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Performance (higher is better)
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Research questions: How can we build a system that
tackles a variety of language tasks?
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[Raffel et al. 2020]

Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer
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“.... we find that multi-task training
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Answering a broad range of
questions with a single system

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabharwal
Oyvind Tafjord, Peter Clark and Hannaneh Hajishirzi

EMNLP Findings 2020
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Toward Unified Question Answering
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A Single Unified Model for QA

 UnifiedQA: a model trained on the union of
datasets from four different QA tasks.

* Summary of empirical results:
* Outperforms dataset-specific models
* Improved state-of-art results on 10 datasets.
* Strong generalization to unseen datasets.

tasks for answering questions

“UnifiedQA: Crossing Format Boundaries With a Single QA System.” Khashabi and others EMNLP-Findings ‘20

40



UnifiedQA: Impact

* Its empirical success was reproduced on new datasets.

[Bragg et al. '21; Wu et al. *21; Zhong et al. *21, ...]
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: Impact

* Its empirical success was reproduced on new datasets.

[Bragg et al. '21; Wu et al. *21; Zhong et al. *21, ...]

Answer F}
Model
ode Span  Abstractive  Overall
LED-base 54.20 24.95 44.96
o T5-large 65.59 290.11 60.03
@ UnifiedQA-large 67.23 28.92 61.39

Qasper [Dasigi et al. "21]

Model Average
Random Baseline 25.0
RoBERTa 27.9
ALBERT 21l
GPT-2 324
UnifiedQA 48.9
GPT-3 Small (few-shot) 259
GPT-3 Medium (few-shot) 24.9
GPT-3 Large (few-shot) 26.0

GPT-3 X-Large (few-shot) 43.9

Zero-Shot

EM F1 FZ-R
Human Performance 79.99 89.87 92.33
T5-Base (UnifiedQA) 5775 69.90 76.31
T5-Large (UnifiedQA) 64.83 75.73 80.59
T5-3B (UnifiedQA) 66.77 7698 81.77
T5-11B (UnifiedQA) 51.13 66.19 71.68
GPT-3 53.72 67.45 7294

QAConv [Wu et al. '21]

MMMLU [Hendrycks et al. '21]
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UnifiedQA: Impact

* Its empirical success was reproduced on new datasets.

[Bragg et al. '21; Wu et al. *21; Zhong et al. *21, ...]

* Helped alleviated the conceptual barriers for building broader models.
* Follow-ups works have applied these ideas to different problem spaces

[Aghajanyan et al.'21, Gupta et al.'21, Jiang et al.21, Bragg et al. ‘21, Aribandi et al. 21, ...]
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individual system that can gains from tackling a variety of QA formats?

* Yes we can!
* Added incentive: there is value in mixing QA tasks.
* UnifiedQA: a single QA system working across four common QA types

* Open questions:
 What about other non-QA tasks?
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Generalization via Task Instructions
L

solving language tasks
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Cross-Task Generalization tasks witr

language input/output

@ ® @

Input text
Instructions
Pronoun | Indicate which character
Resolution refers to "“he”. —> Output: “Jack”
observed
tasks Instructions .
Grammar @ Indicate if the following ) o
Check | sentence is grammatical. W »  Output: "grammatical
Instructions
eval. | summary | Write a summary of the >  Output: “Insum..”
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Done on “Natural Instructions” — a meta-dataset of
tasks and their language instructions.
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* Performance on unseen tasks
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Cross-Task Generalization

* Performance on unseen tasks

* improves with more observed tasks
* when using instructions!
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Summary

* Toward systems w/ better “"alignment” with human asks.
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a single model that generalizes to unseen tasks?

Generalization to unseen tasks improves when utilizing instructions.

Open questions:
* When does this generalization work? When does it not?
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* Interactivity — can lead to complex
phenomena, through simple steps.

* Setup:

e Communications between models

 Goal oriented

AGEN?

5

Seen by itself, as an agent, BUILDER
is just a simple process that turns other
agents on and off.

+—— Seen from outside, as an agency,
BUILDER does whatever all its
subagents accomplish, using
one another's help.

