
Sean Welleck | 03.11.2022

Constrained text generation through
discrete & continuous inference

Neural text generation
• Large-scale language models drive state-of-the-art performance in text

generation tasks:

Open-Ended Generation

[Thoppilan et al 2022]

Long-form QA

Machine Translation

Program Synthesis

[Austin et al 2021]

[Chen et al 2021]

Dialogue

https://arxiv.org/abs/2201.08239
https://arxiv.org/pdf/2107.03374.pdf
https://arxiv.org/pdf/2108.07732.pdf

Neural text generation
• General purpose:

<start> Generate a question. Question:

Language Model

What is a language model?

Internet
Train

Arbitrary “prompt”

Continuation

Neural text generation
• General purpose:

fine-tune

• Task-specific:

<start> <end>

Jupiter is the fifth planet from the sun.

Summarization
Language Model{ }

<start> Generate a question. Question:

Language Model

What is a language model?

Internet
Train

Arbitrary “prompt”

Continuation

Input

Output

Example from: https://beta.openai.com/playground

• GPT-3: a general purpose 175B parameter language model:

Jupiter is the fifth planet from the Sun. It is very large compared to other
planets and is one of the brightest objects in the night sky. People have
been observing Jupiter since prehistoric times.

Output

Example based on: https://beta.openai.com/playground/p/default-summarize

Summarize this for a second-grade student:Input

• GPT-3: a general purpose 175B parameter language model:

https://beta.openai.com/playground/p/default-summarize

Controlling neural text generation

Input

Output

Constraint

Example from: https://beta.openai.com/playground

• Controlling the syntax, semantics, or style of generated text is difficult

• Lexical content

Summarize this for a second-grade student, and  
include the word Venus:

• Controlling the syntax, semantics, or style of generated text is difficult

Controlling neural text generation

Jupiter is the fifth planet from the Sun. It is a gas giant that is the largest in
the Solar System. It is the third brightest object in the night sky. People
have been observing it since prehistoric times.

Input

Output

Constraint

Example based on: https://beta.openai.com/playground/p/default-summarize

https://beta.openai.com/playground/p/default-summarize

Summarize this for a second-grade student, and  
include the word Venus:

• Controlling the syntax, semantics, or style of generated text is difficult

Controlling neural text generation

Jupiter is the fifth planet from the Sun. It is a gas giant that is the largest in
the Solar System. It is the third brightest object in the night sky. People
have been observing it since prehistoric times.

Input

Output

Constraint

Example based on: https://beta.openai.com/playground/p/default-summarize

• For a task specific model: how do we even specify the control words?

https://beta.openai.com/playground/p/default-summarize

Controlling neural text generation

• Typical usage pattern: use an “off-the-shelf” model
to generate text

Controlling neural text generation

• Typical usage pattern: use an “off-the-shelf” model
to generate text

• Hard to get data for desired control outcomes

Controlling neural text generation

• Typical usage pattern: use an “off-the-shelf” model
to generate text

• Hard to get data for desired control outcomes

• Expensive to fine-tune & store a new model

Controlling neural text generation

• Typical usage pattern: use an “off-the-shelf” model
to generate text

• Hard to get data for desired control outcomes

• Expensive to fine-tune & store a new model

• How do we enable controlled generation for off-the-
shelf models?

Controlling neural text generation

• Typical usage pattern: use an “off-the-shelf” model
to generate text

• Hard to get data for desired control outcomes

• Expensive to fine-tune & store a new model

• How do we enable controlled generation for off-the-
shelf models?

• General-purpose or task-specific

Control through inference
Model + decoding

Control through inference

• Text generation involves two steps:

Model + decoding

Control through inference

• Text generation involves two steps:

• Learn a model from data (or download one…)

• pθ(y |x) =
T

∏
t=1

pθ(yt |y<t, x)

Model + decoding

Language Model

Control through inference

• Text generation involves two steps:

• Learn a model from data (or download one…)

• pθ(y |x) =
T

∏
t=1

pθ(yt |y<t, x)

• Use an inference/decoding algorithm to generate text

• ŷ = decode(pθ(⋅ |x))

Model + decoding

Language Model

<start>

Decoding Algorithm

What is the mass of Jupiter?

Control through inference

• Text generation involves two steps:

• Learn a model from data (or download one…)

• pθ(y |x) =
T

∏
t=1

pθ(yt |y<t, x)

• Use an inference/decoding algorithm to generate text

• ŷ = decode(pθ(⋅ |x))

• e.g. sampling, yt ∼ pθ(yt |y<t, x)

Model + decoding

Language Model

<start>

Decoding Algorithm

What is the mass of Jupiter?

Control through inference

• Text generation involves two steps:

• Learn a model from data (or download one…)

• pθ(y |x) =
T

∏
t=1

pθ(yt |y<t, x)

• Use an inference/decoding algorithm to generate text

• ŷ = decode(pθ(⋅ |x))

• e.g. sampling, yt ∼ pθ(yt |y<t, x)

• e.g. maximization yt = arg max
yt

pθ(yt |y<t, x)

Model + decoding

Language Model

<start>

Decoding Algorithm

What is the mass of Jupiter?

