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UnifiedQA: Impact

• Its empirical success was reproduced on new datasets. 

• Helped alleviated the conceptual barriers for building broader models.
• Follow-ups works have applied these ideas to different problem spaces 
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• Motivating Question: Can we build a more general 
individual system that can gains from tackling a variety of QA formats? 

• Yes we can! 
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individual system that can gains from tackling a variety of QA formats? 

• Yes we can! 
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Swaroop Mishra, Daniel Khashabi, Chitta Baral, Hannaneh Hajishirzi

ACL 2022

solving language tasks 
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Done on “Natural Instructions” — a meta-dataset of 
tasks and their language instructions. 

https://instructions.apps.allenai.org/
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Summary 

• Motivating Question: Can we build 
a single model that generalizes to unseen tasks?

• Generalization to unseen tasks improves when utilizing instructions. 

• Toward systems w/ better “alignment”  with human asks. [Christian  ‘20]

• Open questions: 
• When does this generalization work? When does it not?  
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• Interactivity — can lead to complex 
phenomena, through simple steps. 
• Setup: 
• Communications between models 
• Goal oriented

“human intelligence  … built up from the interactions of simple parts called agents” [Minsky, ’70s]



Text Modular Networks

Tushar Khot , Daniel Khashabi, Kyle Richardson
Peter Clark and Ashish Sabharwal

NAACL 2021

Interactive communication 
for solving complex questions 
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Big Girl's Blouse is an Australian skit program that aired in the mid-1990s
on the Seven Network. The show was created by Gina Riley, Jane Turner
and Magda Szubanski who all went on to star in "Kath & Kim". There were
four one-hour episodes, plus the pilot, which are usually shown as eight
half-hour episodes. The phrase "Big Girl's Blouse" is a British English idiom
meaning "ineffectual or weak, someone failing to show ….

"Homerpalooza" is the 24th episode of "The Simpsons"' seventh season. It
originally aired on the Fox network in the United States on May 19, 1996.
The plot focuses on Homer joining the "Hullabalooza" music festival as a
carnival freak. The episode title is a play on the Lollapalooza music
festival. It was the last "The Simpsons" episode written by Brent Forrester
and the last episode directed by Wes Archer. …

Raymond S. Persi is an American animator, director, screenwriter,
producer, storyboard artist and voice actor. He has directed many
episodes of "The Simpsons", including "Mobile Homer", "The Girl Who
Slept Too Little", "The Monkey Suit", "Little Big Girl", "24 Minutes", "Love,
Springfieldian Style" and the Emmy-award winning "The Seemingly
Never-Ending Story". Persi went on to work as a sequence director …

Ronald Jaimeer C. Humarang (born December 15, 1994 in Agoncillo,
Batangas, Philippines) is a Filipino singer and actor. His career started
when he joined "Little Big Star" where became a major part of the Big
Division of Little Big Star Season I, along with the likes of Sam Concepcion
and Charice Pempengco. He has also been part of the Little Big Star’s
album with his own rendition of "Iisa LangTayo". ….

“What is the nationality of the Simpsons director?”complex question

answer “American”

"Little Big Girl" is the twelfth episode of "The Simpsons”’s eighteenth
season. It originally aired on the Fox network in the United States on
February 11, 2007. It was written by Don Payne, and directed by
Raymond S. Persi. Natalie Portman guest starred as a new character,
Darcy. The title is a play on the Dustin Hoffman movie "Little Big Man".
The last time the title was parodied was in season 11's "Little Big Mom."

🤖
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Step 2: Language of Simple QA Models

73

"Little Big Girl" is the twelfth episode of "The Simpsons”’s eighteenth
season. It originally aired on the Fox network in the United States on
February 11, 2007. It was written by Don Payne, and directed by
Raymond S. Persi. Natalie Portman guest starred as a new character,
Darcy. The title is a play on the Dustin Hoffman movie "Little Big Man".
The last time the title was parodied was in season 11's "Little Big Mom."

“Who is the director of 
Simpson’s ‘Little Big Girl’?”

“What is the nationality of the Simpsons director?”complex question

answer “American”

Understandable to 
the simple models.
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"Little Big Girl" is in which season of "the Simpsons"'s? 

"Little Big Girl" is which episode of "the Simpsons"'s? 

“Who is the director of Simpson’s ‘Little Big Girl’?”

