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The Progress in NLP/QA

* Many benchmarks in NLP:
* SQUAD [Rajpurkar et al. 2016] SQuUAD leaderboard
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This Talk
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Transfer Across QA Formats

K et al. UnifiedQA: Crossing Format Boundaries With a Single QA System. EMNLP-Findings 2o0.
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Many Flavors of QA

e

2000 2005 2010 2015 2020
Question: "What does photosynthesis
produce that helps plants grow? ” , "The big kid”
Gandidates: (A) water N
(B) oxygen
(C) protein
_ (D) sugar )

[Clark et al. 2018] e Alz
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Format-Specific Model Design

Task-
specific
layer

Dataset-specific
assumptions ®

Consequences of format-specific designs:

* Prevent generalization across formats

 Don’t benefit from labeled data of other formats

Yes/No QA binary output
Multiple-choice QA

One correct answer from a list of candidates.

Extractive QA _ ,
answer is a substring of paragraph

Abstractive QA answer to be inferred from the paragraph

s i2



Format-Specific Model Design (2)

ExtractiveQA e

//////////

MultipleChoiceQA

s 12



Format-Specific Model Design (2)

ExtractiveQA

Question: "At what speed
did the turbine operate?”

((Nikola_Tesla) On his soth birthday in\ A 6/ 000 I m?”
1906, Tesla demonstrated his 200

horsepower (150 kilowatts) 16,000 rpom

_ bladeless turbine. ... )

MultipleChoiceQA

> Ki2



Format-Specific Model Design (2)

ExtractiveQA

Question: "At what speed
did the turbine operate?”

/ 1 1 1 1 \ 1 /4
(Nikola_Tesla) On his 5oth blrthday in 16, 000 rpm
1906, Tesla demonstrated his 200

horsepower (150 kilowatts) 16,000 rpom

_ bladeless turbine. ... )

MultipleChoiceQA

Question: "What does photosynthesis
produce that helps plants grow?”

4 (A) water h “sugar”
(B) oxygen
(C) protein

_ (D) sugar ) . AI 2




Format-Specific Model Design (2)

ExtractiveQA

Question: "At what speed
did the turbine operate?”
/(Nikola_Tesla) On his soth birthday in\
1906, Tesla demonstrated his 200

horsepower (150 kilowatts) 16,000 rpom
_ bladeless turbine. ... )

"16,000 rom”

MultipleChoiceQA

Question: "What does photosynthesis
produce that helps plants grow?”

4 (A) water N “sugar”
(B) oxygen
(C) protein

_ (D) sugar ) . AI 2




Format-Specific Model Design (2)

ExtractiveQA

Question: "At what speed
did the turbine operate?”
/(Nikola_Tesla) On his soth birthday in\
1906, Tesla demonstrated his 200

horsepower (150 kilowatts) 16,000 rpom
_ bladeless turbine. ... )

"16,000 rom”

MultipleChoiceQA

Question: "What does photosynthesis
produce that helps plants grow?”

4 (A) water h
(B) oxygen

, ‘sugar”
(C) protein
(D) sugar
- g ~ Ai2




Format-Specific Model Design (2)

ExtractiveQA

Question: "At what speed
did the turbine operate?”

/ 1 1 1 1 \ 1 /4
(Nikola_Tesla) On his 5oth blrthday in 16, 000 rpm
1906, Tesla demonstrated his 200

horsepower (150 kilowatts) 16,000 rpom

_ bladeless turbine. ... )

MultipleChoiceQA

Question: "What does photosynthesis
produce that helps plants grow?”

4 (A) water h “sugar”
(B) oxygen
(C) protein

_ (D) sugar ) . AI 2




Format-Specific Model Design (2)

ExtractiveQA

Question: "At what speed
did the turbine operate?”

/ 1 1 1 1 \ 1 /4
(Nikola_Tesla) On his 5oth blrthday in 16, 000 rpm
1906, Tesla demonstrated his 200

horsepower (150 kilowatts) 16,000 rpom

_ bladeless turbine. ... )

MultipleChoiceQA

Question: "What does photosynthesis
produce that helps plants grow?”

