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About me 

• Join in 2013
• Graduated in early 2019
• Now: AI2, Seattle 

2



This talk

• Hypothesis testing/assessment: 
A topic we’re [kind of] familiar with, by virtue of working in an empirical field. 
There are holes in our understanding of these concepts and their usage. 

• Mix of new ideas and known stuff. 
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Hypotheses
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Hypotheses

• A prediction about how the world will behave if our idea is correct
• Worded as an if-then statement
• A hypothesis is a testable prediction
• A hypothesis is a falsifiable statement

• Terminology: 
• A hypothesis is never “proved” 
• But it could be “supported” by the evidence
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“I can always prepare a nice presentation, if I stay up the night before.”
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• Can this apparent difference in performance be explained simply by random chance? 
• Do we have sufficient evidence to conclude that Ⓐ is in fact inherently stronger than 
Ⓑ on these datasets?
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Ⓐ 72.4
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A Typical AI Experiment: Example Hypotheses 
System Accuracy
Ⓐ 72.4
Ⓑ 68.9

• H1*: Ⓐ and Ⓑ are inherently different, in the sense that if they were 
inherently identical, it would be highly unlikely to witness the observed 
3.5% empirical gap.

• H2*: Ⓐ and Ⓑ are inherently different, since with probability at least 
95%, the inherent accuracy of Ⓐ exceeds that of Ⓑ by at least 𝛼%.
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A Typical AI Experiment: Example Hypotheses 
System Accuracy
Ⓐ 72.4
Ⓑ 68.9

• H1*: Ⓐ and Ⓑ are inherently different, in the sense that if they were 
inherently identical, it would be highly unlikely to witness the observed 
3.5% empirical gap.

• H2*: Ⓐ and Ⓑ are inherently different, since with probability at least 
95%, the inherent accuracy of Ⓐ exceeds that of Ⓑ by at least 𝛼%.

And many more . . . * Under some statistical assumptions about sampling of the observations.

Spoiler Alert: 
Almost everyone uses H1, even 
though it is harder to interpret. 
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• Observation 1: There are many different hypotheses that could 
address a single research question. 

Research QuestionHypothesis-1

Hypothesis-2

Hypothesis-3…
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Hypothesis vs Statistical Techniques

Research Question

• Observation 2: Each hypothesis ought to be assessed with an appropriate 
statistical tool. 
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Hypothesis vs Statistical Techniques

Research QuestionHypothesis-1Statistical Tool A

Hypothesis-2

Hypothesis-3…

Statistical Tool B

Statistical Tool C…

• Observation 2: Each hypothesis ought to be assessed with an appropriate 
statistical tool. 

• Corollary: Researchers should start with a hypothesis that best serves their 
goal and choose an appropriate statistical assessment accordingly. 
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Omission of hypotheses
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Omission of hypotheses

• Observation 3: Somehow, we tend to forget about hypotheses
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Omission of hypotheses

Research QuestionHypothesisStatistical Tool
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Omission of hypotheses

Flawed practice: Many works use hypothesis assessment tests without knowing/stating 
their hypothesis. 

Research QuestionHypothesisStatistical Tool
? Ⓐ >> Ⓑ

49

(EMNLP 2018)



Talk Summary & Statement

• Motivated by several serious malpractices: 
• Under-reporting of hypotheses and how they address research questions. 
• Inability to interpret statistical tools or their results. 
• Lack of awareness about various alternatives; e.g., Bayesian assessment tools. 

• Research works should be explicit about: 
• (a) Their choice of hypothesis and, 
• (b) How selected statistical tool addresses this hypothesis. 
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Statistical tools in this work . . . 