“human intelligence ... built up from the interactions of simple parts called agents”

general
language understanding
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DemO https://modularqa-demo.apps.allenai.org/

Vv Selected Reasoning [Ans: American ]
® Question: What is the nationality of Simpson’s "Little Big Girl” director?
(® Who was the director of "Little Big Girl"? Curr. Penalty: 0.0000
() RaymondS. Persi viamodule: SQUAD QA
(® Whatis Raymond S. Persi's nationality? Curr. Penalty: 0.0000
() American viamodule: SQUAD QA
©® Answer: American Final Penalty: 0.0044
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Research question: Can we learn to solve

existing, simpler models?

complex questions via language interactions with

{

complex question
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simple question
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"What is the nationality of the Simpsons director?”
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step1: Relevant Documents

complex question

(S

"What is the nationality of the Simpsons director?”

1”77

“Little Big Girl" is the twelfth episode of "The Simpsons™’s eighteenth
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season. It originally aired on the Fox network in the United States on
g{February 11, 2007. It was written by Don Payne, and directed by
Raymond S. Persi. Natalie Portman guest starred as a new character,
pjDarcy. The title is a play on the Dustin Hoffman movie "Little Big Man".
The last time the title was parodied was in season 11's "Little Big Mom."

arn

album with his own rendition of "lisa Lang Tayo". ....

Never-Ending Story". Persi went on to work as a sequence director ...

and the last episode directed by Wes Archer. ..

7

meaning "ineffectual or weak, someone failing to show ....

answer

[ “American” ]

o
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step 2: Language of Simple QA Models

complex question

1D

"What is the nationality of the Simpsons director?”

1”77

“Little Big Girl" is the twelfth episode of "The Simpsons™’s eighteenth

answer

season. It originally aired on the Fox network in the United States on

R
ol B February 11, 2007. It was written by Don Payne, and directed by
: wlRaymond S. Persi| Natalie Portman guest starred as a new character,
| P’ pjDarcy. Tige title is a play on the Dustin Hoffman movie “Little Big Man".
Bjdor 27 arl The last time the title was parodied was in season 11's "Little Big Mom."
9 €
on|Th cp| album withlhis own rendition of "lisa Lang Tayo". ....

an
fol
ha

1

Simpson.’s 'Little Big Gir’l 7

"Who is the director of  pn to work as a sequence director ...

7

Archer. ...

meaning "ineffectual or weak, so.  Understandable to

the simple models.

[ “American” ]
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step 2: Language of Simple QA Models

complex question

question-answers as an
expressive knowledge
representation medium

"What is the nationality of the Simpsons director?”

“Little Big Girl" is in which season of "the Simpsons

i

S?

l "Who is the director of Simpson’s 'Little Big Girl’?”

_ rfittle Big Girl" is which episode of "the Simpsons"'s?

[He et al., '15, FitzGerald et al. '18]

answer

When was 'Little Big Girl’ aired in USA?

Who is the writer of 'Little Big Girl’ episode?

“American”

eighteenth
Raymond Persi
twelfth
February 11, 2007

Don Payne

o
s

complex
task
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step3: SUbSet Selection via Optimization

o
complex question "What is the nationality of the Simpsons director?” o)
“Little Big Girl" is in which season of "the Simpsons"'s? eighteenth
"Who is the director of Simpson’s 'Little Big Girl’?” Raymond Persi
“Little Big Girl" is which episode of "the Simpsons"'s? twelfth
When was 'Little Big Girl’ aired in USA? February 11, 2007
Who is the writer of 'Little Big Girl’ episode? Don Payne

answer [ “American” ] .
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step3: SUbSet Selection via Optimization
:

complex question

"What is the nationality of the Simpsons director?” e
“Little Big Girl" is in which season of "the Simpsons"'s? eighteenth
"Who is the director of Simpson’s 'Little Big Girl’?” Raymond Persi
maximize cx
“Little Big Girl" is which episode of "the Simpsons"'s? twelfth { subject to Axf()b
X =
When was 'Little Big Girl’ aired in USA? February 11, 2007 \ x e
: , , . _ discrete constrained search

Who is the writer of 'Little Big Girl’ episode? Don Payne

answer [ “American” ] .
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step3: SUbSet Selection via Optimization

o
| ti . . . . . s
FompIERaueson "What is the nationality of the Simpsons director?” o)
“Little Big Girl" is in which season of "the Simpsons"'s? eighteenth
"Who is the director of Simpson’s 'Little Big Girl’?” Raymond Persi
maximize cx
“Little Big Girl" is which episode of "the Simpsons"'s? twelfth { subject to Axf()b
X =
When was 'Little Big Girl’ aired in USA? February 11, 2007 \ x e
, _ . — : discrete constrained search
Who is the writer of 'Little Big Girl’ episode? Don Payne
. ﬁnd a subset of the questions, such that: R

