
REASONING-DRIVEN QUESTION-ANSWERING

FOR NATURAL LANGUAGE UNDERSTANDING

Daniel Khashabi

A DISSERTATION

in

Computer and Information Sciences

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy 2019

Supervisor of Dissertation

Dan Roth, Professor of Computer and Information Science

Graduate Group Chairperson

Rajeev Alur, Professor of Computer and Information Science

Dissertation Committee

Dan Roth, Professor, Computer and Information Science, University of Pennsylvania

Mitch Marcus, Professor of Computer and Information Science, University of Pennsylvania

Zachary Ives, Professor of Computer and Information Sciences, University of Pennsylvania

Chris Callison-Burch, Associate Professor of Computer Science, University of Pennsylvania

Ashish Sabharwal, Senior Research Scientist, Allen Institute for Artificial Intelligence

REASONING-DRIVEN QUESTION-ANSWERING

FOR NATURAL LANGUAGE UNDERSTANDING

c© COPYRIGHT

2019

Daniel Khashabi

This work is licensed under the

Creative Commons Attribution

NonCommercial-ShareAlike 3.0

License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/

Dedicated to the loving memory of my gramma, An’nah

Your patience and kindness will forever stay with me.

iii

ACKNOWLEDGEMENT

I feel incredibly lucky to have Dan Roth as my advisor. I am grateful to Dan for trusting

me, especially when I had only a basic understanding of many key challenges in natural

language. It took me a while to catch up with what is important in the field and be able to

communicate the challenges effectively. During these years, Dan’s vision has always been

the guiding principle to many of my works. His insistence on focusing on the long-term

progress, rather than “easy” wins, shaped the foundation of many of the ideas I pursued.

This perspective pushed me to think differently than the popular trends. It has been a

genuine privilege to work together.

I want to thank my thesis committee at UPenn, Mitch Marcus, Zach Ives and Chris Callison-

Burch for being a constant source of invaluable feedback and guidance. Additionally, I

would like to thanks the many professors who have touched parts of my thinking: Jerry

DeJong, for encouraging me read the classic literature; Chandra Chekuri and Avrim Blum,

for their emphasis on intuition, rather than details; and my undergraduate advisor Hamid

Sheikhzadeh Nadjar, for encouraging me to work on important problems.

A huge thank you to the Allen Institute for Artificial Intelligence (AI2) for much support

during my PhD studies. Any time I needed any resources (computing resources, crowdsourc-

ing credits, engineering help, etc), without any hesitation, AI2 has provided me what was

needed. Special thanks to Ashish Sabhwaral and Tushar Khot for being a constant source

of wisdom and guidance, and investing lots of time and effort. They both have always been

present to listen to my random thoughts, almost on a weekly basis. I am grateful to other

members of AI2 for their help throughout my projects: Oren Etzioni, Peter Clark, Oyvind

Tafjord, Peter Turney, Ingmar Ellenberger, Dirk Groeneveld, Michael Schmitz, Chandra

Bhagavatula and Scott Yih. Moreover, I would like to remember Paul Allen (1953-2018):

his vision and constant generous support has tremendously changed our field (and my life,

in particular).

iv

My collaborators, especially past and present CogComp members, have been major con-

tributors and influencers throughout my works. I would like to thank Mark Sammons,

Vivek Srikumar, Christos Christodoulopoulos, Erfan Sadeqi Azer, Snigdha Chaturvedi,

Kent Quanrud, Amirhossein Taghvaei, Chen-Tse Tsai, and many other CogComp members.

Furthermore, I thank Eric Horn and Jennifer Sheffield for their tremendous contributions

to many of my write-ups. And thank you to all the friends I have made at Penn, UIUC, and

elsewhere, for all the happiness you’ve brought me. Thanks to Whitney, for sharing many

happy and sad moments with me, and for helping me become a better version of myself.

Last, but never least, my family, for their unconditional sacrifice and support. I wouldn’t

have been able to go this far without you.

v

ABSTRACT

REASONING-DRIVEN QUESTION-ANSWERING

FOR NATURAL LANGUAGE UNDERSTANDING

Daniel Khashabi

Dan Roth

Natural language understanding (NLU) of text is a fundamental challenge in AI, and it

has received significant attention throughout the history of NLP research. This primary

goal has been studied under different tasks, such as Question Answering (QA) and Textual

Entailment (TE). In this thesis, we investigate the NLU problem through the QA task and

focus on the aspects that make it a challenge for the current state-of-the-art technology.