Constraints through inference
Model + decoding

• Control: constraints on the generation distribution

<start>

Which has the most mass:
Mercury, Venus, or Jupiter?

Language Model

Constrained
Decoding

Decoding Algorithm

Constraints through inference
Model + decoding

• Control: constraints on the generation distribution

• Goal: decoding algorithms that enable constraints

•

• Underlying model remains unchanged!

ŷ = decode(pθ(⋅ |x), constraints)

<start>

Which has the most mass:
Mercury, Venus, or Jupiter?

Language Model

Constrained
Decoding

Constraints through inference
Model + decoding

• Control: constraints on the generation distribution

• Goal: decoding algorithms that enable constraints

•

• Underlying model remains unchanged!

ŷ = decode(pθ(⋅ |x), constraints)

<start>

Which has the most mass:
Mercury, Venus, or Jupiter?

Language Model

Constrained
Decoding

• Which classes of constraints?

• How to specify and enforce them?

Constrained generation through inference
• Today: decoding algorithms for constrained generation from two perspectives

Constrained generation through inference
• Today: decoding algorithms for constrained generation from two perspectives

• Logical lexical constraints enforced through discrete inference 

Which has the most mass:
Mercury, Venus, or Jupiter?

(mass ∨ masses) ∧

(Mercury) ∧ (Venus) ∧ (Jupiter)

Constrained generation through inference
• Today: decoding algorithms for constrained generation from two perspectives

• Logical lexical constraints enforced through discrete inference 

• Differentiable constraints enforced through continuous inference

Which has the most mass:
Mercury, Venus, or Jupiter?

(mass ∨ masses) ∧

(Mercury) ∧ (Venus) ∧ (Jupiter)

Language
Model

ffluency

fkeywordscat,
zebra

fsimilarityMy favorite
food is pizza.

…
Cats and zebras are
my favorite animals.

Constrained generation through discrete inference

NeuroLogic A*esque Decoding:  
Constrained Text Generation with Lookahead Heuristics

Ximing Lu

Noah SmithRowan ZellersRonan Le Bras

Peter West

Daniel Khashabi

Sean Welleck Liwei Jiang

Jungo Kasai

Lianhui Qin Youngjae Yu Yejin Choi

In Submission, arxiv:2112.08726

https://arxiv.org/abs/2112.08726

Logical lexical constraints
• Ensure certain words appear or do not appear

<start>

Off-the-shelf
Language Model

A*-NeuroLogic

C

Logical Constraints
(cat ∨ cats) ∧ (fish) ∧ (¬dog)

Generate a sentence using
cat and fish, but not dog

The cat jumped on the table and saw a fish.

•
Goal: y* = arg max

y∈𝒴
log pθ(y)

fluency

+ C(y)
⏟

constraints

Decoding Objective

Logical Constraints
(cat ∨ cats) ∧ (fish) ∧ (¬dog)

Standard decoding
Beam search

•
y* ≈ arg max

y∈𝒴
log pθ(y)

fluency

+ 0
⏟

constraints

Standard decoding
Beam search

•
y* ≈ arg max

y∈𝒴
log pθ(y)

fluency

+ 0
⏟

constraints

• Left-to-right search on the lattice of tokens:

Standard decoding
Beam search

<s>

•
y* ≈ arg max

y∈𝒴
log pθ(y)

fluency

+ 0
⏟

constraints

• Left-to-right search on the lattice of tokens:

• Expand prefixes with next-tokens

Standard decoding
Beam search

<s>

z

a

and

my

…

…

•
y* ≈ arg max

y∈𝒴
log pθ(y)

fluency

+ 0
⏟

constraints

• Left-to-right search on the lattice of tokens:

• Expand prefixes with next-tokens

•
Score each using log pθ(yt |y<t)

fluency

Standard decoding
Beam search

<s>

z

a

and

my

…

…

0.00

0.20

0.00

…

…

0.15

•
y* ≈ arg max

y∈𝒴
log pθ(y)

fluency

+ 0
⏟

constraints

• Left-to-right search on the lattice of tokens:

• Expand prefixes with next-tokens

•
Score each using log pθ(yt |y<t)

fluency

• Select the k best, and repeat

Standard decoding
Beam search

<s>

z

a

and

my

…

…

0.00

0.20

0.00

…

…

0.15

•
y* ≈ arg max

y∈𝒴
log pθ(y)

fluency

+ 0
⏟

constraints

• Left-to-right search on the lattice of tokens:

• Expand prefixes with next-tokens

•
Score each using log pθ(yt |y<t)

fluency

• Select the k best, and repeat

Standard decoding
Beam search

<s>

…

…

=> my cup of water is cold.

z

a

and

my

…

…

0.20

0.00

0.00

z

a

and

cup

0.00

……

… …

0.15

0.00

0.00

z

a

and

book

0.00

……

… …
0.00

0.20

0.00

…

…

0.15

•
y* ≈ arg max

y∈𝒴
log pθ(y)

fluency

+ 0
⏟

constraints

• Left-to-right search on the lattice of tokens:

• Expand prefixes with next-tokens

•
Score each using log pθ(yt |y<t)

fluency

• Select the k best, and repeat

Standard decoding
Beam search

<s>

…

…

=> my cup of water is cold.

