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The Progress in NLP/QA

• Many benchmarks in NLP: 
• SQuAD [Rajpurkar et al. 2016]

• ARC [Clark et al. 2018]

• DROP [Dua et al. 2019]

• … 
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This Talk

▣ Introduction

▢ Transfer Across Formats

▢ Decomposing Complex Q’s

▢ Future Work
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Transfer Across QA Formats 

K et al. UnifiedQA: Crossing Format Boundaries With a Single QA System. EMNLP-Findings 20.



Many Flavors of QA 

2000 2005 2010 2015 2020

TREC-8 TREC-9 TREC-2001-2005. MCTest RACE

SQuAD1

ARC

SQuAD 2

WinoGrande

ComQA

DROPNarQA

OBQA BoolQ

…

34

……



Many Flavors of QA 

2000 2005 2010 2015 2020

TREC-8 TREC-9 TREC-2001-2005. MCTest RACE

SQuAD1

ARC

SQuAD 2

WinoGrande

ComQA

DROPNarQA

OBQA BoolQ

…

…

35[Rajpurkar et al. 2016]

…



Many Flavors of QA 

2000 2005 2010 2015 2020

TREC-8 TREC-9 TREC-2001-2005. MCTest RACE

SQuAD1

ARC

SQuAD 2

WinoGrande

ComQA

DROPNarQA

OBQA BoolQ

…

…

Question: “At what speed did the turbine 
operate?”

36[Rajpurkar et al. 2016]

…



Many Flavors of QA 

2000 2005 2010 2015 2020

TREC-8 TREC-9 TREC-2001-2005. MCTest RACE

SQuAD1

ARC

SQuAD 2

WinoGrande

ComQA

DROPNarQA

OBQA BoolQ

…

…

Question: “At what speed did the turbine 
operate?”

Candidates: (Nikola_Tesla) On his 50th birthday in 
1906, Tesla demonstrated his 200 horsepower (150 
kilowatts) 16,000 rpm bladeless turbine. ...

37[Rajpurkar et al. 2016]

…



Many Flavors of QA 

2000 2005 2010 2015 2020

TREC-8 TREC-9 TREC-2001-2005. MCTest RACE

SQuAD1

ARC

SQuAD 2

WinoGrande

ComQA

DROPNarQA

OBQA BoolQ

…

…

Question: “At what speed did the turbine 
operate?”

Candidates: (Nikola_Tesla) On his 50th birthday in 
1906, Tesla demonstrated his 200 horsepower (150 
kilowatts) 16,000 rpm bladeless turbine. ...

38[Rajpurkar et al. 2016]

…



Many Flavors of QA 

2000 2005 2010 2015 2020

TREC-8 TREC-9 TREC-2001-2005. MCTest RACE

SQuAD1

ARC

SQuAD 2

WinoGrande

ComQA

DROPNarQA

OBQA BoolQ

…

…

Question: “At what speed did the turbine 
operate?”

Candidates: (Nikola_Tesla) On his 50th birthday in 
1906, Tesla demonstrated his 200 horsepower (150 
kilowatts) 16,000 rpm bladeless turbine. ...

“16,000 rpm”

39[Rajpurkar et al. 2016]

…



Many Flavors of QA 

2000 2005 2010 2015 2020

TREC-8 TREC-9 TREC-2001-2005. MCTest RACE

SQuAD1

ARC

SQuAD 2

WinoGrande

ComQA

DROPNarQA

OBQA BoolQ

…

40[Clark et al. 2018]

……



Many Flavors of QA 

2000 2005 2010 2015 2020

TREC-8 TREC-9 TREC-2001-2005. MCTest RACE

SQuAD1

ARC

SQuAD 2

WinoGrande

ComQA

DROPNarQA

OBQA BoolQ

…

Question: “What does photosynthesis 
produce that helps plants grow? ”

41[Clark et al. 2018]

……



Many Flavors of QA 

2000 2005 2010 2015 2020

TREC-8 TREC-9 TREC-2001-2005. MCTest RACE

SQuAD1

ARC

SQuAD 2

WinoGrande

ComQA

DROPNarQA

OBQA BoolQ

…

Question: “What does photosynthesis 
produce that helps plants grow? ”

Candidates:  (A) water 
(B) oxygen 
(C) protein 
(D) sugar 

42[Clark et al. 2018]