This thesis is organized into three main parts:

In the first part, we explore multiple formalisms to improve existing machine comprehension

systems. We propose a formulation for abductive reasoning in natural language and show

its effectiveness, especially in domains with limited training data. Additionally, to help

reasoning systems cope with irrelevant or redundant information, we create a supervised

approach to learn and detect the essential terms in questions.

In the second part, we propose two new challenge datasets. In particular, we create two

datasets of natural language questions where (i) the first one requires reasoning over multiple

sentences; (ii) the second one requires temporal common sense reasoning. We hope that the

two proposed datasets will motivate the field to address more complex problems.

In the final part, we present the first formal framework for multi-step reasoning algorithms,

in the presence of a few important properties of language use, such as incompleteness,

ambiguity, etc. We apply this framework to prove fundamental limitations for reasoning

algorithms. These theoretical results provide extra intuition into the existing empirical

evidence in the field.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENT . iv

ABSTRACT . vi

LIST OF TABLES . xv

LIST OF ILLUSTRATIONS . xx

PUBLICATION NOTES . xxi

CHAPTER 1 : Introduction . 1

1.1 Motivation . 1

1.2 Challenges along the way to NLU . 1

1.3 Measuring the progress towards NLU via Question Answering 4

1.4 Thesis outline . 6

CHAPTER 2 : Background and Related Work . 8

2.1 Overview . 8

2.2 Terminology . 8

2.3 Measuring the progress towards NLU . 10

2.3.1 Measurement protocols . 10

2.4 Knowledge Representation and Abstraction for NLU 14

2.4.1 Early Works: “Neats vs Scruffies”1 14

2.4.2 Connectionism . 16

2.4.3 Unsupervised representations . 16

2.4.4 Grounding of meanings . 17

1Terms originally made by Roger Schank to characterize two different camps: the first group that repre-
sented commonsense knowledge in the form of large amorphous semantic networks, as opposed to another
from the camp of whose work was based on logic and formal extensions of logic.