z

a

and

my

…

…

0.20

0.00

0.00

z

a

and

cup

0.00

……

… …

0.15

0.00

0.00

z

a

and

book

0.00

……

… …
0.00

0.20

0.00

…

…

0.15

Ignores constraints

•
y* ≈ arg max

y∈𝒴
log pθ(y)

fluency

+ 0
⏟

constraints

• Left-to-right search on the lattice of tokens:

• Expand prefixes with next-tokens

•
Score each using log pθ(yt |y<t)

fluency

• Select the k best, and repeat

Standard decoding
Beam search

<s>

…

…

=> my cup of water is cold.

z

a

and

my

…

…

0.20

0.00

0.00

z

a

and

cup

0.00

……

… …

0.15

0.00

0.00

z

a

and

book

0.00

……

… …
0.00

0.20

0.00

…

…

0.15

Ignores constraints

Myopic

NeuroLogic decoding [Lu et al 2021]
• + favor tokens that [partially] satisfy constraints

0.00

0.20

z

a

and

my

0.00

……

… …

<s>

z

a

cat

cup

…

…

0.15

Logical Constraints
(cat ∨ cats) ∧ (fish)

• Keep track of remaining constraints

NeuroLogic decoding [Lu et al 2021]
• + favor tokens that [partially] satisfy constraints

0.00

0.20

z

a

and

my

0.00

……

… …

<s>

z

a

cat

cup

…

…

0.15

Logical Constraints
(cat ∨ cats) ∧ (fish)

• Keep track of remaining constraints

NeuroLogic decoding [Lu et al 2021]
• + favor tokens that [partially] satisfy constraints

0.00

0.20

z

a

and

my

0.00

……

… …

<s>

z

a

cat

cup

…

…

0.15

Logical Constraints
(cat ∨ cats) ∧ (fish)

Not trivial!  
Details & other features  
out of scope for this talk

• Keep track of remaining constraints

• Score next-tokens using

•
 

 
 

log pθ(yt |y<t)

fluency

+ λ max
c∈remaining

c(yt)

constraints

NeuroLogic decoding [Lu et al 2021]
• + favor tokens that [partially] satisfy constraints

0.00

0.20

z

a

and

my

0.00

……

… …

<s>

z

a

cat

cup

…

…

0.15

Logical Constraints
(cat ∨ cats) ∧ (fish)

0.20

0.25

0.00

0.00

…

…Not trivial!  
Details & other features  
out of scope for this talk

• Keep track of remaining constraints

• Score next-tokens using

•
 

 
 

log pθ(yt |y<t)

fluency

+ λ max
c∈remaining

c(yt)

constraints

NeuroLogic decoding [Lu et al 2021]
• + favor tokens that [partially] satisfy constraints

0.00

0.20

z

a

and

my

0.00

……

… …

<s>

z

a

cat

cup

…

…

0.15

Logical Constraints
(cat ∨ cats) ∧ (fish)

0.20

0.25

0.00

0.00

…

…

=> my cat is cool.

Not trivial!  
Details & other features  
out of scope for this talk

• Keep track of remaining constraints

• Score next-tokens using

•
 

 
 

log pθ(yt |y<t)

fluency

+ λ max
c∈remaining

c(yt)

constraints

Myopic

NeuroLogic decoding [Lu et al 2021]
• + favor tokens that [partially] satisfy constraints

0.00

0.20

z

a

and

my

0.00

……

… …

<s>

z

a

cat

cup

…

…

0.15

Logical Constraints
(cat ∨ cats) ∧ (fish)

0.20

0.25

0.00

0.00

…

…

=> my cat is cool.

Not trivial!  
Details & other features  
out of scope for this talk

NeuroLogic A*esque decoding
• Ideally, we want to select next-token candidates on optimal trajectories:

• , = fluency + constraints
argtopkyt (max
y>t

F(y<t, yt, y>t)) F

NeuroLogic A*esque decoding
• Ideally, we want to select next-token candidates on optimal trajectories:

• , = fluency + constraints
argtopkyt (max
y>t

F(y<t, yt, y>t)) F

Intractable

NeuroLogic A*esque decoding
• Ideally, we want to select next-token candidates on optimal trajectories:

• , = fluency + constraints
argtopkyt (max
y>t

F(y<t, yt, y>t)) F

• A* Search: best-first search with future heuristics

•
f(a) = s(a)⏟

score so-far

+ h(a)
⏟

future heuristic

Intractable

• Approximate with a lookahead heuristic:

NeuroLogic A*esque decoding

•
argtopkyt (s(y≤t) + max
Lookaheads

h(y<t+ℓ))
0.30

0.25

0.00

z

a

cat

cup

0.00

……

… …

Logical Constraints
(cat ∨ cats) ∧ (fish)

Fluency + constraints-so-far
E.g. single greedy  

lookahead

Probability of satisfying 
Future constraints

• Approximate with a lookahead heuristic:

NeuroLogic A*esque decoding

•
argtopkyt (s(y≤t) + max
Lookaheads

h(y<t+ℓ))
0.30

0.25

0.00

z

a

cat

cup

0.00

……

… …

Logical Constraints
(cat ∨ cats) ∧ (fish)