……



Many Flavors of QA 

2000 2005 2010 2015 2020

TREC-8 TREC-9 TREC-2001-2005. MCTest RACE

SQuAD1

ARC

SQuAD 2

WinoGrande

ComQA

DROPNarQA

OBQA BoolQ

…

Question: “What does photosynthesis 
produce that helps plants grow? ”

Candidates:  (A) water 
(B) oxygen 
(C) protein 
(D) sugar 

43[Clark et al. 2018]

……



Many Flavors of QA 

2000 2005 2010 2015 2020

TREC-8 TREC-9 TREC-2001-2005. MCTest RACE

SQuAD1

ARC

SQuAD 2

WinoGrande

ComQA

DROPNarQA

OBQA BoolQ

…

Question: “What does photosynthesis 
produce that helps plants grow? ”

Candidates:  (A) water 
(B) oxygen 
(C) protein 
(D) sugar 

“The big kid”

44[Clark et al. 2018]

……



Many Flavors of QA 

• Motivations for publishing new datasets: 
• Unexplored reasoning challenges  
• Alternate (better?) evaluation protocols

2000 2005 2010 2015 2020

TREC-8 TREC-9 TREC-2001-2005. MCTest RACE

SQuAD1

ARC

SQuAD 2

WinoGrande

ComQA

DROPNarQA

OBQA BoolQ

…

45

……

But inherently they’re all QA! 



Many Flavors of QA 

• Motivations for publishing new datasets: 
• Unexplored reasoning challenges  
• Alternate (better?) evaluation protocols

2000 2005 2010 2015 2020

TREC-8 TREC-9 TREC-2001-2005. MCTest RACE

SQuAD1

ARC

SQuAD 2

WinoGrande

ComQA

DROPNarQA

OBQA BoolQ

…

46

……

But inherently they’re all QA! 



Many Flavors of QA 

• Motivations for publishing new datasets: 
• Unexplored reasoning challenges  
• Alternate (better?) evaluation protocols

2000 2005 2010 2015 2020

TREC-8 TREC-9 TREC-2001-2005. MCTest RACE

SQuAD1

ARC

SQuAD 2

WinoGrande

ComQA

DROPNarQA

OBQA BoolQ

…

47

……

But inherently they’re all QA! 



Format-Specific Model Design

Input
Task-

specific 
layer

48



Format-Specific Model Design

Input
Task-

specific 
layer

Dataset-specific 
assumptions 😢

49



Format-Specific Model Design

Input
Task-

specific 
layer

Dataset-specific 
assumptions 😢

format assumption

Yes/No QA

Multiple-choice QA

Extractive QA

Abstractive QA

50



Format-Specific Model Design

Input
Task-

specific 
layer

Dataset-specific 
assumptions 😢

format assumption

Yes/No QA

Multiple-choice QA

Extractive QA

Abstractive QA

binary output 

51



Format-Specific Model Design

Input
Task-

specific 
layer

Dataset-specific 
assumptions 😢

format assumption

Yes/No QA

Multiple-choice QA

Extractive QA

Abstractive QA

binary output 

One correct answer from a list of candidates. 

52



Format-Specific Model Design

Input
Task-

specific 
layer

Dataset-specific 
assumptions 😢

format assumption

Yes/No QA

Multiple-choice QA

Extractive QA

Abstractive QA

binary output 

One correct answer from a list of candidates. 

answer is a substring of  paragraph 

53



Format-Specific Model Design

Input
Task-

specific 
layer

Dataset-specific 
assumptions 😢

format assumption

Yes/No QA

Multiple-choice QA

Extractive QA

Abstractive QA

binary output 

One correct answer from a list of candidates. 

answer is a substring of  paragraph 

answer to be inferred from the paragraph

54



Format-Specific Model Design

Input
Task-

specific 
layer

Dataset-specific 
assumptions 😢

format assumption

Yes/No QA

Multiple-choice QA

Extractive QA

Abstractive QA

binary output 

One correct answer from a list of candidates. 

answer is a substring of  paragraph 

answer to be inferred from the paragraph

Consequences of format-specific designs:
• Prevent generalization across formats 

• Don’t benefit from labeled data of other formats 
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UnifiedQA: Definition 

1. It’s a single system that is supposed to work on a variety of QA 
formats. 

2. The input should be natural.  
• Minimal-enough for a human solver to infer the format.  
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UnifiedQA: Definition 

1. It’s a single system that is supposed to work on a variety of QA 
formats. 

2. The input should be natural.  
• Minimal-enough for a human solver to infer the format.  

Is Jamaica considered part of the United States?