vii

2.4.5 Common sense and implied meanings 17

2.4.6 Abstractions of the representations 18

2.5 Reasoning/Decision-making Paradigms for NLU 19

2.5.1 Early formalisms of reasoning . 19

2.5.2 Incorporating “uncertainty” in reasoning 20

2.5.3 Macro-reading vs micro-reading . 21

2.5.4 Reasoning on “structured” representations 22

2.5.5 Models utilizing massive annotated data 23

2.6 Technical background and notation . 23

2.6.1 Complexity theory . 23

2.6.2 Probability Theory . 24

2.6.3 Graph theory . 24

2.6.4 Optimization Theory . 24

I Reasoning-Driven System Design 26

CHAPTER 3 : QA as Subgraph Optimization on Tabular Knowledge 27

3.1 Overview . 27

3.2 Related Work . 29

3.3 QA as Subgraph Optimization . 30

3.3.1 Semi-Structured Knowledge as Tables 30

3.3.2 QA as a Search for Desirable Support Graphs 31

3.3.3 ILP Formulation . 33

3.4 Evaluation . 38

3.4.1 Solvers . 39

3.4.2 Results . 40

3.4.3 Ablation Study . 42

3.4.4 Question Perturbation . 43

3.5 Summary and Discussion . 44

viii

CHAPTER 4 : QA as Subgraph Optimization over Semantic Abstractions 46

4.1 Overview . 46

4.1.1 Related Work . 50

4.2 Knowledge Abstraction and Representation 51

4.2.1 Semantic Abstractions . 51

4.2.2 Semantic Graph Generators . 52

4.3 QA as Reasoning Over Semantic Graphs . 53

4.3.1 ILP Formulation . 56

4.4 Empirical Evaluation . 57

4.4.1 Question Sets . 58

4.4.2 Question Answering Systems . 58

4.4.3 Experimental Results . 61

4.4.4 Error and Timing Analysis . 62

4.4.5 Ablation Study . 64

4.5 Summary and Discussion . 66

CHAPTER 5 : Learning Essential Terms in Questions 68

5.1 Overview . 68

5.1.1 Related Work . 69

5.2 Essential Question Terms . 70

5.2.1 Crowd-Sourced Essentiality Dataset 71

5.2.2 The Importance of Essential Terms 73

5.3 Essential Terms Classifier . 75

5.3.1 Evaluation . 76

5.4 Using ET Classifier in QA Solvers . 79

5.4.1 IR solver + ET . 80

5.4.2 TableILP solver + ET . 81

5.5 Summary . 83

ix

II Moving the Peaks Higher: Designing More Challenging Datasets 84

CHAPTER 6 : A Challenge Set for Reasoning on Multiple Sentences 85

6.1 Overview . 85

6.2 Relevant Work . 88

6.3 Construction of MultiRC . 89

6.3.1 Principles of design . 89

6.3.2 Sources of documents . 90

6.3.3 Pipeline of question extraction . 92

6.3.4 Pilot experiments . 94

6.3.5 Verifying multi-sentenceness . 95

6.3.6 Statistics on the dataset . 96

6.4 Analysis . 98

6.4.1 Baselines . 98

6.4.2 Results . 100

6.5 Summary . 101

CHAPTER 7 : A Question Answering Benchmark for Temporal Common-sense . . 102

7.1 Overview . 102

7.2 Related Work . 104

7.3 Construction of TacoQA . 105

7.4 Experiments . 107

7.5 Summary . 109

III Formal Study of Reasoning in Natural Language 111

CHAPTER 8 : Capabilities and Limitations of Reasoning in Natural Language . . 112

8.1 Introduction . 112

8.2 Related Work . 116

8.3 Background and Notation . 117

x

8.4 The Meaning-Symbol Interface . 118

8.5 Connectivity Reasoning Algorithm . 124

8.5.1 Possibility of accurate connectivity 125

8.5.2 Limits of connectivity algorithm . 126

8.6 Limits of General Algorithms . 127

8.7 Empirical Analysis . 129

8.8 Summary, Discussion and Practical Lessons 130

CHAPTER 9 : Summary and Future Work . 133

9.1 Summary of Contributions . 133

9.2 Discussion and Future Directions . 135

APPENDIX . 138

A.1 Supplementary Details for Chapter 3 . 138

A.2 Supplementary Details for Chapter 4 . 142

A.3 Supplementary Details for Chapter 5 . 147

A.4 Supplementary Details for Chapter 6 . 157

A.5 Supplementary Details for Chapter 7 . 157

A.6 Supplementary Details for Chapter 8 . 160

BIBLIOGRAPHY . 172

xi

LIST OF TABLES

TABLE 1 : Natural language questions about the story in Figure 1. 4

TABLE 2 : Various answer representation paradigms in QA systems; examples

selected from Khashabi et al. (2018a); Rajpurkar et al. (2016); Clark

et al. (2016). 13

TABLE 3 : Notation for the ILP formulation. 33

TABLE 4 : Variables used for defining the optimization problem for TableILP

solver. All variables have domain {0, 1}. 34

TABLE 5 : TableILP significantly outperforms both the prior MLN reasoner,

and IR using identical knowledge as TableILP 40

TABLE 6 : Solver combination results . 41

TABLE 7 : TableILP statistics averaged across questions 42

TABLE 8 : Ablation results for TableILP . 42

TABLE 9 : Drop in solver scores (on the development set, rather than the hidden

test set) when questions are perturbed 44

TABLE 10 : Minimum requirements for using each family of graphs. Each graph

connected component (e.g. a PredArg frame, or a Coreference chain)

cannot be used unless the above-mentioned conditioned is satisfied. 55

TABLE 11 : The set of preferences functions in the objective. 57

TABLE 12 : The semantic annotator combinations used in our implementation

of SemanticILP. 59

TABLE 13 : Science test scores as a percentage. On elementary level science

exams, SemanticILP consistently outperforms baselines. In each

row, the best score is in bold and the best baseline is italicized. . 62

xii

TABLE 14 : Biology test scores as a percentage. SemanticILP outperforms

various baselines on the ProcessBank dataset and roughly matches

the specialized best method. 62

TABLE 15 : SemanticILP statistics averaged across questions, as compared to

TableILP and TupleInf statistics. 63

TABLE 16 : Ablation study of SemanticILP components on various datasets.