4 (A) water h “sugar”
(B) oxygen
(C) protein

_ (D) sugar ) - AI 2




Beyond Format-Specialized Models

ExtractiveQA

Question: "At what speed
did the turbine operate?”

/ 1 1 1 1 \ 1 /4
(Nikola_Tesla) On his 5oth blrthday in 16, 000 rpm
1906, Tesla demonstrated his 200

horsepower (150 kilowatts) 16,000 rpom

_ bladeless turbine. ... )

MultipleChoiceQA

Question: "What does photosynthesis
produce that helps plants grow?”

4 (A) water h “sugar”
(B) oxygen
(C) protein

_ (D) sugar ) . Alz




Beyond Format-Specialized Models

ExtractiveQA

Question: "At what speed
did the turbine operate?”

((Nikola_Tesla) On his soth birthday in\ A 6/ 000 I m?”
1906, Tesla demonstrated his 200

horsepower (150 kilowatts) 16,000 rpom

_ bladeless turbine. ... )

MultipleChoiceQA

Question: "What does photosynthesis
produce that helps plants grow?”

4 (A) water N “sugar”
(B) oxygen
(C) protein

_ (D) sugar ) . Alz




Beyond Format-Specialized Models

ExtractiveQA

Question: "At what speed
did the turbine operate?”

((Nikola_Tesla) On his soth birthday in\ "16 ,000 rpm”

1906, Tesla demonstrated his 200 ‘

horsepower (150 kilowatts) 16,000 rpom
_ bladeless turbine. ... )

MultipleChoiceQA

Question: "What does photosynthesis
produce that helps plants grow?”

4 (A) water N “sugar”
(B) oxygen
(C) protein

_ (D) sugar ) . Alz




Beyond Format-Specialized Models

ExtractiveQA

Question: "At what speed
did the turbine operate?”

/ 1 1 1 1 \ 1 /4
(Nikola_Tesla) On his 5oth blrthday in 16, 000 rpm
1906, Tesla demonstrated his 200

horsepower (150 kilowatts) 16,000 rpom

_ bladeless turbine. ... )

MultipleChoiceQA

Question: "What does photosynthesis
produce that helps plants grow?”

4 (A) water h “sugar”
(B) oxygen
(C) protein

_ (D) sugar ) . Alz




UnifiedQA: Definition

1. It's asingle system that is supposed to work on a variety of QA
formats.

2. The input should be natural.
* Minimal-enough for a human solver to infer the format.

v Ki2



UnifiedQA: Definition

1. It's asingle system that is supposed to work on a variety of QA
formats.

2. The input should be natural.
* Minimal-enough for a human solver to infer the format.

« K12



UnifiedQA: Definition

1. It's asingle system that is supposed to work on a variety of QA
formats.

2. The input should be natural.
* Minimal-enough for a human solver to infer the format.

o 12



UnifiedQA: Definition

1. It's asingle system that is supposed to work on a variety of QA
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2. The input should be natural.
* Minimal-enough for a human solver to infer the format.

What causes sound?
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UnifiedQA: Definition

1. It's asingle system that is supposed to work on a variety of QA
formats.

2. The input should be natural.
* Minimal-enough for a human solver to infer the format.

Is Jamaica considered part of the United States?

(Jamaica) Jamaica (/d3a ' merka/ ( listen)) is an island
country situated in the Caribbean Sea...

ﬂ'noJ)
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What type of musical instruments did the Yuan bring to China?

(Yuan_dynasty) Western musical instruments were introduced to
enrich Chinese performing arts....

“Western musical instruments”
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Our encoding:

* Text-in, text-out

* The question always comes first.

* Additional info are appended with "\n”.
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UnifiedQA: Definition

1. It'sasingle system that is supposed to VG

formats. e Text-in, text-out
: * The question always comes first.
2. Theinput should be natural. +  Additional info are appended with "\n”

* Minimal-enough for a human solver to infer the

What type of musical instruments did the Yuan bring to China?

(Yuan_dynasty) Western musical instruments were introduced to
enrich Chinese performing arts....

