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Acquiring Temporal Common Sense

n Challenging 
¨ Reporting Biases: 

n people rarely mention the common sense to be efficient “It took me 2 seconds to move my chair”
n Sometimes highlight rarities “It took me an hour to move my chair”

¨ Highly Contextual: 
n The duration of “Move” depends on the object’s weight/size. 
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Time and Common Sense

n Time
¨ An important component for reading comprehension

n Temporal order
n Event duration / frequency
n Typical events and their occurring time
n …

¨ Explicit textual cues (before, after, at the same time) are rare
¨ Commonsense-level understanding is required

n Example: Choose from “will” or “will not”
¨ Dr. Porter is taking a vacation and ____ be able to see you soon.
¨ Dr. Porter is taking a walk and _____ be able to see you soon. 
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Temporal Common Sense

n This work: acquire temporal commonsense knowledge 
¨ Duration, Frequency, Typical time
¨ Minimal Supervision

n It is challenging:
¨ Highly contextual
¨ Hard to understand event arguments’ relation to its duration/frequency

n Duration: I move a chair < I move a piano (weight)
n Duration: I build a chair < I build a piano (complexity)

¨ Reporting Biases
n Rare to see people describing how long they brushed their teeth

n Our view: model distributions of temporal properties of events in fine grained 
contexts
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This Work

n TacoLM
¨ a general time-aware language model that distincts temporal properties in fine grained 

contexts.
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This Work

n Example: Choose from “will” or “will not”
¨ Dr. Porter is taking a vacation and will not be able to see you soon.
¨ Dr. Porter is taking a walk and will be able to see you soon. 
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TacoLM – the Big Picture

¨ Use high-precision patterns to acquire temporal information
n Unsupervised automatic extraction

¨ Overcomes reporting biases with a large amount of natural text

¨ Multiple temporal dimensions
n Duration ~ 1 / Frequency 

n Further generalization to combat reporting biases
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Step 1: Information Extraction

Step 2: Joint Language Model Pre-training

Output: TacoLM- a time-aware general BERT
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Joint learning from free text

n In general: we trained a BERT that is aware of time in a more unbiased way

n Pattern Extraction:
¨ Unsupervised
¨ Multiple Dimensions (duration, frequency, auxiliaries…)
¨ Natural constraints: duration <= 1/frequency

n Joint Pretraining
¨ Use soft cross entropy that assumes a bell-shaped distribution across values
¨ Also allows for circular relationships like day of weeks
¨ Use full event masking and label adjustment to combat reporting biases further

n General LM: with the off-the shelf capability of predicting temporal properties
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Information Extraction

n Use high-precision patterns based on SRL
¨ Duration 
¨ Frequency 
¨ Typical Time
¨ Duration Upperbound
¨ Hierarchy

n Labels
¨ Units (seconds, … centuries) 
¨ Temporal keywords (Monday, January, …)

n Output
¨ 4.3M instances of 

(event, dimension, value) tuple
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¨ Frequency 
¨ Typical Time
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¨ Units (seconds, … centuries) 
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¨ 4.3M instances of 
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Step 2: Language Model Pre-training
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Step 1: Information Extraction

Step 2: Joint Language Model Pre-training

Output: TacoLM- a time-aware general BERT
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Sequence Classification

n Consider [Event] [Dimension] [Value] tuples in each instance
n [E1, E2, … M, ET … En, SEP, M, Dim, Val]

¨ M is a special marker, same across all dimension/value
¨ Dim is a marker for each dimension, Val is a marker for the value of the dimension

n With an example:
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Joint Model with Masked LM

n Baseline Model: Pre-trained BERT-base
n Main objective: mask some tokens and recover them
n How we mask: 

¨ With some probability, mask temporal value while keeping others 

¨ Otherwise, mask a certain portion of E1...En while keeping temporal value unchanged

¨ Max (P(Event|Dim,Val) + P(Val|Event,Dim)); Preserving original LM capability

n Benefits: 
¨ Jointly learn one transformer towards all dimensions
¨ Labels play a role in the transformer
¨ One event may contain more than one (Dim + Val), so the model learns dimension relationships
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I [M] [MASK] [MASK] [SEP] [M] [DUR] [HRS]