The first row shows the overall test score of the full system, while

other rows report the change in the score as a result of dropping an

individual combination. The combinations are listed in Table 12. . 64

TABLE 17 : Comparison of test scores of SemanticILP using a generic ensemble

vs. domain-targeted cascades of annotation combinations. 66

TABLE 18 : Effectiveness of various methods for identifying essential question terms in

the test set, including area under the PR curve (AUC), accuracy (Acc),

precision (P), recall (R), and F1 score. ET classifier substantially outper-

forms all supervised and unsupervised (denoted with †) baselines. 77

TABLE 19 : Generalization to unseen terms: Effectiveness of various methods, using the

same metrics as in Table 18. As expected, supervised methods perform

poorly, similar to a random baseline. Unsupervised methods generalize

well, but the ET classifier again substantially outperforms them. 78

TABLE 20 : Effectiveness of various methods for ranking the terms in a question by

essentiality. † indicates unsupervised method. Mean-Average Precision

(MAP) numbers reflect the mean (across all test set questions) of the av-

erage precision of the term ranking for each question. ET classifier again

substantially outperforms all baselines. 78

TABLE 21 : Performance of the IR solver without (Basic IR) and with (IR +

ET) essential terms. The numbers are solver scores (%) on the test

sets of the three datasets. 80

xiii

TABLE 22 : Bounds used to select paragraphs for dataset creation. 91

TABLE 23 : Various statistics of our dataset. Figures in parentheses represent

standard deviation. 96

TABLE 24 : Performance comparison for different baselines tested on a subset of our

dataset (in percentage). There is a significant gap between the human

performance and current statistical methods. 100

TABLE 25 : Statistics of TacoQA. 105

TABLE 26 : Summary of the performances for different baselines. All numbers are in

percentages. 109

TABLE 27 : The weights of the variables in our objective function. In each col-

umn, the weight of the variable is mentioned on its right side. The

variables that are not mentioned here are set to have zero weight. . 139

TABLE 28 : Minimum thresholds used in creating pairwise variables. 141

TABLE 29 : Some of the important constants and their values in our model. . 141

TABLE 30 : All the sets useful in definitions of the constraints in Table 31. . . 142

TABLE 31 : The set of all constraints used in our ILP formulation. The set of

variables and are defined in Table 4. More intuition about con-

straints is included in Section 3. The sets used in the definition of

the constraints are defined in Table 30. 144

TABLE 32 : Generic template used as part of each reasoning 147

TABLE 33 : Comb-1 (Shallow Alignment) . 148

TABLE 34 : Comb-2 (Verb-SRL alignment) . 149

TABLE 35 : Comb-5 (Verb-SRL+Prep-SRL alignment) 150

TABLE 36 : Comb-3 (Verb-SRL+Coreference alignment) 151

TABLE 37 : List of important feature categories in our system. 152

xiv

TABLE 38 : This table contains the exact numbers when using essentiality scores

for dropping most important/least important terms in the question

(Section 2.2). The setting (A) is when the gold annotations are used

and setting (B) is when real-valued scores of the trained classifier

are used. Precision is ratio of the questions answered correctly, if

they answered at all. Recall is the ratio of the times a question is

answered. Term-drop ratio is ratio of the terms dropped in the ques-

tion sentence (compared to the the overall length of the question). 153

TABLE 39 : List of the synthesized question for Section 4.3. These question

are hand-made and perturbed versions of the existing question to

trick the vanilla TableILP. The design of these questions is done

completely independent of the essentiality scores. 153

TABLE 40 : Breakdown of the predictions changed from adding TableILP to

Cascades, classified according to their reasons, annotated manually

by inspecting the reasoning graph of each question. 155

TABLE 41 : Comparison of the reasoning graphs, for TableILP and Cascades(TableILP+ET).