When was ‘Little Big Girl’ aired in USA?

Who is the writer of ‘Little Big Girl’ episode?

eighteenth

Raymond Persi

twelfth

February 11, 2007

Don Payne

answer “American”

“What is the nationality of the Simpsons director?”

... ...

complex question

question-answers as an 
expressive knowledge 

representation medium.

[He et al., '15, FitzGerald et al. '18]
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maximize 𝒄!𝒙
subject to 𝑨𝒙 ≤ 𝒃

𝒙 ≥ 𝟎
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discrete constrained search
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"Little Big Girl" is in which season of "the Simpsons"'s? 

"Little Big Girl" is which episode of "the Simpsons"'s? 

“Who is the director of Simpson’s ‘Little Big Girl’?”

When was ‘Little Big Girl’ aired in USA?

Who is the writer of ‘Little Big Girl’ episode?

eighteenth

Raymond Persi

twelfth

February 11, 2007

Don Payne

answer “American”

“What is the nationality of the Simpsons director?”

... ...

complex question

maximize 𝒄!𝒙
subject to 𝑨𝒙 ≤ 𝒃

𝒙 ≥ 𝟎
𝒙 ∈ ℤ𝒏

discrete constrained search

Find a subset of the questions, such that: 
1. form a “desirable reasoning structure”.
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maximize 𝒄!𝒙
subject to 𝑨𝒙 ≤ 𝒃

𝒙 ≥ 𝟎
𝒙 ∈ ℤ𝒏

discrete constrained search

Find a subset of the questions, such that: 
1. form a “desirable reasoning structure”.

answer

“What is the nationality of the Simpsons director?”complex question

simple Q1

simple Q2

Q1 answer

Q2 answer

Bridging phenomenon 
(e.g., deductive reasoning)

“American”
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maximize 𝒄!𝒙
subject to 𝑨𝒙 ≤ 𝒃

𝒙 ≥ 𝟎
𝒙 ∈ ℤ𝒏

discrete constrained search

answer “American”

“What is the nationality of  the Simpsons director?”complex question

Comparison phenomenon 
(e.g., conjunction, difference)

simple Q1

Q1 answer

simple Q2

Q2 answer

simple Q3

Q3 answer
Find a subset of the questions, such that: 

1. form a “desirable reasoning structure”.
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maximize 𝒄!𝒙
subject to 𝑨𝒙 ≤ 𝒃

𝒙 ≥ 𝟎
𝒙 ∈ ℤ𝒏

discrete constrained search

answer

“What is the nationality of the Simpsons director?”complex question

“Who is the director of the Simpsons?”

“What is the nationality of Raymond S. Persi?”

“Raymond Persi”

“American”

“American”

Find a subset of the questions, such that: 
1. form a “desirable reasoning structure”.
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Step 3: Decomposition via Optimization

78

maximize 𝒄!𝒙
subject to 𝑨𝒙 ≤ 𝒃

𝒙 ≥ 𝟎
𝒙 ∈ ℤ𝒏

discrete constrained search

answer

“What is the nationality of the Simpsons director?”complex question

“Who is the director of the Simpsons?”

“What is the nationality of Raymond S. Persi?”

“Raymond Persi”

“American”

“American”

Find a subset of the questions, such that: 
1. form a “desirable reasoning structure”.
2. satisfy sparsity/regularization factors: 

• Small pairwise overlap. 
• Cover the complex question.

🤖

complex 
task

simpler 
task



Step 4: Learn to Decompose

79
answer

“What is the nationality of the Simpsons director?”complex question
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“American”
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answer

“What is the nationality of the Simpsons director?”complex question

“Who is the director of the Simpsons?”

“What is the nationality of Raymond S. Persi?”

“Raymond Persi”

“American”

“American”

🤖

complex 
task

simpler 
task

Trained on [noisy] 
decompositions

🤖

inquisitor

No decomposition 
annotation needed! 
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DROP (F1)
[Ran et al. 19]

HotPotQA (F1)
[Ran et al. 19]

NumNet
[Ran et al. 19] 92 🤔

Quark
[Groeneveld et al. 20]

🤔 76

TMN
[this work] 88 62

• Competitive with dataset-specific.
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• Competitive with dataset-specific.

• Sample efficient — requires fewer 
examples to reach a certain accuracy.  



