- )
2. Evaluate LM on unseen tasks

) D Em Eam EEE EEm EE B

The cafeteria had 23 apples
originally. They used 20 to
make lunch. So they had 23 -
20 = 3. They bought 6 more
\apples, sotheyhave3+6=9. ||

2 ),

-

Inference generalization to unseen tasks

Geoffrey Hinton is a British-Canadian
computer scientist born in 1947. George
Washington died in 1799. Thus, they
could not have had a conversation
together. So the answer is “no”.

Q: Can Geoffrey Hinton have a
conversation with George Washington?

Give the rationale before answering.

[McCann et al., 2019, Weller et al. 2020. Mishra et al. 2021; Wang et al. 2022, Sanh et al. 2022; Wei et al., 2022, Chung et al. 2022, many others ] 42



O
) . .
£ Approach 1: Behavior Cloning supenised Learing

* Incentivizes word-by-word rote learning => limits creativity

« => The resulting models’ generality/creativity is bounded by
that of their supervision data.

S

\
/Answer the following question by ) S
reasoning step-by-step. € careteria ha apples

originally. They used 20 to
The cafeteria had 23 apples. If they

\
I make lunch. So they had 23 -
used 20 for lunch and bought 6 more, / 20 = 3. They bought 6 more
how many apples do they have? / I / =
\_ y app ¥ /// : M » Kapp|es, sothey have3+6=9. ||,

=
—

~
A

[McCann et al., 2019, Weller et al. 2020. Mishra et al. 2021; Wang et al. 2022, Sanh et al. 2022; Wei et al., 2022, Chung et al. 2022, many others ] 43



* 1. Reward Learning i R \

It is like any typical elevator, £

but it goes to space. ...

Explain “space elevators” LM

to a 6-year-old.

old. ...

2. Policy Gradient

Explain “space elevators” LM

to a 6-year-old. It is basically ....

[Christiano et al. 2017; Stiennon et al. 2020; Ouyang et al., 2022]

Explain gravity to a 6-year- =
e g y y ¥

R

©
©

pproach 2: RL w/ Ranking Feedback ®ur
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The overall recipe #:

Align
(instruct-tune)

Pre-train




The overall recipe #:

Align
(instruct-tune)

Pre-train




The overall recipe %
Yann's Three-layered cake

Align Align

Pre-train (instruct-tune) (RLHF)

Cherry on the cake

Cake genoise




Are these steps equally important?

Align

Pre-train (instruct-tune)




Are these steps equally important?

Pre-train Align

(instruct-tune)

Who should care?

1. Product designers: If you have $X million to build your best chatbot,
how would you allocate it?
2. Scientists: Fundamentally, is this the ultimate pipeline?

[Brown et al., 2020. GPT3, Ouyang et al., 2022. InstructGPT]
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https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2203.02155

Are these steps equally important?

Align

Pre-train (instruct-tune)

How far can we reduce the human annotations?

52



How far can we reduce the human annotations?

* |dea: we can bootstrap "“instruction” from off-the-shelf LMs.
* LMs have seen humans talk about their needs and goals.

Pretrainin
(GPT3*: 499 Bilion HLMs should know

a lot of tasks!
tokens)
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é )
Warning: the paper
Self-Instruct: IS a year old!!

Aligning Language Models w/
Self-Generated Instructions

J

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu,
Noah A. Smith, Daniel Khashabi, Hannaneh Hajishirzi

1
A ~} Bejd €
| NN/ Vs

https://arxiv.org/abs/2212.10560



https://arxiv.org/abs/2212.10560

Get humans to write “seed” tasks £

I am planning a 7-day trip to Seattle. Can you make a detailed plan for me?
Is there anything I can eat for breakfast that doesn’t include eggs, yet
includes protein and has roughly 700-1000 calories?

Given a set of numbers find all possible subsets that sum to a given number.

Give me a phrase that I can use to express I am very happy.

175 seed
tasks

"o-
lio—
"o_
|b°-z
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Put them your task bank

I am planning a 7-day trip to Seattle. Can you make a detailed plan for me?
Is there anything I can eat for breakfast that doesn’t include eggs, yet
includes protein and has roughly 700-1000 calories?

Given a set of numbers find all possible subsets that sum to a given number.
Give me a phrase that I can use to express I am very happy.

175 seed task
tasks pool

.'o- B /4

"o_

| - — N

"o-z \ ’
.
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Sample and get LLM to expand it

I am planning a 7-day trip to Seattle. Can you make a detailed plan for me?
e Is there anything I can eat for breakfast that doesn’t include eggs, yet
includes protein and has roughly 700-1000 calories?

e Given a set of numbers find all possible subsets that sum to a given number.

e Give me a phrase that I can use to express I am very happy.

LM Pre-trained, but not aligned yet

* Create a list of 10 African countries and their capital city?
* Looking for a job, but it’s difficult for me to find one. Can you help me?
* Write a Python program that tells if a given string contains anagrams.

175 seed task pool

tasks

Ie= ' 2k 2
) -t — N > =73
r-d Nem® LMsuggests

new tasks
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Get LLM to answers the new tasks

e Task: Convert the following temperature from Celsius to Fahrenheit.
e Input: 4 °C
e OQutput: 39.2 °F

* Task: Write a Python program that tells if a given string contains anagrams.

LM Pre-trained, but not aligned yet

e Input: -
* Output:
def isAnagram(strl, str2):

175 seed task pool

tasks

19= ; A

b — Ny > g

r-d N?, LM suggests Gy LM suggests

new tasks answers
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» Drop tasks if LM assigns low probability to them.