In the first row, adding ET changes the correct prediction to incor-

rect, but in the second row, it corrects the incorrect prediction. . . 156

TABLE 42 : Collections of temporal expressions used in creating perturbation of

the candidate answers. Each mention is grouped with its variations

(e.g., “first” and “last” are in the same set). 157

xv

LIST OF ILLUSTRATIONS

FIGURE 1 : A sample story appeared on the New York Times (taken from Mc-

Carthy (1976)). 2

FIGURE 2 : Ambiguity (left) appears when mapping a raw string to its actual

meaning; Variability (right) is having many ways of referring to the

same meaning. 2

FIGURE 3 : Visualization of two semantic tasks for the given story in Figure 1.

Top figure shows verb semantic roles; bottom figure shows clusters

of coreferred mentions. The visualizations use CogCompNLP (Khashabi

et al., 2018c) and AllenNLP (Gardner et al., 2018). 5

FIGURE 4 : An overview of the contributions and challenges addressed in each

chapter of this thesis. 7

FIGURE 5 : Major highlights of NLU in the past 50 years (within the AI com-

munity). For each work, its contribution-type is color-coded. To

provide perspective about the role of the computational resources

available at each period, we show the progress of CPU/GPU hard-

ware over time. 9

FIGURE 6 : A hypothetical manifold of all the NLU instances. Static datasets

make it easy to evaluate our progress but since they usually give a

biased estimate, they limit the scope of the challenge. 12

FIGURE 7 : Example frames used in this work. Generic basic science frames

(left), used in Chapter 3; event frames with values filled with the

given sentence (right), used in Chapter 4. 15

FIGURE 8 : Brief definitions for popular reasoning classes and their examples. 20

xvi

FIGURE 9 : TableILP searches for the best support graph (chains of reasoning) connecting

the question to an answer, in this case June. Constraints on the graph define

what constitutes valid support and how to score it (Section 3.3.3). 27

FIGURE 10 : Depiction of SemanticILP reasoning for the example paragraph

given in the text. Semantic abstractions of the question, answers,

knowledge snippet are shown in different colored boxes (blue, green,

and yellow, resp.). Red nodes and edges are the elements that are

aligned (used) for supporting the correct answer. There are many

other unaligned (unused) annotations associated with each piece of

text that are omitted for clarity. 47

FIGURE 11 : Knowledge Representation used in our formulation. Raw text is asso-

ciated with a collection of SemanticGraphs, which convey certain infor-

mation about the text. There are implicit similarity edges among the

nodes of the connected components of the graphs, and from nodes to the

corresponding raw-text spans. 52

FIGURE 12 : Overlap of the predictions of SemanticILP and IR on 50 randomly-

chosen questions from AI2Public 4th. 64

FIGURE 13 : Performance change for varying knowledge length. 65

FIGURE 14 : Essentiality scores generated by our system, which assigns high essentiality to

“drop” and “temperature”. 68

FIGURE 15 : Crowd-sourcing interface for annotating essential terms in a ques-

tion, including the criteria for essentiality and sample annotations. 72

FIGURE 16 : Crowd-sourcing interface for verifying the validity of essentiality

annotations generated by the first task. Annotators are asked to

answer, if possible, questions with a group of terms dropped. . . . 73

xvii

FIGURE 17 : The relationship between the fraction of question words dropped and the frac-

tion of the questions attempted (fraction of the questions workers felt comfort-

able answering). Dropping most essential terms (blue lines) results in very few

questions remaining answerable, while least essential terms (red lines) allows

most questions to still be answerable. Solid lines indicate human annotation

scores while dashed lines indicate predicted scores. 74

FIGURE 18 : Precision-recall trade-off for various classifiers as the threshold is varied.

ET classifier (green) is significantly better throughout. 77

FIGURE 19 : Examples from our MultiRCcorpus. Each example shows relevant ex-

cerpts from a paragraph; multi-sentence question that can be answered

by combining information from multiple sentences of the paragraph; and

corresponding answer-options. The correct answer(s) is indicated by a *.