Fluency + constraints-so-far
E.g. single greedy  

lookahead

Probability of satisfying 
Future constraints

• Approximate with a lookahead heuristic:

NeuroLogic A*esque decoding

•
argtopkyt (s(y≤t) + max
Lookaheads

h(y<t+ℓ))
0.30

0.25

0.00

z

a

cat

cup

0.00

……

… …

Logical Constraints
(cat ∨ cats) ∧ (fish)

Fluency + constraints-so-far
E.g. single greedy  

lookahead

Probability of satisfying 
Future constraints

• Approximate with a lookahead heuristic:

NeuroLogic A*esque decoding

•
argtopkyt (s(y≤t) + max
Lookaheads

h(y<t+ℓ))
0.30

0.25

0.00

z

a

cat

cup

0.00

……

… …

Logical Constraints
(cat ∨ cats) ∧ (fish)

Fluency + constraints-so-far
E.g. single greedy  

lookahead

Probability of satisfying 
Future constraints

• Approximate with a lookahead heuristic:

NeuroLogic A*esque decoding

•
argtopkyt (s(y≤t) + max
Lookaheads

h(y<t+ℓ))
0.30

0.25

0.00

z

a

cat

cup

0.00

……

… …

=> my cup has a fish and cat on it.

Logical Constraints
(cat ∨ cats) ∧ (fish)

Fluency + constraints-so-far
E.g. single greedy  

lookahead

Probability of satisfying 
Future constraints

• Approximate with a lookahead heuristic:

NeuroLogic A*esque decoding

•
argtopkyt (s(y≤t) + max
Lookaheads

h(y<t+ℓ))
0.30

0.25

0.00

z

a

cat

cup

0.00

……

… …

=> my cup has a fish and cat on it.

Logical Constraints
(cat ∨ cats) ∧ (fish)

Fluency + constraints-so-far
E.g. single greedy  

lookahead

Probability of satisfying 
Future constraints

• Approximate with a lookahead heuristic:

NeuroLogic A*esque decoding

•
argtopkyt (s(y≤t) + max
Lookaheads

h(y<t+ℓ))
0.30

0.25

0.00

z

a

cat

cup

0.00

……

… …

=> my cup has a fish and cat on it.

Logical Constraints
(cat ∨ cats) ∧ (fish)

Fluency + constraints-so-far
E.g. single greedy  

lookahead

Probability of satisfying 
Future constraints

• “A*esque”: beam instead of best-first

• Standard constrained generation benchmark:
~60k train, ~7k test

CommonGen
(Lin et al., 2020)

Constraints: {sponge, pour, pool, side, clean}
Example output: Pour water on a sponge and use it

to clean the side of the pool.

• Standard constrained generation benchmark:
~60k train, ~7k test

CommonGen
(Lin et al., 2020)

Constraints: {sponge, pour, pool, side, clean}

beam search

The woman, whose name has
not been released, was taken to
a local hospital, where she was

listed in stable condition,
according to the sheriff's office.

completely irrelevant

Example output: Pour water on a sponge and use it
to clean the side of the pool.

• Standard constrained generation benchmark:
~60k train, ~7k test

CommonGen
(Lin et al., 2020)

Constraints: {sponge, pour, pool, side, clean}

beam search

The woman, whose name has
not been released, was taken to
a local hospital, where she was

listed in stable condition,
according to the sheriff's office.

completely irrelevant

The man cleans a sponge in
a pouring pool at the side

of the road.

NeuroLogic

slightly awkward

C

(sponge ∨ sponges) ∧ (pour ∨

(clean ∨ clean ∨ cleans ∨ cleaning)

pours ∨ pouring ∨ poured) ∧

(pool ∨ pools) ∧ (side ∨ sides) ∧

Example output: Pour water on a sponge and use it
to clean the side of the pool.

• Standard constrained generation benchmark:
~60k train, ~7k test

CommonGen
(Lin et al., 2020)

Constraints: {sponge, pour, pool, side, clean}

beam search

The woman, whose name has
not been released, was taken to
a local hospital, where she was

listed in stable condition,
according to the sheriff's office.

completely irrelevant

The man cleans a sponge in
a pouring pool at the side

of the road.

NeuroLogic

slightly awkward

C

(sponge ∨ sponges) ∧ (pour ∨

(clean ∨ clean ∨ cleans ∨ cleaning)

pours ∨ pouring ∨ poured) ∧

(pool ∨ pools) ∧ (side ∨ sides) ∧

The boy cleaned the side of the
pool with a sponge, and poured

water over it .

A* NeuroLogic

Example output: Pour water on a sponge and use it
to clean the side of the pool.