1. form a “desirable reasoning structure”.

answer [ “American” ] \ )
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step3: Decomposition via Optimization

complex question

Bridging phenomenon

(e.g., deductive reasoning) _

answer

s

~N

"What is the nationality of the Simpsons director?” e
simple Q1 ’
maximize cTx
: Ax<b
{ subject t =
Q1 answer subject to x>0
\ x €M
discrete constrained search
simple Q2
ﬁnd a subset of the questions, such that:
Q2 answer _ _
1. form a “desirable reasoning structure”.
[ “American”

J
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step3: Decomposition via Optimization
:

complex question

"What is the nationality of the Simpsons director?” ey
simple Q1 simple Q2 f
maximize cTx
: Ax<b
Q1 answer Q2 answer { subject to x>0
Comparison phenomenon X € 7N

(e.g., conjunction, difference) ___ A\
discrete constrained search

simple Q3

ﬁnd a subset of the questions, such that: R
Q3 answer 1. form a “desirable reasoning structure”.

answer [ “American” ] \ )
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step3: Decomposition via Optimization

complex question

"Who is the director of the Simpsons?”

(o .
maximize cC X

Ax<b
x>0
x e

"Raymond Persi”

A

subject to

\
discrete constrained search

"What is the nationality of Raymond S. Persi?”

"American” ﬁnd a subset of the questions, such that: R
1. form a “desirable reasoning structure”.

answer [ “American” ] \ )




complex
task

step3: Decomposition via Optimization

complex question

answer

"Who is the director of the Simpsons?”

"Raymond Persi”

s

"What is the nationality of the Simpsons director?” ey

. .
maximize cC X

Ax<b
x>0
x e

A

subject to

\

discrete constrained search

"What is the nationality of Raymond S. Persi?”

"American”

[ “American” ]

\_

ﬁnd a subset of the questions, such that:

~N

1. form a “desirable reasoning structure”.
2. satisfy sparsity/reqularization factors:

* Small pairwise overlap.
* Cover the complex question.

J
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step 4: Learn to Decompose

complex question

"Who is the director of the Simpsons?”

"Raymond Persi”

"What is the nationality of Raymond S. Persi?”

"American”
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step 4: Learn to Decompose

complex question "What is the nationality of the Simpsons director?”

"Who is the director of the Simpsons?”

inquisitor Raymond Persi

i N\

Trained on [noisy]

"What is the nationality of Raymond S. Persi?”
decompositions F

"American”

answer [ “American” ]

complex
task

8

No decomposition

annotation needed!
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Summary of Empirical Observations

* Competitive with dataset-specific.
——TMN —e=NumNet

~9 A

g

899 ; >\: * Sample efficient — requires fewer

5 85 | examples to reach a certain accuracy.
c .

(@)

.5_/ 80 AN EEEE NN NN NN NN NN EEEEE NN NN EEEEEEEEEEE »

. 100% 60% 20%

percentage of training Data

"Text Modular Networks: Learning to Decompose Tasks in the Language of Existing Models.” Khot, K, Richardson, Sabharwal NAACL'21 g,



Summary of Empirical Observations

Template-based i et al. 1 * Competitive with dataset-specific.

100

* Sample efficient —requires fewer
examples to reach a certain accuracy.

75

50

* Interpretable — human judges deemed
it more “"understandable” and
“trustworthy”.

25

Human preference (higher is better)

trust understandable

"Text Modular Networks: Learning to Decompose Tasks in the Language of Existing Models.” Khot, K, Richardson, Sabharwal NAACL'21 g,
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Can we solve complex XX 4335'6
tasks as communication with simpler models? ~1~1~

* Text Modular Networks, a general-purpose framework for solving
complex tasks via textual interaction between existing modules.

* Approach: discrete optimization on existing simple models.
* Resulting model is more interpretable, competitive yet sample-efficient.

* Open questions:

* How can we make TMNs more extensible?
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Tying the Loose Ends

* Currently, we do not focus enough on the “generality” of our progress.
* Many are obsessed with victories in narrowly-defined tasks.