Joint Model with Masked LM

n Baseline Model: Pre-trained BERT-base
n Main objective: mask some tokens and recover them
n How we mask: 

¨ With some probability, mask temporal value while keeping others 

¨ Otherwise, mask a certain portion of E1...En while keeping temporal value unchanged

¨ Max (P(Event|Dim,Val) + P(Val|Event,Dim)); Preserving original LM capability

n Benefits: 
¨ Jointly learn one transformer towards all dimensions
¨ Labels play a role in the transformer
¨ One event may contain more than one (Dim + Val), so the model learns dimension relationships

99

I [M] played basketball [SEP] [M] [DUR] [HRS]

I [M] played basketball [SEP] [M] [DUR] [MASK]
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Joint Model with Masked LM

n 1: Soft cross entropy for recovering Val
¨ If gold label is “hours”, the label vector y for “minutes, hours, days” will be [0.16, 0.47, 0.25]

n 2: Label weight adjustment 
¨ Instances with “seconds” have higher loss than those with “years”

n 3: Full event masking
¨ Instead of 15% used by BERT, we use 60% when masking E1, … En to reduce biases
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Step 1: Information Extraction

Step 2: Joint Language Model Pre-training

Output: TacoLM- a time-aware general BERT



n A collection of events with duration of “seconds,” “weeks” or “centuries” (three extremes)
n BERT (left), Ours (right) representation on the event’s trigger

¨ PCA + t-SNE to 2D visualization
n Our model separates the events much better (è our model is aware of time)

Evaluation: Intrinsic (Embedding space)
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Evaluation: Intrinsic (Quantitatively)
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n Metric: Distance to gold label
¨ Dist (seconds, hours)=2, Dist (minutes, hours)=1
¨ Lower the better

n RealNews [Zellers et al. 2019]: no document overlap
¨ Raw corpus + MTurk annotation

n UDS-T [Vashishtha et al. 2019]: duration only

Evaluation: Intrinsic (Quantitatively)
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n Task: Identify if an event’s duration is longer than a day or shorter
n Model (finetuned):

¨ Demonstrate the model as a general purpose LM
¨ Pre-trained duration prediction layer is not used

n Results

Evaluation: Extrinsic (TimeBank)
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Evaluation: Extrinsic

n Use as a general language model with finetuning
n Task: Identify event-event hierarchical relations

¨ HiEVE [Glavas et al. 2014]
¨ Child-Parent / Parent-Child / Coreference

n A bomb exploded. This is the sixth accident since the war started.

n Model (finetuned): 
¨ Sentence pair classification

n Results (F1, higher the better)
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Evaluation: Extrinsic (MC-TACO)

n Task: QA on temporal related questions. (how long, how often, etc.)
n Model (finetuned)

¨ Standard BERT QA model

n Results
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Conclusion - TacoLM

n Time-aware with minimal supervision

n Joint pre-training over multiple temporal dimensions

n Able to directly predict events’ duration, frequency or typical time
¨ 19% better on direct prediction tasks
¨ Bell-shaped predictive distributions
¨ Differentiates fine grained event contexts

n Works as a general language model
¨ 8% improvement on child-parent event relation extraction

135



Conclusion - TacoLM

n Time-aware with minimal supervision

n Joint pre-training over multiple temporal dimensions

n Able to directly predict events’ duration, frequency or typical time
¨ 19% better on direct prediction tasks
¨ Bell-shaped predictive distributions
¨ Differentiates fine grained event contexts

n Works as a general language model
¨ 8% improvement on child-parent event relation extraction

136

I played basketball for 2 hours



Conclusion - TacoLM

n Time-aware with minimal supervision

n Joint pre-training over multiple temporal dimensions

n Able to directly predict events’ duration, frequency or typical time
¨ 19% better on direct prediction tasks
¨ Bell-shaped predictive distributions
¨ Differentiates fine grained event contexts

n Works as a general language model
¨ 8% improvement on child-parent event relation extraction

137

I played basketball for 2 hours



Conclusion - TacoLM

n Time-aware with minimal supervision

n Joint pre-training over multiple temporal dimensions

n Able to directly predict events’ duration, frequency or typical time
¨ 19% better on direct prediction tasks
¨ Bell-shaped predictive distributions
¨ Differentiates fine grained event contexts

n Works as a general language model
¨ 8% improvement on child-parent event relation extraction