Note that there can be multiple correct answers per question. 86

FIGURE 20 : Pipeline of our dataset construction. 92

FIGURE 21 : Distribution of (left) general phenomena; (right) variations of the

“coreference” phenomena. 97

FIGURE 22 : Most frequent first chunks of the questions (counts in log scale). 98

FIGURE 23 : PR curve for each of the baselines. There is a considerable gap

with the baselines and human. 100

FIGURE 24 : Five types of temporal commonsense in TacoQA. Note that a question

may have multiple answers. 103

FIGURE 25 : BERT + unit normalization performance per temporal reasoning cate-

gory (top), performance gain over random baseline per category (bottom) 110

FIGURE 26 : The interface between meanings and symbols: each meaning (top)

can be uttered in many ways into symbolic forms (bottom). . . 112

xviii

FIGURE 27 : The meaning space contains [clean and unique] symbolic representation

and the facts, while the symbol space contains [noisy, incomplete and

variable] representation of the facts. We show sample meaning and sym-

bol space nodes to answer the question: Is a metal spoon a good conductor

of heat?. 114

FIGURE 28 : The construction considered in Definition 9. The node-pair m-m′ is con-

nected with distance d in GM , and disconnected in G′M , after dropping

the edges of a cut C. For each symbol graph, we consider it “local”

Laplacian. 127

FIGURE 29 : Various colors in the figure depict the average distance between

node-pairs in the symbol graph, for each true meaning-graph dis-

tance d (x-axis), as the noise parameter p− (y-axis) is varied. The

goal is to distinguish squares in the column for a particular d with

the corresponding squares in the right-most column, which cor-

responds to node-pairs being disconnected. This is easy in the

bottom-left regime and becomes progressively harder as we move

upward (more noise) or rightward (higher meaning-graph distance).

(ε+ = 0.7, λ = 3) . 131

FIGURE 30 : Notation for the ILP formulation. 138

FIGURE 31 : Examples of system output for (1) top: Comb-1 (Shallow alignment)

(2) middle: Comb-2 (Verb-SRL alignment) (3) bottom: Comb-5

(Verb-SRL+ Prep-SRL alignment). 146

FIGURE 32 : Example output of a question SemanticILP answered incorrectly

due to a mistake in annotations. “eating” in the paragraph is incor-

rectly recognized as a verb predicate, with “breathing” as subject,

resulting in this incorrect alignment. 147

FIGURE 33 : Bar graph showing how often words with certain POS tag are la-

beled as essential / non-essential. 149

xix

FIGURE 34 : Performance of supervised algorithm (BERT; Section 4) as func-

tion of various sizes of observed training data. When no training

data provided to the systems (left-most side of the figure), the per-

formance measures amount to random guessing. 159

FIGURE 35 : With varied values for p− a heat map representation of the distri-

bution of the average distances of node-pairs in symbol graph based

on the distances of their corresponding meaning nodes is presented. 171

xx

PUBLICATION NOTES

1. Daniel Khashabi, Tushar Khot, Ashish Sabharwal, Peter Clark, Oren Etzioni, and Dan

Roth. Question answering via integer programming over semi-structured knowledge.

In Proceedings of the 25th International Joint Conference on Artificial Intelligence

(IJCAI), 2016. URL http://cogcomp.org/page/publication_view/786.

2. Daniel Khashabi, Tushar Khot, Ashish Sabharwal, and Dan Roth. Learning what

is essential in questions. In Proceedings of the Conference on Computational Natural

Language Learning (CoNLL), 2017. URL http://cogcomp.org/page/publication_

view/813.

3. Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan

Roth. Looking beyond the surface: A challenge set for reading comprehension over

multiple sentences. In Proceedings of the Annual Conference of the North American

Chapter of the Association for Computational Linguistics (NAACL), 2018a. URL

http://cogcomp.org/page/publication_view/833.

4. Daniel Khashabi, Tushar Khot, Ashish Sabharwal, and Dan Roth. Question answer-

ing as global reasoning over semantic abstractions. In Proceedings of the Fifteenth

Conference on Artificial Intelligence (AAAI), 2018b. URL http://cogcomp.org/

page/publication_view/824.

5. Daniel Khashabi, Erfan Sadeqi Azer, Tushar Khot, Ashish Sabharwal, and Dan Roth.

On the capabilities and limitations of reasoning for natural language understanding,

2019. URL https://arxiv.org/abs/1901.02522

6. Ben Zhou, Daniel Khashabi, Qiang Ning, and Dan Roth. “Going on a vacation” takes

longer than “Going for a walk”: A Study of Temporal Commonsense Understanding.