Filter tasks

» Drop tasks if they have a high overlap with one of the existing
tasks in the task pool.

* Otherwise, common tasks become more common — tyranny of majority.

175 seed

O —
O —
O —

»o-z

tasks
f .
| m .
N

task pool

LM suggests
new tasks

LM suggests
answers

LM suggests
answers

filter out if
not novel or confident
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Close the loop

» Add the filtered tasks to the task pool.
* lterate this process (generate, filter, add) until yield is near zero.

task pool
175 seed ¢
tasks — LM suggests
fo= ) el 2 ey answers
..8_ m — Ny > Z77 >|C].85
jo-d Nem® LMsuggests LM suggests L filter out if

new tasks answers . 60
not novel or confident



Self-Instructing GPT3 (base version)

» Generate:
« GPT3 (“davinci” engine).
« We generated 52K instructions and 82K instances.
* APl cost ~$600

* Align:
» We finetuned GPT3 with this data via OpenAl API (2 epochs). **
« API cost: ~$338 for finetuning

task pool
175 seed ¢
s LM suggests
1°- E
o= / 2 e % answers
..§_ B — N - > i
a mmm® LM suggests . suggests g | |
v
new tasks answers filter out if

not novel or confident



Evaluation on User-Oriented Instructions

= A: correct and satisfying response = B: acceptable response with minor imperfections

C: responds to the instruction but has significant errors m D: irrelevant or invalid response
100% .
LM pretraining
75% vanilla GPT3 (davinci)
| + instruct-tuning
50% GPT3-instruct (davinci-001)
25% 61 4 N

Diverse, “self-instruct” data ~

v | ERUEE thousands of human-written data

e ol - ~

G (e

[Self-Instruct: Aligning Language Model with Self-Generated Instructions, Wang et al. 2023]



Summary Thus Far

There is a lot of room to reduce the reliance on human annotations in

the “alignment” stage.

e \Well-read LLMs know a lot of our needs and demands.

e Magic of “in-context learning” can surface these.

Self-Instruct: Rely on creativity induced by LLMs themselves.

e Lots of open-source adoption, but that's not the point ...

(* See also concurrent work: Unnatural-Instructions [Honovich et al. 2022] and Self-Chat [Xu et al. 2023])
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The weight of "alignment” step

Fundamentally, what is the role of post hoc alignment (step #2/3)?

Step #1: Step #2/3: Align

Pre-train (RLHF or instruction-tune)

It's playing a small role — It's playing a big role —

ightly modify LM so it )  ¢2ching LM knowledge
can articulate its existing of new tasks
knowledge of tasks. |

(+ put guardrails for what it can articulate) 64



Implications for how to invest

Fundamentally, what is the role of post hoc alignment (step #2/3)?

Step #1: Step #2/3: Align

Pre-train (RLHF or instruction-tune)

Make it more efficient, possibly It ought to be annotation-intensive
with minimal human labor. to teach the necessary knowledge.

It's playing a small ro It's playing a big role —

Lightly modify LM so it - Teaching LM knowledge
can articulate its existing

of new tasks.

knowledge of tasks.

(+ put guardrails for what it can articulate) 65



Implications for what comes out

Fundamentally, what is the role of post hoc alignment (step #2/3)?

Step #1: Step #2/3: Align

Pre-train (RLHF or instruction-tune)

n

Unexpected behaviors It will be as good as the
may “emerge”. alignment supervision.

It's playing a small role= It's playing a big role —

ightly modify LM so it )  ¢2ching LM knowledge
can articulate its existing of new tasks
knowledge of tasks. |

(+ put guardrails for what it can articulate) 66



The weight of "alignment” step: My 2 cents

* Most of the heavy lifting is done via pre-training (unlabeled).

* Alignment to “instructions” (tuning/RLHF) is a light touch on LLMs.
« Can (and should) be done more efficiently.

It's playing a small role — It's playing a big role —

ightly modify LM so it eesssssssssssm——) 'c2ching LM knowledge
can articulate its existing of new tasks
knowledge of tasks. |

(+ put guardrails for what it can articulate) 67



RLHF is patchwork for lack ot grounding

* RLHF teach LMs (ground) the communicative intent of users.

* For example, what is intended by “summarize”? The act of producing
a summary grounded in the human concept of "summary”.

* Not a panacea, but a short-term “band-aid” solution.

RLHF or

Instruct-tuning L M

Intents
and norms

[Some remarks on Large Language Models, Goldberg 2023]
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https://gist.github.com/yoavg/59d174608e92e845c8994ac2e234c8a9

Alignment as a social process

* Can alignment emerge as a social experience?
* Internet also captures a subset of the world’s interactive experiences.
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The future is a cheesecake

* Future: A unifying process that encompasses E :
various steps that are done separately today. "

* The margins between alignment stages are getting murkier.
« Using model itself for feedback and verification
* Alignment during pre-training (Korbak et al. 2023)
* Building bridges between supervised learning and RL (see DPO vs. RLHF)

Align

(instruct-
tune)
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The future is a cheesecake

& b
£ % 4

* Future: A unifying process that encompasses e 4
various steps that are done separately today. "

* Yann's framework was good for getting a system off the ground.

* Now that we are moving to interactive setups, alignment and
pre-training will be a continual process. Systems that :
 Adaptively change to our needs and habits;
* Seamlessly pick up on implicit reward;

71



Thanks!



