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QA; a broad definition 

• Task: Question Answering (QA)

“What does 
photosynthesis produce 
that helps plants grow?” “sugar”

Input: A question, along with additional 
information (hints, docs, images, etc.)

Output: a string that addresses 
the input question. 
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QA datasets 
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…

……
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[Harabagiu et al, 2000; others]

[Peters et al; Devlin et al; others]
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• E.g., Raffel et al’19 diverse NLP tasks (machine translation, summarization, etc) and 
conclude that a single model for multiple NLP tasks underperform task-specific models. 
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• No task/format specific encoding. 
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UnifiedQA: a high-level definition 

1. It’s a single system that is supposed to work on a variety of QA 
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third-largest island of the Greater Antilles and the 
fourth-largest island country in the Caribbean.”
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UnifiedQA: a high-level definition 

1. It’s a single system that is supposed to work on a variety of QA 
formats. 

2. The input should be natural.  
• Minimal-enough for a human solver to infer the format.  

“What type of musical instruments did the Yuan bring to China?   

(Yuan_dynasty) Western musical instruments were introduced to 
enrich Chinese performing arts. From this period dates the 
conversion to Islam, by Muslims of Central Asia, of growing 
numbers of Chinese in the northwest and southwest. ...”

“Western musical instruments”

• The question always comes first.
• Additional info are appended with “\n”. 
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• Batches contains the same number of instances from each training set.
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69.4
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Roadmap

1. Generalization across formats  

2. UnifiedQA + Empirical Intuitions 

3. Discussion and next steps 
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UnifiedQA-v1

• Trained on the union of different formats: 
• Extractive: SQuAD 1.1, SQuAD 2.0
• Abstractive: NarrativeQA
• Multiple-choice: RACE, ARC, OBQA, MCTest
• YesNo: BoolQ

• Architectures: 
• T5 (11B, 3B, …) 
• BART (large) 
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• Trained on the union of different formats: 
• Extractive: SQuAD 1.1, SQuAD 2.0
• Abstractive: NarrativeQA
• Multiple-choice: RACE, ARC, OBQA, MCTest
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• Architectures: 
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• BART (large) 

https://github.com/allenai/unifiedqa
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Intuition #1: Comparison w/ Dedicated Models

• Is UnifiedQA as good as systems dedicated to individual datasets?

• UnifiedQA performs almost as good as individual T5 models targeted 
to each dataset.
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Intuition #1: Comparison w/ Dedicated Models

• Is UnifiedQA as good as systems dedicated to individual datasets?

• UnifiedQA performs almost as good as individual T5 models targeted 
to each dataset.

SQuAD2 RACE BoolQ NarQA
T5 (SQuAD 2) 91 33 12 51
T5 (RACE) 43 87 7 54
T5 (BoolQ) 4 22 90 0
T5 (NarQA) 45 48 47 65
UnifiedQA 90 87 90 65
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Intuition #2: Unseen Datasets
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Intuition #2: Unseen Datasets

NewsQA Quoref DROP DROP-CS QASC
Commonse

nseQA NP-BoolQ BoolQ-CS Avg

UnifiedQA [EX] 59 65 25 24 55 63 21 13 42
UnifiedQA [AB] 58 68 31 37 54 59 27 40 48
UnifiedQA [MC] 48 68 29 37 68 76 3 6 44
UnifiedQA [YN] 1 2 0 0 15 21 79 79 22

UnifiedQA 59 63 33 40 68 76 81 80 62

evaluation sets

models trained 
for individual 

formats 

106



Intuition #2: Unseen Datasets

• Does UnifiedQA generalizes well to unseen datasets?

• On average, UnifiedQA shows much stronger generalization across a 
wide range of datasets. 

NewsQA Quoref DROP DROP-CS QASC
Commonse

nseQA NP-BoolQ BoolQ-CS Avg

UnifiedQA [EX] 59 65 25 24 55 63 21 13 42
UnifiedQA [AB] 58 68 31 37 54 59 27 40 48
UnifiedQA [MC] 48 68 29 37 68 76 3 6 44
UnifiedQA [YN] 1 2 0 0 15 21 79 79 22

UnifiedQA 59 63 33 40 68 76 81 80 62
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• Is there a value in using UnifiedQA as a starting point for fine-tuning?
• Show SOTA on 10 datasets (OBQA, QASC, RACE, WinoGrande, PIQA, SIQA, ROPES)
• Similar trends for BART 
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[Clark et al. 18] [Talmor et al. 19] [Khot et al. 19]
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Demo
https://unifiedqa.apps.allenai.org
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Methodological Issue: Data Leakage
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Methodological Issue: Data Leakage

• “have you done some studies on overlap across datasets?”

• Easy answer:
• not much surface-form overlap between the datasets. 

• Nuanced/ difficult answer:
• more data (especially during pre-training) increases  the chances of (indirect) leakage. 
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Where do we go from here?

• More formats 
• Can we incorporate other “natural” variations of QA in the study? 

• Smaller models: 
• Can we build small and accurate models to make it more available? 

• Beyond QA/Text: 
• Can you take these ideas and apply it to some other problems? 
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Take-home points

• The field relies excessively format-specific assumptions for system design. 
• Instead, we should move towards more general QA architectures. 

• Incentive: there is value in mixing QA datasets of different formats. 

• UnifiedQA, a single pre-trained QA system seeking to bring unification 
across common QA formats.

https://github.com/allenai/unifiedqa
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