In Proceedings of the Conference on Empirical Methods in Natural Language Process-

ing (EMNLP), 2019.

xxi

CHAPTER 1 : Introduction

“To model this language understanding process in a computer, we need
a program which combines grammar, semantics, and reasoning in an
intimate way, concentrating on their interaction.”

— T. Winograd, Understanding Natural Language, 1972

1.1. Motivation

The purpose of Natural Language Understanding (NLU) is to enable systems to interpret a

given text, as close as possible to the many ways humans would interpret it.

Improving NLU is increasingly changing the way humans interact with machines. The

current NLU technology is already making significant impacts. For example, we can see

it used by speech agents, including Alexa, Siri, and Google Assistant. In the near future,

with better NLU systems, we will witness a more active presence of these systems in our

daily lives: social media interactions, in financial estimates, during the course of product

recommendation, in accelerating of scientific findings, etc.

The importance of NLU was understood by many pioneers in Artificial Intelligence (starting

in the ’60s and ’70s). The initial excitement about the field ushered a decade of activity in

this area (McCarthy, 1963; Winograd, 1972; Schank, 1972; Woods, 1973; Zadeh, 1978). The

beginning of these trends was overly positive at times, and it took years (if not decades) to

comprehend and appreciate the real difficulty of language understanding.

1.2. Challenges along the way to NLU

We, humans, are so used to using language that it’s almost impossible to see its complexity,

without a closer look into instances of this problem. As an example, consider the story

shown in Figure 1, which appeared in an issue of the New York Times (taken from Mc-

Carthy (1976)). With relatively simple wording, this story is understandable to English

speakers. Despite the simplicity, many nuances have to come together to form a coherent

understanding of this story.

1

A 61-year-old furniture salesman was pushed down the shaft of a freight elevator yesterday
in his downtown Brooklyn store by two robbers while a third attempted to crush him with
the elevator car because they were dissatisfied with the $1,200 they had forced him to give
them.
The buffer springs at the bottom of the shaft prevented the car from crushing the salesman,
John J. Hug, after he was pushed from the first floor to the basement. The car stopped
about 12 inches above him as he flattened himself at the bottom of the pit.
Mr. Hug was pinned in the shaft for about half an hour until his cries attracted the attention
of a porter. The store at 340 Livingston Street is part of the Seamans Quality Furniture
chain.
Mr. Hug was removed by members of the Police Emergency Squad and taken to Long Island
College Hospital. He was badly shaken, but after being treated for scrapes of his left arm
and for a spinal injury was released and went home. He lives at 62-01 69th Lane, Maspeth,
Queens.
He has worked for seven years at the store, on the corner of Nevins Street, and this was the
fourth time he had been held up in the store. The last time was about one year ago, when
his right arm was slashed by a knife-wielding robber.

Figure 1: A sample story appeared on the New York Times (taken from McCarthy (1976)).

We flesh out a few general factors which contribute to the complexity of language under-

standing in the context of the story given in Figure 1:

• Ambiguity comes along when trying to make sense of a given string. While an average

human might be good at this, it’s incredibly hard for machines to map symbols or

characters to their actual meaning. For example, the mention of “car” that appears

in our story has multiple meanings (see Figure 2; left). In particular, this mention in

the story refers to a sense other than its usual meaning (here refers to the elevator

Figure 2: Ambiguity (left) appears when mapping a raw string to its actual meaning;
Variability (right) is having many ways of referring to the same meaning.

2

cabin; the usual meaning is a road vehicle).

• Variability of language means that a single idea could be phrased in many different

ways. For instance, the same character in the story, “Mr. Hug,” has been referred

to in different ways: “the salesman,” “he,” “him,” “himself,” etc. Beyond lexical

level, there is even more variability in bigger constructs of language, such as phrases,

sentences, paragraphs, etc.

• Reading and understanding text involves an implicit formation of a mental structure

with many elements. Some of these elements are directly described in the given story,

but a significant portion of the understanding involves information that is implied

based on a readers’ background knowledge. Common sense refers to our (humans)

understanding of everyday activities (e.g., sizes of objects, duration of events, etc),

usually shared among many individuals. Take the following sentence from the story:

The car stopped about 12 inches above him as he flattened himself at the bottom

of the pit.