Frequentist Bayesian

Binary/Categorical 
Decisions

Uncertainty 
Estimations

Null-Hypothesis 
Significance Test Bayes Factor

Confidence 
Interval

Posterior 
Intervals
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Survey of the NLP Community
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Survey of the NLP Community

• A questionnaire containing general and specific questions 
about significance assessment tools
• Sent it to over 400 researchers randomly selected from ACL’18 

proceedings 
• ~50 individuals responded 

54



Survey of the NLP Community

• A questionnaire containing general and specific questions 
about significance assessment tools
• Sent it to over 400 researchers randomly selected from ACL’18 

proceedings 
• ~50 individuals responded 

55



Survey of the NLP Community

• A questionnaire containing general and specific questions 
about significance assessment tools
• Sent it to over 400 researchers randomly selected from ACL’18 

proceedings 
• ~50 individuals responded 

56



Survey of the NLP Community

• A questionnaire containing general and specific questions 
about significance assessment tools
• Sent it to over 400 researchers randomly selected from ACL’18 

proceedings 
• ~50 individuals responded 

57



Survey of the NLP Community

• “I have learned about statistical hypothesis testing/assessment (via taking 
classes or reading it from other places).”
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Participants in Our Survey

• “I have used "hypothesis testing" in the past (in a homework, a paper, etc.)”
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Trends and Patterns in the field

Study NLP conference papers: ACL’18 papers (439 papers)

Frequentist Bayesian
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Decision

Uncertainty 
Estimations

Null-Hypothesis 
Significance Test Bayes Factor

Confidence 
Interval

Posterior 
Intervals

How many papers did use significance testing? 
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• The overuse of NHST is why we 
focus on its issues.

• All techniques have their own 
limitations and ought to be used 
with this in mind. 



Frequentist Bayesian

Binary/Categorical 
Decisions

Uncertainty 
Estimations

Null-Hypothesis 
Significance Test Bayes Factor

Confidence 
Interval

Posterior 
Intervals
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Notation

• Compare two systems on a set of 
instances: D

• A measure of performance:  M(S!,
D)
• θ! ≠ M(S", D)

• Several hypotheses: 
• H1: θA > θB
• H2: θA > θB + b
• … 
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Hypotheses

Hypothesis Assessment

Conclusions validating
(or not) the hypotheses.



Null-Hypothesis Significance Testing
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Null-Hypothesis Significance Testing

• The goal is to decide whether the inverse of your claim can be rejected.
• Make a hypothesis (that you want it to be rejected): null-hypothesis.
• Assume that null-hypothesis is correct. 
• Calculate the probability of getting an outcome as “extreme” or more 

than the observed outcome.
• This probability is called a “p-value.”
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One-sided z-test
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Interpreting p-values 

• Pretty complex notion! 

“The probability of obtaining test results at 
least as extreme as the results actually 
observed during the test, assuming that the 
null-hypothesis is correct.”  
--your favorite statistics textbook 
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If p < 0.05, the null-hypothesis has only a 5% chance of 
being true
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Interpreting p-value

• P-value only indicates strict superiority and provides 
no information about the margin of the effect.

A statistically significant result (p < 0.05) indicates a 
large/notable difference between two systems. 
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A Survey Question: Interpreting P-value

• The authors claim that the improvement of 
classifier-B over classifier-A is “statistically 
significant” with a significance level of 0.01. 
Which of the followings is correct?

a) The probability of observing a margin 7% is at 
most 0.01, assuming that the two classifiers 
inherently have the same performance.

b) With a probability 99% classifier-2 will have a 
higher performance than classifier-1.
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• The authors claim that the improvement of 
classifier-B over classifier-A is “statistically 
significant” with a significance level of 0.01. 
Which of the followings is correct?

a) The probability of observing a margin 7% is at 
most 0.01, assuming that the two classifiers 
inherently have the same performance.

b) With a probability 99% classifier-2 will have a 
higher performance than classifier-1.
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• P-values do not provide probability 
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• Statistical significance is different than 
practical significance. 
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Posterior Intervals 

• Based on Bayesian inference framework. 

134(Thomas Bayes 1702-1761)
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Posterior Intervals 

• Key notions: 
• Prior: Assumptions and beliefs about key parameters of a system Θ. 
• Likelihood: How the hidden parameters Θ are connected to the observations 𝑌. 
• Posterior: Summary of the inferences about likeliness of Θ.