(Jamaica) Jamaica (/dʒəˈmeɪkə/ ( listen)) is an island 
country situated in the Caribbean Sea...

“no”
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UnifiedQA: Definition 

1. It’s a single system that is supposed to work on a variety of QA 
formats. 

2. The input should be natural.  
• Minimal-enough for a human solver to infer the format.  

3. Use text-to-text architectures: T5 [Raffal et al. 2020], BART [Lewis et al. 2019], etc. 

What type of musical instruments did the Yuan bring to China?   

(Yuan_dynasty) Western musical instruments were introduced to 
enrich Chinese performing arts....

“Western musical instruments”

Our encoding: 
• Text-in, text-out
• The question always comes first.
• Additional info are appended with “\n”. 
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UnifiedQA-v1

• Trained on the union of different formats: 
• Extractive: SQuAD 1.1, SQuAD 2.0 
• Abstractive: NarrativeQA
• Multiple-choice: RACE, ARC, OBQA, MCTest
• YesNo: BoolQ

* Rajpurkar et al. ‘16 & ‘18; Kociský et al. ‘18; Lai et al. ‘17; Clark et al. ‘18; Mihaylov et al. ‘18; Richardson et al. ‘13; Clark et al. ‘19
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Experiment: Comparison w/ Dedicated Models

• Is UnifiedQA as good as systems dedicated to individual datasets?

• UnifiedQA performs almost as well as individual T5 models targeted 
to each dataset.
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• Is there value in using UnifiedQA as a starting point for fine-tuning?
• Show SOTA on 10 datasets (OBQA, QASC, RACE, WinoGrande, PIQA, SIQA, ROPES)
• Similar trends for BART 
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Earlier Work on Multi-task Learning

• In the same spirit as multi-task learning 
• They usually don’t work! 😭

• The choice of tasks is also important. 
• Earlier works select too broad of tasks. 

• E.g., [Raffel et al.’19]: diverse NLP tasks (machine translation, summarization, etc) and 
conclude that a single model for multiple NLP tasks underperform task-specific models. 

• We choose to stay within the boundaries of QA. 
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Lessons

• The field relies excessively on format-specific assumptions for system design. 
• Creating format-specific QA models distance us from broad QA. 

• Instead, we should build more general QA architectures à more breadth! 
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Decomposing Complex Questions 
in the Terms of Existing QA Models

KKRCS. Text Modular Networks: Learning to Decompose Tasks 
in the Language of Existing Models. arXiv preprint 20 (under review).
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• Challenge: How do we build a system that generalize to both datasets? 🤔

• Hypothesis: despite having different distributions, their sub-problems are similar. 
• Idea:

• Build a framework to decompose complex questions into simpler ones. 
• Have a shared set of solvers for addressing the sub-questions.
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Key Pieces to be Solved

● Design question: how to build a “next question” box, s.t.:  
○ The generated questions follow the “language” of existing QA sub-models (i.e., capabilities)
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ModularQA System

• Uses BART-Large for sub-question generation

• QA modules 
• Roberta model trained on SQuAD 2.0
• Math Calculator with three key functions: x-y, 100-x, if-then-else

• Target datasets:
• DROP [Dua et al. 19]

• HotPotQA [Yang et al. 18]
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• Neural Module Networks [Andreas et al. 16]

• Communicate through dense vectors 
• (e.g., attention weights)

Existing Modular Architectures
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Lessons 

• Text Modular Networks, a general-purpose framework
• Complex tasks solved as textual interaction between existing modules
• ModularQA, an insanitation of this framework

• Benefits: 
• First interpretable model for DROP and HotpotQA à more breadth! 
• Competitive with existing approaches 
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Tying the Loose Ends 

• Currently, we do not focus enough on the “breadth” of our progress. 
• Obsessed with depth (e.g., chasing leaderboards for individual tasks) 

• The two works presented here: 
• UnifiedQA: broader range of tasks 
• ModularQA: utilizing existing modules 

for more complex tasks 

• Not just two systems! 
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Analyses

Measuring Our Progress
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Diverse Perspective Discovery
[Chen et al. NAACL’19]
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Better Systems 

• Continue towards broader scope for QA models
• Broadness: how to cover a larger range of “natural” variations of QA?
• Reliability: we can we quantify what model [un]certainty? 
• Faithful Explainability: can we get explanations that are faithful to models’ reasoning?
• Efficiency: Can we build small, yet accurate models?
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That’s it! 