“Western musical instruments”

3. USE tEXt-tO-tEXt d I’ChItECtU F'es: T5 [Raffal et al. 2020], BART [Lewis et al. 2019], etc.
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UnifiedQA-v1

* Trained on the union of different formats:

e Extractive: SQUAD 1.1, SQUAD 2.0

e Abstractive: Narrative QA

* Multiple-choice: RACE, ARC, OBQA, MC(CTest
* YesNo: BoolQ

* Rajpurkar et al. ‘16 & '18; Kocisky et al. '18; Lai et al. ‘17; Clark et al. '18; Mihaylov et al. '18; Richardson et al. '13; Clark et al. ‘19
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Experiment: Comparison w/ Dedicated Models
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Experiment: Comparison w/ Dedicated Models

100 m Dedicated Models M UnifiedQA
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Experiment: Comparison w/ Dedicated Models

* Is UnifiedQA as good as systems dedicated to individual datasets? -

100 B Dedicated Models B UnifiedQA
90 (~ \I
| l
80 I :
' l
70 I I
: l
60 | I
: l
5o Iﬁ R _,

\7 “} °>/ ny

* UnifiedQA performs almost as well as individual T5 models targeted
to each dataset.
> AI2



Experiment: Fine-tuning UnifiedQA

* Is there value in using UnifiedQA as a starting point for fine-tuning?
 Show SOTA on 10 datasets (OBQA, QASC, RACE, WinoGrande, PIQA, SIQA, ROPES)
e Similar trends for BART

85

I 75

Fine-tuned onTg

- 65 v eresesssse s s ss e
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UnifiedQA (based on Tx) [Clark et al. 18] [Talmor et al. 19] [Khot et al. 19] 87 Alz
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Experiment: Fine-tuning UnifiedQA

* Is there value in using UnifiedQA as a starting point for fine-tuning?
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Earlier Work on Multi-task Learning

* In the same spirit as multi-task learning (carvana‘g7; McCann etal. ‘18]
* They usually don't work! @

* The choice of tasks is also important.

e Earlier works select too broad of tasks.

* E.g., [Raffel et al.’2g]: diverse NLP tasks (machine translation, summarization, etc) and
conclude that a single model for multiple NLP tasks underperform task-specific models.

* We choose to stay within the boundaries of QA.
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Lessons

* The field relies excessively on format-specific assumptions for system design.
* Creating format-specific QA models distance us from broad QA.

* Instead, we should build more general QA architectures > more breadth!
* Incentive: there is value in mixing QA datasets of different formats.

* UnifiedQA: a single QA system working across four common QA formats
* Fine-tuning models pre-trained on UnifiedQA yields SOTA results.

https://github.com/allenai/unifiedqga
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Decomposing Complex Questions

in the Terms of Existing QA Models

KKRCS. Text Modular Networks: Learning to Decompose Tasks
in the Language of Existing Models. arXiv preprint 20 (under review).
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* Text Modular Networks:
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ModularQA: Example
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In what years did the services sector rebound?

v v
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w 3 SQUAD
Next-Question When did the services sector take a hit? solver
Generator 2002
diff(2003, 2002
(2003 ) > Calculator

1

\ 4

Output: 2

o Immediate Benefit:
o Ease of interpretation
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Input: How many years did it take for the services sector to rebound?

In what years did the services sector rebound?

Y ¢
200
w 3 SQUAD
Next-Question When did the services sector take a hit? solver
Generator 2002

diff(2003, 2002)

Y

Calculator

1

\ 4

Output: 2

o Challenge:

o« How do we build this model (that decomposes the complex tasks into simpler sub-tasks)?
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Key Pieces to be Solved

Input: complex question

/ \
; Module;

Next-Question
? Generator Module,

l

Output: answer

« Design question: how to build a "next question” box, s.t.:

o The generated questions follow the “language” of existing QA sub-models (i.e., capabilities)
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A Naive (?) Approach

* Crowdsourcing approach for collecting questio

[Wolfson et al. 2020]

n decomposition

“From what yard line did Shayne
Graham kick two field goals?”