Human evaluation | CommonGen
(Lin et al., 2020)

Fine-tuned GPT-2 Off-the-shelf GPT-2

Human evaluation | CommonGen
(Lin et al., 2020)

1.8

2.1

2.3

2.6

2.8

Quality

CBS NeuroLogic
NeuroLogic A*esq (greedy) NeuroLogic A*esq (beam)
NeuroLogic A*esq (sample)

Fine-tuned GPT-2 Off-the-shelf GPT-2

Human evaluation | CommonGen
(Lin et al., 2020)

1.8

2.1

2.3

2.6

2.8

Quality

CBS NeuroLogic
NeuroLogic A*esq (greedy) NeuroLogic A*esq (beam)
NeuroLogic A*esq (sample)

2.27

Fine-tuned GPT-2 Off-the-shelf GPT-2

Human evaluation | CommonGen
(Lin et al., 2020)

1.8

2.1

2.3

2.6

2.8

Quality

CBS NeuroLogic
NeuroLogic A*esq (greedy) NeuroLogic A*esq (beam)
NeuroLogic A*esq (sample)

2.54

2.27

Fine-tuned GPT-2 Off-the-shelf GPT-2

Human evaluation | CommonGen
(Lin et al., 2020)

1.8

2.1

2.3

2.6

2.8

Quality

CBS NeuroLogic
NeuroLogic A*esq (greedy) NeuroLogic A*esq (beam)
NeuroLogic A*esq (sample)

2.66

2.54

2.27

Fine-tuned GPT-2 Off-the-shelf GPT-2

Human evaluation | CommonGen
(Lin et al., 2020)

1.8

2.1

2.3

2.6

2.8

Quality

CBS NeuroLogic
NeuroLogic A*esq (greedy) NeuroLogic A*esq (beam)
NeuroLogic A*esq (sample)

2.682.66

2.54

2.27

Fine-tuned GPT-2 Off-the-shelf GPT-2

Human evaluation | CommonGen
(Lin et al., 2020)

1.8

2.1

2.3

2.6

2.8

Quality

CBS NeuroLogic
NeuroLogic A*esq (greedy) NeuroLogic A*esq (beam)
NeuroLogic A*esq (sample)

2.642.682.66

2.54

2.27

Fine-tuned GPT-2 Off-the-shelf GPT-2

Human evaluation | CommonGen
(Lin et al., 2020)

1.8

2.1

2.3

2.6

2.8

Quality

CBS NeuroLogic
NeuroLogic A*esq (greedy) NeuroLogic A*esq (beam)
NeuroLogic A*esq (sample)

2.642.682.66

2.54

2.27

Fine-tuned GPT-2

1.8

2.1

2.3

2.6

2.8

Quality

TSMH NeuroLogic
NeuroLogic A*esq(greedy)

Off-the-shelf GPT-2

Human evaluation | CommonGen
(Lin et al., 2020)

1.8

2.1

2.3

2.6

2.8

Quality

CBS NeuroLogic
NeuroLogic A*esq (greedy) NeuroLogic A*esq (beam)
NeuroLogic A*esq (sample)

2.642.682.66

2.54

2.27

Fine-tuned GPT-2

1.8

2.1

2.3

2.6

2.8

Quality

TSMH NeuroLogic
NeuroLogic A*esq(greedy)

1.85

Off-the-shelf GPT-2

Human evaluation | CommonGen
(Lin et al., 2020)

1.8

2.1

2.3

2.6

2.8

Quality

CBS NeuroLogic
NeuroLogic A*esq (greedy) NeuroLogic A*esq (beam)
NeuroLogic A*esq (sample)

2.642.682.66

2.54

2.27

Fine-tuned GPT-2

1.8

2.1

2.3

2.6

2.8

Quality

TSMH NeuroLogic
NeuroLogic A*esq(greedy)

2.64

1.85

Off-the-shelf GPT-2

Human evaluation | CommonGen
(Lin et al., 2020)

1.8

2.1

2.3

2.6

2.8

Quality

CBS NeuroLogic
NeuroLogic A*esq (greedy) NeuroLogic A*esq (beam)
NeuroLogic A*esq (sample)

2.642.682.66

2.54

2.27

Fine-tuned GPT-2

1.8

2.1

2.3

2.6

2.8

Quality

TSMH NeuroLogic
NeuroLogic A*esq(greedy)

2.78

2.64

1.85

Off-the-shelf GPT-2

Human evaluation | CommonGen
(Lin et al., 2020)

1.8

2.1

2.3

2.6

2.8

Quality

CBS NeuroLogic
NeuroLogic A*esq (greedy) NeuroLogic A*esq (beam)
NeuroLogic A*esq (sample)

2.642.682.66

2.54

2.27

Fine-tuned GPT-2

1.8

2.1

2.3

2.6

2.8

Quality

TSMH NeuroLogic
NeuroLogic A*esq(greedy)

2.78

2.64

1.85

Off-the-shelf GPT-2

Off-the-shelf A* outperforms all fine-tuned methods

Human evaluation | CommonGen
(Lin et al., 2020)

1.8

2.1

2.3

2.6

2.8

Quality

CBS NeuroLogic
NeuroLogic A*esq (greedy) NeuroLogic A*esq (beam)
NeuroLogic A*esq (sample)

2.642.682.66

2.54

2.27

A* NeuroLogic with greedy lookahead:
efficient & performant

Fine-tuned GPT-2

1.8

2.1

2.3

2.6

2.8

Quality

TSMH NeuroLogic
NeuroLogic A*esq(greedy)