Goal: use the posterior  𝑷 Θ 𝑌 to to calculate: 
𝑷 Hypothesis 𝑌 e.g.,   H": 𝜃# − 𝜃$ > 𝛼
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• The hypothesis (w/ 𝛼 = 0) holds true …  
• … with probability %99.6. 

• The hypothesis (w/ 𝛼 = 1) holds true … 
• … with probability %94. 
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incorporated in the definition of 
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• This does not encourage binary decision-
making. 
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• P-values do not provide probability estimates on validity of 
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• Posterior Intervals are interpretable 
in terms of post-data probabilities.
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Why?
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Hypothesis Testing"?
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Have you heard about "Bayesian 
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"Bayes Factor"?
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§ Many people did not know the definition of “Bayes Factor” and some only had 
“heard” about them. 🤔

Have you heard about "Bayesian 
Hypothesis Testing"?

Do you know the definition of 
"Bayes Factor"?
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Final Section: 
Malpractices & Suggestions
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Ambiguous 
reporting
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Ambiguous 
reporting
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When referring to the 
results of significance 
testing, one should be 
mindful of how others 
are going to interpret it.  



Ambiguity problem in interpreting “significance”
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Ambiguity problem in interpreting “significance”
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Ambiguity problem in interpreting “significance”

• An NLP paper presents system-A and it compares it with a baseline 
system-B. In its “abstract” it writes: “... system-A significantly improves 
over system-B.” What are the right way(s) to interpret this (select all 
that applies)

• It is expected that authors have performed some type of “hypothesis testing.”

• It is expected that the authors have reported the performances of two 
systems on a dataset where system-A has a higher performance than system-B
with a notable margin in the dataset.
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The Usage of “Significance”: Our Recommendation

• When referring to performing 
some type of “hypothesis testing,” 
use prefixes like “statistical” 

• When referring to big empirical 
improvements, use alternative 
terms like: “notable” or 
“remarkable.” 
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Tips and Suggestions 

Define the research hypothesis you are after: 

197

• H1: Ⓐ and Ⓑ are inherently different, in the sense that if they were 
inherently identical, it would be highly unlikely to witness the observed 
3.5% empirical gap.

• H2: Ⓐ and Ⓑ are inherently different, since with probability at least 
95%, the inherent accuracy of Ⓐ exceeds that of Ⓑ by at least 𝛼%.

• …

Frequentist Bayesian
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Decision

Uncertainty 
Estimations

Null-Hypothesis 
Significance Test
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Posterior 
Intervals



Tips and Suggestions 

• The statements reporting p-value and 
confidence interval need to be precise.

• …  so that the results are not misinterpreted. 
• The term “significant” should be used with caution and clear 

purpose in order to not cause any misinterpretations. 
better under a significance test != significantly better

• One way to achieve this is by using adjectives “statistical” or 
“practical” before any (possibly inflected) usage of “significance.”
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Tips and Suggestions 
Frequentist Bayesian

Binary 
Decision

Uncertainty 
Estimations

Null-Hypothesis 
Significance 

Test
Bayes Factor
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Lots of good tips about: 
- Selecting the right “test”
- How to report your results. 
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Tips and Suggestions 

• If using Bayesian tests: 

200

https://github.com/allenai/HyBayes/



That’s it! 
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The Need for Assumptions
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The Need for Assumptions

• Which tests have assumptions? 
• Assumptions are necessary to perform any statistical tests. 
• “no free lunch” 

• Many of them are questionable! Frequentist Bayesian
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Participants in our Survey
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Participants in Our Survey

• “I can understand almost all the "statistical" terms I encounter in papers.”
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• “I can understand almost all the "statistical" terms I encounter in papers.”
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Unintended Misleading Result by Iterative Testing
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Unintended Misleading Result by Iterative Testing

• Many tests are designed for a 
single-round experiment. 

• In practice researchers perform 
multiple rounds of experiments. 

• This is a major problem when 
using binary tests. 
• E.g., you can “hack” a p-value test, 

with enough repetitions. 
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