Summary of Empirical Observations

82“Text Modular Networks: Learning to Decompose Tasks in the Language of Existing Models.” Khot, K, Richardson, Sabharwal NAACL‘21
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78

trust understandable

Template-based [Min et al. 19]

Text Modular Network 

• Competitive with dataset-specific.

• Sample efficient — requires fewer 
examples to reach a certain accuracy.  

• Interpretable — human judges deemed 
it more “understandable” and 
“trustworthy”.
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• Text Modular Networks, a general-purpose framework for solving 
complex tasks via textual interaction between existing modules.
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Summary 
• Motivating Question: Can we solve complex 

tasks as communication with simpler models?

• Text Modular Networks, a general-purpose framework for solving 
complex tasks via textual interaction between existing modules.

• Approach: discrete optimization on existing simple models.  
• Resulting model is more interpretable, competitive yet sample-efficient.
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Summary 
• Motivating Question: Can we solve complex 

tasks as communication with simpler models?

• Text Modular Networks, a general-purpose framework for solving 
complex tasks via textual interaction between existing modules.

• Approach: discrete optimization on existing simple models.  
• Resulting model is more interpretable, competitive yet sample-efficient.

• Open questions: 
• How can we make TMNs more extensible? 

83
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Tying the Loose Ends 

• Currently, we do not focus enough on the “generality” of our progress. 
• Many are obsessed with victories in narrowly-defined tasks.

• Need to rethink our path to more “general” models.  
• defining setups that incentivize more general designs. 

• The works presented here: 
• Tackling a diverse range of tasks (breadth) 
• Tackling complexity through language interactions (depth)

84
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Future work: 
Toward broad,

interactive reasoning

Generality in “breadth”  —
tackling a variety of tasks

Generality in “depth”  —
tackling more complex tasks

ModularQA
NAACL ’21

Natural Instructions
arXiv ‘21

UnifiedQA
EMNLP Findings ’20

comprehension

reasoningInteraction
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ModularQA
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Natural Instructions
arXiv ‘21
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EMNLP Findings ’20
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Long-term goal: more general natural 
language processing (NLP) systems 
through unified algorithms and theories. 

general
language understanding

G

…             …  T1 T3T2

…             …  T1a T1cT1b

…
…

(I) Comprehension

(II) Reasoning

(III) Interaction
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Alignment with Abstract Statements

• Toward systems w/ better “alignment” with human demands.
• Challenge: ”demands” can be quite abstract. 

89

social norms

respecting the elderly

moral norms

avoiding gender or racial bias

human rights

freedom of speech

(I) Comprehension
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(I) Comprehension

“Do Language Models Understand Natural Language Interventions?” Zhao, Khashabi, Khot, Sabhwaral, Chang, Findings of ACL ’21
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Alignment with Abstract Statements

90

moral norms

avoiding gender or racial bias

(I) Comprehension

🤖
Amy and Adam: 

who can become a successful CEO?
Adam

Neural Language Models 
have difficulty aligning 

with abstract norms. 

“Do Language Models Understand Natural Language Interventions?” Zhao, Khashabi, Khot, Sabhwaral, Chang, Findings of ACL ’21

Future work: understanding and improving 
generalization over abstract language
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Models with Commmonsense

• Commonsense — knowledge of everyday situations and events. 
• Challenge: reporting bias [Gordon and Van Durme, ‘13]
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typical duration of dinner?
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(I) Comprehension
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Models with Commmonsense

• Opportunity: discovering commonsense signals in the wild. 

92“Temporal Commonsense Acquisition with Minimal Supervision.” Zhou, Ning, Khashabi, Roth, ACL ’20

eating dinner

duration

typical time “6pm on weekdays”

(I) Comprehension

Few hours?

Future work: inducing 
commonsense knowledge in our models



• Opportunity: discovering commonsense signals in the wild. 

Models with Commmonsense

93

eating dinner

duration

typical time

(I) Comprehension

Future work: inducing 
commonsense knowledge in our models



• Opportunity: discovering commonsense signals in the wild. 