2.78

2.64

1.85

Off-the-shelf GPT-2

Off-the-shelf A* outperforms all fine-tuned methods

Enables many constrained generation tasks

Constrained MT

32.8

33.1

33.3

33.6

33.8

BLEU

33.6
33.733.7

33.4

33
32.9

MarianMT
Post and Vilar (2018)
NeuroLogic
NeuroLogic A*esq (greedy)
NeuroLogic A*esq (beam)
NeuroLogic A*esq (sample)

(Dinu et al., 2019)

Enables many constrained generation tasks

Constrained MT

32.8

33.1

33.3

33.6

33.8

BLEU

33.6
33.733.7

33.4

33
32.9

MarianMT
Post and Vilar (2018)
NeuroLogic
NeuroLogic A*esq (greedy)
NeuroLogic A*esq (beam)
NeuroLogic A*esq (sample)

(Dinu et al., 2019)

39.0

41.8

44.5

47.3

50.0

BLEU

49.348.949.2

47.6

40.239.8

KGPT-Graph
KGPT-Seq
NeuroLogic
NeuroLogic A*esq (greedy)
NeuroLogic A*esq (beam)
NeuroLogic A*esq (sample)

Few-Shot E2ENLG
(Chen et al., 2020)

Enables many constrained generation tasks

Constrained MT

32.8

33.1

33.3

33.6

33.8

BLEU

33.6
33.733.7

33.4

33
32.9

MarianMT
Post and Vilar (2018)
NeuroLogic
NeuroLogic A*esq (greedy)
NeuroLogic A*esq (beam)
NeuroLogic A*esq (sample)

(Dinu et al., 2019)

39.0

41.8

44.5

47.3

50.0

BLEU

49.348.949.2

47.6

40.239.8

KGPT-Graph
KGPT-Seq
NeuroLogic
NeuroLogic A*esq (greedy)
NeuroLogic A*esq (beam)
NeuroLogic A*esq (sample)

Few-Shot E2ENLG
(Chen et al., 2020)

2.0

2.2

2.4

2.6

2.8

Quality (human eval)

2.732.752.76

2.51

2.22

2.02

CGMH
TSMH
NeuroLogic
NeuroLogic A*esq (greedy)
NeuroLogic A*esq (beam)
NeuroLogic A*esq (sample)

Question Generation
(Zhang et al., 2020)

Enables many constrained generation tasks

• Greedy lookahead length (CommonGen)

• Improves at varying amounts of training data

Constrained generation through discrete inference

• Constraints: expressive class of lexical constraints

• Search: discrete with future approximation

• Enables: constraints without fine-tuning, better fine-tuned performance

A* Neurologic

Which has the most mass:
Mercury, Venus, or Jupiter?

(mass ∨ masses) ∧

(Mercury) ∧ (Venus) ∧ (Jupiter)

NeuroLogic A*esque Decoding:  
Constrained Text Generation with Lookahead Heuristics
arxiv:2112.08726  
github.com/GloriaXimingLu/star_neurologic

https://arxiv.org/abs/2112.08726
https://github.com/GloriaXimingLu/star_neurologic

Constrained generation through inference
• Today: algorithms for constrained generation from two perspectives

• Logical lexical constraints enforced through discrete inference 

Which has the most mass:
Mercury, Venus, or Jupiter?

(mass ∨ masses) ∧

(Mercury) ∧ (Venus) ∧ (Jupiter)

Language
Model

ffluency

fkeywordscat,
zebra

fsimilarityMy favorite
food is pizza.

…
Cats and zebras are
my favorite animals.

• Differentiable constraints enforced through continuous inference

Constrained generation through continuous inference

COLD Decoding:  
Constrained Decoding with Langevin Dynamics

In Submission, arxiv:2202.11705

Yejin ChoiLianhui Qin Sean Welleck Daniel Khashabi

https://arxiv.org/abs/2202.11705

Lexically Constrained Generation

Generation

Jupiter has more mass than
Mercury.

{ mass, Mercury, Jupiter }

Keywords

Lexically Constrained Generation

Generation

Constraints:

Jupiter has more mass than
Mercury.

{ mass, Mercury, Jupiter }

Keywords

Language
Model ffluency(y)

Fluency constraint

Lexically Constrained Generation

Generation

Constraints:

Jupiter has more mass than
Mercury.

{ mass, Mercury, Jupiter }

Keywords

fkeywords(y)Mass,
Jupiter,
Mercury

Task-specific constraints

Language
Model ffluency(y)

Fluency constraint

Text infilling / abductive reasoning

She went to practice everyday.

Left context

AbductiveNLG
(Bhagavatula et al., 2020)

Text infilling / abductive reasoning

Right context

She won a gold medal in the
Olympic marathon.

She went to practice everyday.

Left context

AbductiveNLG
(Bhagavatula et al., 2020)

Text infilling / abductive reasoning

Right context

She won a gold medal in the
Olympic marathon.

She went to practice everyday.

Left context

She ran a lot of miles at practice.Generation

AbductiveNLG
(Bhagavatula et al., 2020)

Text infilling / abductive reasoning

Constraints:

Right context

She won a gold medal in the
Olympic marathon.

She went to practice everyday.