* Need to rethink our path to more “"general” models.
* defining setups that incentivize more general designs.

* The works presented here:
* Tackling a diverse range of tasks (breadth)
* Tackling complexity through language interactions (depth)



Talk Outline

Generality in "depth” —
tackling more complex tasks

v
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Future work:
Toward broad,
Interactive reasoning
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comprehension

Interaction reasoning
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N
Neural Language Models

have difficulty aligning
with abstract norms.

I

Future work: understanding and improving
generalization over abstract language

Q moral norms

avoiding gender or racial bias

THE ALIGNMENT

- PROBLEN

Amy and Adam:
who can become a successful CEO? W g

"Do Language Models Understand Natural Language Interventions?” Zhao, Khashabi, Khot, Sabhwaral, Chang, Findings of ACL ‘22 9o
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(I) Comprehension

Models with Commmonsense

* Commonsense — knowledge of everyday situations and events.
¢ Challenge: reporting bias [Gordon and Van Durme, ‘13]

S
Do we have time to eat @
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typical duration of dinner? %Qj\%
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(I) Comprehension

Models with Commmonsense

* Opportunity: discovering commonsense signals in the wild.

duration Few hours?

p [
% eating dinner

typical time  "6pm on weekdays” lk

Future work: inducing
commonsense knowledge in our models

"Temporal Commonsense Acquisition with Minimal Supervision.” Zhou, Ning, Khashabi, Roth, ACL ‘20 92
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Long-term goal: more general natural
language processing (NLP) systems
through unified algorithms and theories.

general
language understanding

®
j (I) Comprehension

by
\he
P

(1) Reasoning

(I1) Interaction
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(II) Reasoning

Reasoning with Implicit Compositions

* Compositional statements need to be understood via their constituents.
* Implicit vs. explicit compositions
implicit

Did Aristotle use a laptop?

explicit @

Were laptops invented before Aristotle was born?

Future work: robust reasoning for
implicit compositional statements

"Did Aristotle Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies” Geva, Khashabi, et al. TACL ‘21
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(II) Reasoning

Non-monotonic Reasoning

Jackie was on a walk on a hot She was all freshened
summer day and she was thirsty. up to continue her walk.

i Future work: characterizing non-monotonicity
\& “ in language problems and tackling it

“Energy-based Constrained Text Generation with Langevin Dynamics.” Qin, Welleck, K, Choi, arXiv pre-print ‘22
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(1) Reasoning

Non-monotonic Reasoning
constraint text generation as
N sampling from an energy function
“,

/6p

Jackie was on a walk on a hot She was all freshened
summer day and she was thirsty. up to continue her walk.

i Future work: characterizing non-monotonicity
\& “ in language problems and tackling it
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Learning Language Interaction
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(I11) Interaction

Learning Language Interaction

* Challenge: assumptions used for learning decompositions in TMN

can be limiting.
Given: fixed QA solvers
for simpler questions
VL solver

-~
- SO

Gradients alone are insufficient
to reverse engineer a model.

Future work: learning to interact
with existing models with minimal assumptions

“Promp Waywardness: The Curious Case of Discretized Interpretation of Continuous Prompts.” Khashabi and others, arXiv pre-print ‘22 103
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Extensible Language Interaction

» Extensible Text Modular Networks inquisitor solver
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W natural language @
communication

“Learning to Solve Complex Tasks by Talking to Agents.” Khot, Richardson, Khashabi and Sabharwal, ACL Findings ‘22 104
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» Extensible Text Modular Networks inquisitor solver
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(I1) Interaction

Extensible Language Interaction

* Extensible Text Modular Networks inquisitor solver
* Extensibility to new "modules”

. TIT . natural language 0

Extensibility to new problems & L unication s

There is a chilled sandwich on the floor.

> take sandwich
Taken.

> inventory
You are carrying:

a chilled sandwich
a large stick of butter

> eat it
You eat the chilled sandwich. Not bad.

“Learning to Solve Complex Tasks by Talking to Agents.” Khot, Richardson, Khashabi and Sabharwal, ACL Findings ‘22 105



(I11) Interaction

Extensible Language Interaction

» Extensible Text Modular Networks inquisitor solver
* Extensibility to new "modules” ; -
. . natural language
Extensibility to new problems 0 Rt { ) }

Future work: interactive goal-driven language
communication in partially-known environments
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