. Shayne Graham

. field goals of #1

. yards of #2

. number of #2 for each #3
. #3 where #4 is two

* Costly human annotations
* Not necessarily comprehensible to existing models
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Step 3: Generating [Noisy] Training Data

* Form chains of sub-questions, based on | complex question and its answer:
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 Answer:1
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* Form chains of sub-questions, based on | complex question and its answer:
* Question: How many years did it take for the

the mferred type services sector to rebound?

 Answer:1

q_vocab=non-stop words from ¥
complex question Question Type=difference

N

gl = 0G(g vocab, exp ans=nl, doc)

{ g2 = QG(q vocab, exp ans=n2, doc)

calc(diff, nl, n2)

r
Q
w
Il

nl and n2: numbers extracted from doc
with difference equal to the final answer.
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Step 4: Filtering the [Noisy] Training Data

* Filter out undesirable chains:

* Too many question words not used
* Too many new words introduced

Complex question and its answer:

* Question: How many years did it take for the
services sector to rebound?

e Answer:1

D

Question Type=difference

D

gl = 0G(g vocab, exp ans=nl, doc)

{ 92 = QG(g_vocab, exp_ans=n2, doc)

g3 = calc(diff, nl, n2)

.

Filtering
noisy

chains A 2
155 l




Training the Model

Train the model to generate future sub-questions, given the past ones.

Q: How many vears did it take for the services sector to Next-Question . .
W 5 vy e Vi Qa: In what years did the services sector rebound?
rebound: Generator

Q: How many years did it take for the services sector to

? Next- ion . : .
rebound _ _ ext-Questio Q2: When did the services sector start to take a dip?
Qa: In what years did the services sector rebound? Generator
A1: 2003

Q: How many years did it take for the services sector to

rebound?
Qz: In what years did the services sector rebound? Next-Question Qa: Calcidife B
A1: 2003 Generator 3: Calc[diff, 2002, 2003]

Q2: When did the services sector start to take a dip?
A2: 2002
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ModularQA System

* Uses BART-Large for sub-question generation

e QA modules
e Roberta model trained on SQUAD 2.0
* Math Calculator with three key functions: x-y, 100-x, if-then-else

* Target datasets:
e DROP [Dua et al. 19]
e HotPotQA [Yang et al. 18]
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Existing Modular Architectures

* Neural Module Networks (andreas et al. 161

* Communicate through dense vectors
* (e.g., attention weights)

yes

exists
and
red above

circle

A
o N
_ N

Is there a red shape above a circle?
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* (e.g., attention weights)

A
o N
_ N

Is there a red shape above a circle?

w K12



Experiment: Comparison w/ Existing Models

System
DROP (F1) | HotPotQA (F1)
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Lessons

* Text Modular Networks, a general-purpose framework
* Complextasks solved as textual interaction between existing modules
* ModularQA, an insanitation of this framework

* Benefits:
* First interpretable model for DROP and HotpotQA = more breadth!
* Competitive with existing approaches
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Tying the Loose Ends

* Currently, we do not focus enough on the “breadth” of our progress.
* Obsessed with depth (e.g., chasing leaderboards for individual tasks)

* The two works presented here:
* UnifiedQA: broader range of tasks

* ModularQA: utilizing existing modules '
for more complex tasks

* Not just two systems! Breadth
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Implicit decompositions dataset
[Geva et al. TACL'21]

Models of Language Problems Measuring Our Progress
O
o KMKKTCH. EMNLP-Findings'20 GKSKRB. TACL'21
Did Aristotle Use a Laptop? KCRUR. NAACL'18 ZKQR. EMNLP'1g
gE & PKR. NAACL'15 KCRUR. NAACL'18
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Characterizing models’

decision boundaries
[Gardner et al. EMNLP-Findings’20]

three differently

%Ko sim%rly-colored and similarly-posed
chow d/@s are face to face in one image.

cats

Models of Language Problems

KMKKTCH. EMNLP-Findings'20
KCRUR. NAACL'18
PKR. NAACL'1g

Analyses

nR

G et al. EMNLP-Findings'20
KKS. EMNLP'20

Measuring Our Progress

Q=

GKSKRB. TACL' 221
ZKQR. EMNLP'19
KCRUR. NAACL'18
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Models of Language Problems Measuring Our Progress