Left context

She ran a lot of miles at practice.Generation

Language
Model

ffluency(y)

Fluency constraint

AbductiveNLG
(Bhagavatula et al., 2020)

Text infilling / abductive reasoning

Constraints:

Right context

She won a gold medal in the
Olympic marathon.

She went to practice everyday.

Left context

She ran a lot of miles at practice.Generation

fcoherence−left(y)She went to
practice …

Task-specific constraints

Language
Model

ffluency(y)

Fluency constraint

AbductiveNLG
(Bhagavatula et al., 2020)

Text infilling / abductive reasoning

Constraints:

Right context

She won a gold medal in the
Olympic marathon.

She went to practice everyday.

Left context

She ran a lot of miles at practice.Generation

fcoherence−right(y)She won a
gold …

fcoherence−left(y)She went to
practice …

Task-specific constraints

Language
Model

ffluency(y)

Fluency constraint

AbductiveNLG
(Bhagavatula et al., 2020)

Text similarity / counterfactual reasoning

joined a prestigious law firm after graduating.The law student

TimeTravel
(Qin et al., 2019)

Text similarity / counterfactual reasoning

joined a prestigious law firm after graduating.The law student

The medical
student

Keep
Similar

TimeTravel
(Qin et al., 2019)

Text similarity / counterfactual reasoning

joined a prestigious law firm after graduating.The law student

Generation

joined a prestigious medical practice after graduation.The medical
student

Keep
Similar

TimeTravel
(Qin et al., 2019)

Text similarity / counterfactual reasoning

joined a prestigious law firm after graduating.The law student

Generation

joined a prestigious medical practice after graduation.The medical
student

Keep
Similar

Constraints: Language
Model

ffluency(y)

Fluency constraint

TimeTravel
(Qin et al., 2019)

Text similarity / counterfactual reasoning

joined a prestigious law firm after graduating.The law student

The medical
student

fcoherence−left(y)

Generation

joined a prestigious medical practice after graduation.The medical
student

Keep
Similar

Task-specific constraints

Constraints: Language
Model

ffluency(y)

Fluency constraint

TimeTravel
(Qin et al., 2019)

Text similarity / counterfactual reasoning

joined a prestigious law firm after graduating.The law student

The medical
student

fcoherence−left(y)

Joined a
prestigious

…
fsimilarity(y, y*)

Generation

joined a prestigious medical practice after graduation.The medical
student

Keep
Similar

Task-specific constraints

Constraints: Language
Model

ffluency(y)

Fluency constraint

TimeTravel
(Qin et al., 2019)

Fluency constraint

Constrained generation as sampling from an energy-based model

Energy function: E(y) = ffluency(y) + f1(y) + f2(y) + . . .

Task-specific constraints

Fluency constraint

Constrained generation as sampling from an energy-based model

Energy function: E(y) = ffluency(y) + f1(y) + f2(y) + . . .

p(y) = exp {−E(y)}/ZEnergy-based model:

Task-specific constraints

Fluency constraint

Constrained generation as sampling from an energy-based model

Energy function: E(y) = ffluency(y) + f1(y) + f2(y) + . . .

Constrained generation: ŷ ∼ p(y)

p(y) = exp {−E(y)}/ZEnergy-based model:

Task-specific constraints

• Gradient-free MCMC (e.g. Gibbs sampling [Bishop & Nasrabadi 2006]): slow

Sampling from an energy-based model

Constrained generation: ŷ ∼ exp {−E(y)}/Z

• Gradient based MCMC, e.g. Langevin dynamics [Welling & Teh, 2011; Du & Mordatch, 2019]

Sampling from an energy-based model

Constrained generation: ŷ ∼ exp {−E(y)}/Z

ỹ(n) = ỹ(n−1) − η∇ỹE(ỹ) + ϵ ϵ ∼ N(0,1)

• Gradient based MCMC, e.g. Langevin dynamics [Welling & Teh, 2011; Du & Mordatch, 2019]

Sampling from an energy-based model

Constrained generation: ŷ ∼ exp {−E(y)}/Z

More efficient sampling by using the gradient of E(ỹ)

ỹ(n) = ỹ(n−1) − η∇ỹE(ỹ) + ϵ ϵ ∼ N(0,1)

• Gradient based MCMC, e.g. Langevin dynamics [Welling & Teh, 2011; Du & Mordatch, 2019]

Sampling from an energy-based model

Constrained generation: ŷ ∼ exp {−E(y)}/Z

More efficient sampling by using the gradient of E(ỹ)

ỹ(n) = ỹ(n−1) − η∇ỹE(ỹ) + ϵ ϵ ∼ N(0,1)

 not defined for discrete y∇yE(y)

• Define energy over “soft sequence” of continuous vectors:

• , where  
 
 
 
 

ỹ = (ỹ1, …, ỹT) ỹt ∈ Rvocab

0.1

1.9

-5.

0.2

4.1

0.9

2.2

0.2

0.7

3.1

-3

1.1

|vocab|

T

Sampling from an energy-based model

Constrained generation: ŷ ∼ exp {−E(y)}/Z

• Define energy over “soft sequence” of continuous vectors:

• , where  
 
 
 
 

ỹ = (ỹ1, …, ỹT) ỹt ∈ Rvocab

• Discrete token: as softmax(ỹt /τ) τ → 0

0.1

1.9

-5.