Models with Commmonsense

93

eating dinner

duration

typical time

(I) Comprehension

Future work: inducing 
commonsense knowledge in our models



94

Long-term goal: more general natural 
language processing (NLP) systems 
through unified algorithms and theories. 

general
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• Compositional statements need to be understood via their constituents.  
• Implicit vs. explicit compositions

🤖
Did Aristotle use a laptop?

implicit

(II) Reasoning
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Reasoning with Implicit Compositions

• Compositional statements need to be understood via their constituents.  
• Implicit vs. explicit compositions

Were laptops invented before Aristotle was born? 
🤖

Did Aristotle use a laptop?
implicit

explicit

(II) Reasoning

“Did Aristotle Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies” Geva, Khashabi, et al. TACL ‘21



Reasoning with Implicit Compositions

• Compositional statements need to be understood via their constituents.  
• Implicit vs. explicit compositions

Were laptops invented before Aristotle was born? 
🤖

Did Aristotle use a laptop?
implicit

explicit

(II) Reasoning

Future work: robust reasoning for 
implicit compositional statements

“Did Aristotle Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies” Geva, Khashabi, et al. TACL ‘21
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She decided to cut her walk short.
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(II) Reasoning

Jackie was on a walk 
on a hot summer day 
and she was thirsty.
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ice cold water. 
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She did not find water. 
She decided to cut her walk short.

Future work: characterizing non-monotonicity
in language problems and tackling it 
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Jackie was on a walk on a hot 
summer day and she was thirsty.

She was all freshened 
up to continue her walk. 

_________?__________ 

“Energy-based Constrained Text Generation with Langevin Dynamics.” Qin, Welleck, K,  Choi, arXiv pre-print ‘22

Future work: characterizing non-monotonicity
in language problems and tackling it 



Non-monotonic Reasoning
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(II) Reasoning

Jackie was on a walk on a hot 
summer day and she was thirsty.

She was all freshened 
up to continue her walk. 

_________?__________ 

“Energy-based Constrained Text Generation with Langevin Dynamics.” Qin, Welleck, K,  Choi, arXiv pre-print ‘22

🤖
!𝝏E
𝝏𝒑

…𝒑 =

constraint text generation as 
sampling from an energy function

Future work: characterizing non-monotonicity
in language problems and tackling it 
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Long-term goal: more general natural 
language processing (NLP) systems 
through unified algorithms and theories. 

general
language understanding

G

…             …  T1 T3T2

…             …  T1a T1cT1b

…
…

(I) Comprehension

(II) Reasoning

(III) Interaction



Reasoning in Language Interaction

• Language interactions is a key medium in 
which “reasoning” emerges. 
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(III) Interaction

🤖🤖 natural language 
communication

inquisitor solver
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(III) Interaction

• Challenge: assumptions used for learning decompositions in TMN 
can be limiting. 

“What is the nationality of the Simpsons director?”

????🤖inquisitor

🤖 solver????

????🤖inquisitor

🤖 solver“American”

Given: fixed QA solvers 
for simpler questions
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(III) Interaction

• Challenge: assumptions used for learning decompositions in TMN 
can be limiting. 

Future work: learning to interact 
with existing models with minimal assumptions

???? 🤖

solver

“American”

Given: fixed QA solvers 
for simpler questions

“Promp Waywardness: The Curious Case of Discretized Interpretation of Continuous Prompts.” Khashabi and others, arXiv pre-print ‘22

Gradients alone are insufficient 
to reverse engineer a model.

ℒ( )
𝛻ℒ



Extensible Language Interaction

• Extensible Text Modular Networks 
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(III) Interaction

🤖 natural language 
communication 🤖

inquisitor solver

“Learning to Solve Complex Tasks by Talking to Agents.” Khot, Richardson, Khashabi and Sabharwal, ACL Findings ‘22



Extensible Language Interaction

• Extensible Text Modular Networks 
• Extensibility to new “modules” 
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(III) Interaction

🤖 natural language 
communication 🤖

🤖

+

inquisitor solver

“Learning to Solve Complex Tasks by Talking to Agents.” Khot, Richardson, Khashabi and Sabharwal, ACL Findings ‘22
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• Extensibility to new “modules” 
• Extensibility to new problems 
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(III) Interaction

🤖 natural language 
communication 🤖

inquisitor solver

“Learning to Solve Complex Tasks by Talking to Agents.” Khot, Richardson, Khashabi and Sabharwal, ACL Findings ‘22



Extensible Language Interaction

• Extensible Text Modular Networks 
• Extensibility to new “modules” 
• Extensibility to new problems 
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(III) Interaction

🤖 natural language 
communication 🤖

inquisitor solver

Future work: interactive goal-driven language 
communication in partially-known environments
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Thanks to my collaborators! 