O,

KMKKTCH. EMNLP-Findings'20 GKSKRB. TACL'21

KCRUR. NAACL'18 ZKQR. EMNLP"19
PKR. NAACL'15 KCRUR. NAACL'18

Analyses NLP+Society

nR it

G et al. EMNLP-Findings’20 LKKSS. EMNLP-Findings'20
KKS. EMNLP"20 CKWCR. NAACL19
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Muslim

Social Biases in QA Models

[Li et al. EMNLP-Findings’20]

Atheist Jewish

Association of ethylic/religious
groups with negative stereotypes

Orthodox Buddhist

Christian

Models of Language Problems

KMKKTCH. EMNLP-Findings'20
KCRUR. NAACL18
PKR. NAACL'15

Analyses

nR

G et al. EMNLP-Findings'20
KKS. EMNLP'20

Measuring Our Progress

@””’/

GKSKRB. TACL'21
ZKQR. EMNLP'19
KCRUR. NAACL'18

NLP+Society

LKKSS. EMNLP-Findings'20
CKWCR. NAACL'19
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KMKKTCH. EMNLP-Findings'20 GKSKRB. TACL'21

KCRUR. NAACL'18 ZKQR. EMNLP"19
PKR. NAACL'15 KCRUR. NAACL'18

Analyses NLP+Society

nR it

G et al. EMNLP-Findings’20 LKKSS. EMNLP-Findings'20
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Diverse Perspective Discovery
[Chen et al. NAACL'19g]

(11 .
input claim Animals should
have lawful rights”
System
\/
strongly support strongly oppose
. e ¢

“Animals are “Living beings || “Animals have
equal to human have basic no interest or

beings” rights” rationality”

Diverse perspectives to address the given claim.

Models of Language Problems

KMKKTCH. EMNLP-Findings'20
KCRUR. NAACL18
PKR. NAACL'15

Analyses

nR

G et al. EMNLP-Findings'20
KKS. EMNLP'20

Measuring Our Progress

Q=

GKSKRB. TACL' 221
ZKQR. EMNLP'19
KCRUR. NAACL'18

NLP+Society

LKKSS. EMNLP-Findings'20
CKWCR. NAACL19

Ai2



Look Ahead

= K12



Better Systems

//////////

//////////

Breadth




Better Systems

 Continue towards broader scope for QA models
* Broadness: how to cover a larger range of “natural” variations of QA?
 Reliability: we can we quantify what model [un]certainty?
* Faithful Explainability: can we get explanations that are faithful to models’ reasoning?
* Efficiency: Can we build small, yet accurate models?
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Learning from Instructions

Input-output supervision instructions 199 Alz
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W

( ,"Spam”)

{(x,y)} = (E], "han”)
(F),”spam”)
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Learning from Instructions

e Attention-grabbing —
Additional Benefits! 4——mBox x~ _ 0 line =
Celeste Seimsen <cseimsen@gmail.com> 5:39 PM (24 minutes ago) S

I

tome ~

77 77 Name is
S p a. m Dear Shristi, misspelled /
, wrong email address

We have been very impressed with the way you have been working for us.
As a token of our appreciation for your hard work, Maharishi School would like to give you

44 h 144 some additional benefits.
9 a m Here is an updated list of your current benefits: mtps://docs.g@%e.com/forms/
d/1eYsbienwhujafU4LZRA MI6StnijfldgrSfge/edit

Please keep this confidential becuase only a select few were eligible fok these benefits.
Keep up the good work!

144 144
9 S p am All the Best,

Celeste Seimsen

1(x,y)}

Link leads to a
different URL

E Click here to Reply or Forward

A

https://www.shristis.com/googleLogin.htmi?id=pauOrSE3TSYgxsR

Input-output supervision instructions 201 Alz



Interactive Semantics

Single-shot
evaluation

Learning from
interactions
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Interactive Semantics

2021
Single-shot * »

evaluation input problem

Learning from
interactions
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That’s it!
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