138

I played basketball for 2 hours

Frequency of “brushing teeth” = every morning” Duration of “brushing teeth” < morning



Conclusion - TacoLM

n Time-aware with minimal supervision

n Joint pre-training over multiple temporal dimensions

n Able to directly predict events’ duration, frequency or typical time
¨ 19% better on direct prediction tasks
¨ Bell-shaped predictive distributions
¨ Differentiates fine grained event contexts

n Works as a general language model
¨ 8% improvement on child-parent event relation extraction

139

I played basketball for 2 hours

Frequency of “brushing teeth” = every morning” Duration of “brushing teeth” < morning



Conclusion - TacoLM

n Time-aware with minimal supervision

n Joint pre-training over multiple temporal dimensions

n Able to directly predict events’ duration, frequency or typical time
¨ 19% better on direct prediction tasks
¨ Bell-shaped predictive distributions
¨ Differentiates fine grained event contexts

n Works as a general language model
¨ 8% improvement on child-parent event relation extraction

140

I played basketball for 2 hours

Frequency of “brushing teeth” = every morning” Duration of “brushing teeth” < morning



Conclusion - TacoLM

n Time-aware with minimal supervision

n Joint pre-training over multiple temporal dimensions

n Able to directly predict events’ duration, frequency or typical time
¨ 19% better on direct prediction tasks
¨ Bell-shaped predictive distributions
¨ Differentiates fine grained event contexts

n Works as a general language model
¨ 8% improvement on child-parent event relation extraction

141

I played basketball for 2 hours

Frequency of “brushing teeth” = every morning” Duration of “brushing teeth” < morning



Conclusion - TacoLM

n Time-aware with minimal supervision

n Joint pre-training over multiple temporal dimensions

n Able to directly predict events’ duration, frequency or typical time
¨ 19% better on direct prediction tasks
¨ Bell-shaped predictive distributions
¨ Differentiates fine grained event contexts

n Works as a general language model
¨ 8% improvement on child-parent event relation extraction

142

I played basketball for 2 hours

Frequency of “brushing teeth” = every morning” Duration of “brushing teeth” < morning



Conclusion - TacoLM

n Time-aware with minimal supervision

n Joint pre-training over multiple temporal dimensions

n Able to directly predict events’ duration, frequency or typical time
¨ 19% better on direct prediction tasks
¨ Bell-shaped predictive distributions
¨ Differentiates fine grained event contexts

n Works as a general language model
¨ 8% improvement on child-parent event relation extraction

143

I played basketball for 2 hours

Frequency of “brushing teeth” = every morning” Duration of “brushing teeth” < morning

0

0.2

0.4

second hour week year century

Dr. Porter is taking a walk.

Dr. Porter is taking a long vacation.



Conclusion - TacoLM

n Time-aware with minimal supervision

n Joint pre-training over multiple temporal dimensions

n Able to directly predict events’ duration, frequency or typical time
¨ 19% better on direct prediction tasks
¨ Bell-shaped predictive distributions
¨ Differentiates fine grained event contexts

n Works as a general language model
¨ 8% improvement on child-parent event relation extraction

144

I played basketball for 2 hours

Frequency of “brushing teeth” = every morning” Duration of “brushing teeth” < morning

0

0.2

0.4

second hour week year century

Dr. Porter is taking a walk.

Dr. Porter is taking a long vacation.



Conclusion - TacoLM

n Time-aware with minimal supervision

n Joint pre-training over multiple temporal dimensions

n Able to directly predict events’ duration, frequency or typical time
¨ 19% better on direct prediction tasks
¨ Bell-shaped predictive distributions
¨ Differentiates fine grained event contexts

n Works as a general language model
¨ 8% improvement on child-parent event relation extraction

145

I played basketball for 2 hours

Frequency of “brushing teeth” = every morning” Duration of “brushing teeth” < morning

0

0.2

0.4

second hour week year century

Dr. Porter is taking a walk.

Dr. Porter is taking a long vacation.

Thank you!
Code & Data: 

https://github.com/CogComp/TacoLM

https://github.com/CogComp/TacoLM