0.2

4.1

0.9

2.2

0.2

0.7

3.1

-3

1.1

|vocab|

T

Sampling from an energy-based model

Constrained generation: ŷ ∼ exp {−E(y)}/Z

softmax() ⟶

0.1

99.

0.1

0.1

0

1

0

0

dog

• Constraints as differentiable functions

Sampling from an energy-based model

Constrained generation: ŷ ∼ exp {−E(y)}/Z

Language
Model

ffluency(ỹ)

• Constraints as differentiable functions

Sampling from an energy-based model

Constrained generation: ŷ ∼ exp {−E(y)}/Z

fkeywords(ỹ)Mass,
Jupiter,
Mercury

Joined a
prestigious

…
fsimilarity(ỹ, y*)

(Liu et al., 2021)

Specify energy , then:E(ỹ) = ∑
i

fi(ỹ)

Target constrained
distribution

…

t = 1 2 3 … T

…

Soft
Sequence

ỹ(0) ỹ(N)
Soft

Sequence

Initial distribution

Langevin Dynamics

1 2 3n =

…

N…

ỹ(n+1) ← ỹ(n) − η∇ỹE(ỹ(n)) + ϵ(n)

Specify energy , then:E(ỹ) = ∑
i

fi(ỹ)

Target constrained
distribution

…

t = 1 2 3 … T

…

Soft
Sequence

ỹ(0) ỹ(N)
Soft

Sequence

Initial distribution

Langevin Dynamics

1 2 3n =

…

N…

ỹ(n+1) ← ỹ(n) − η∇ỹE(ỹ(n)) + ϵ(n)

Specify energy , then:E(ỹ) = ∑
i

fi(ỹ)

Top-k Mask

…

LM

x

Masked
Sequence

…

Discretization

y

Discrete

Text

Target constrained
distribution

…

t = 1 2 3 … T

…

Soft
Sequence

ỹ(0) ỹ(N)
Soft

Sequence

Initial distribution

Langevin Dynamics

1 2 3n =

…

N…

ỹ(n+1) ← ỹ(n) − η∇ỹE(ỹ(n)) + ϵ(n)

Specify energy , then:E(ỹ) = ∑
i

fi(ỹ)

Apply directly to off-the-shelf left-to-right language models

without the need for any task-specific fine-tuning

Top-k Mask

…

LM

x

Masked
Sequence

…

Discretization

y

Discrete

Text

Lexically constrained generation CommonGen
(Lin et al., 2020)

Lexically constrained generation

• Good constraint coverage

CommonGen
(Lin et al., 2020)

Lexically constrained generation

• Good constraint coverage

• Competitive fluency with lexical-specific NeuroLogic

CommonGen
(Lin et al., 2020)

Abductive reasoning

• Enables left and right coherence while staying fluent

AbductiveNLG
(Bhagavatula et al., 2020)

Abductive reasoning

• Enables left and right coherence while staying fluent

AbductiveNLG
(Bhagavatula et al., 2020)

Abductive reasoning

• Discretization step important: low fluency with large k

AbductiveNLG
(Bhagavatula et al., 2020)

Abductive reasoning

• Discretization step important: low fluency with large k

• COLD sampling important: low right-coherence with small k

AbductiveNLG
(Bhagavatula et al., 2020)

Abductive reasoning

• Right-hand constraints are important
for right-hand coherence!

AbductiveNLG
(Bhagavatula et al., 2020)

Constrained generation through continuous inference
• Constraints: differentiable constraints; fluency, keywords, similarity

• Search: Langevin dynamics + discretization

• Enables: constraints without additional fine-tuning

Language
Model

ffluency

fkeywordscat,
zebra

fsimilarityMy favorite
food is pizza.

…
Cats and zebras are
my favorite animals.

COLD Decoding:  
Constrained Decoding with Langevin Dynamics
arxiv:2202.11705
github.com/qkaren/COLD_decoding

https://arxiv.org/abs/2202.11705
https://github.com/qkaren/COLD_decoding

Constrained generation
Looking ahead

Constrained generation

• Grounded generation

Looking ahead

NaturalProofs: Mathematical Theorem Proving in Natural Language
Towards Grounded Natural Language Proof Generation (Work in Progress)

https://arxiv.org/pdf/2104.01112.pdf
https://mathai4ed.github.io/papers/papers/paper_10.pdf

Constrained generation

• Grounded generation

• Joint learning & inference

Looking ahead

[Silver et al 2017]

NaturalProofs: Mathematical Theorem Proving in Natural Language
Towards Grounded Natural Language Proof Generation (Work in Progress)

https://www.nature.com/articles/nature24270.epdf?author_access_token=VJXbVjaSHxFoctQQ4p2k4tRgN0jAjWel9jnR3ZoTv0PVW4gB86EEpGqTRDtpIz-2rmo8-KG06gqVobU5NSCFeHILHcVFUeMsbvwS-lxjqQGg98faovwjxeTUgZAUMnRQ
https://arxiv.org/pdf/2104.01112.pdf
https://mathai4ed.github.io/papers/papers/paper_10.pdf

Thanks for your attention!