There is a significant amount of imagination hiding in this sentence; each person after

reading this sentence has a mental picture of the incident. And based on this mental

picture, we have implied meanings: we know he is lucky to be alive now; if he didn’t

flatten himself, he would have died; he had nowhere to go at the bottom of the pit;

the car is significantly heavier than the man; etc. Such understanding is common

and easy for humans and rarely gets direct mention in text, since they are considered

trivial (for humans). Humans are able to form such implicit understanding as a result

of our own world model and past shared experiences.

• Many small bits combine to make a big picture. We understand that “downtown

Brooklyn” is probably not a safe neighborhood, since “this was the fourth time he

had been held up here.” We also understand that despite all that happened to “Mr.

3

Question 1: Where did the robbers push Mr. Hug?
Answer 1: down the shaft of a freight elevator

Question 2: How old is Mr. Hug?
Answer 2: 61 years old

Question 3: On what street is Mr. Hug’s store located?
Answer 3: 340 Livingston Street, on the corder of Nevins Street

Question 4: How far is his house to work?
Answer 4: About 30 minutes train ride

Question 5: How long did the whole robbery take?
Answer 5: Probably a few minutes

Question 6: Was he trapped in the elevator car, or under?
Answer 6: under

Question 7: Was Mr. Hug conscious after the robbers left?
Answer 7: Yes, he cried out and his cries were heard.

Question 8: How many floors does Mr. Hug’s store have?
Answer 8: More than one, since he has an elevator

Table 1: Natural language questions about the story in Figure 1.

Hug,” he likely goes back to work after treatment because similar incidents have

happened in the past. Machines don’t really make these connections (for now!).

Challenges in NLU don’t end here; there are many other aspects to language understanding

that we skip here since they go beyond the scope of this thesis.

1.3. Measuring the progress towards NLU via Question Answering

To measure machines’ ability to understand a given text, one can create numerous questions

about the story. A system that better understands language should have a higher chance of

answering these questions. This approach has been a popular way of measuring NLU since

its early days (McCarthy, 1976; Winograd, 1972; Lehnert, 1977).

Table 1 shows examples of such questions. Consider Question 1. The answer to this

question is directly mentioned in text and the only thing that needs to be done is creating a

representation to handle the variability of text. For instance, a reoresentation of the meaning

that are conveyed by verb predicates, since a major portion of meanings are centered around

verbs. For example, to understand the various elements around a verb “push,” one has to

4

Figure 3: Visualization of two semantic tasks for the given story in Figure 1. Top fig-
ure shows verb semantic roles; bottom figure shows clusters of coreferred mentions. The
visualizations use CogCompNLP (Khashabi et al., 2018c) and AllenNLP (Gardner et al.,
2018).

figure out who pushed, who was pushed, pushed where, etc. The subtask of semantic role

labeling (Punyakanok et al., 2004) is dedicated to resolving such inferences (Figure 3;

top). The output of this annotation of indicates that the location pushed to is “the shaft of

a freight elevator.” In addition, the output of the coreference task (Carbonell and Brown,

1988; McCarthy, 1995) informs computers about such equivalences between the mentions

of the main character of the story (namely, the equivalence between “Mr. Hug” and “A

61-year-old furniture salesman”).

Similarly the answers to Question 2 and 3 are directly included in the paragraph, although

they both require some intermediate processing like the coreference task. The system we

introduce in Chapter 4 uses such representations (coreference, semantic roles, etc) and in

principle should be able to answer such questions. The dataset introduced in Chapter 6

also motivates addressing questions that require chaining information from multiple pieces

of text. In a similar vein, Chapter 8 takes a theoretical perspective on the limits of chaining

information.

The rest of the questions in Table 1 are harder for machines, as they require information

5

beyond what is directly mentioned in the paragraph. For example, Question 4 requires

knowledge of the distance between “Queens” and “Brooklyn,” which can be looked up on the

internet. Similarly, Question 5 requires information beyond text; however, it is unlikely to

be looked up easily on the web. Understanding that “the robbery” took only a few minutes

(and not hours or days) is part of our common sense understanding. The dataset that we

introduce in Chapter 7 motivates addressing such understanding (temporal common sense).

Question 6 and 7 require different forms of common sense understanding, beyond the

scope of this thesis.

In this thesis we focus on the task of Question Answering (QA), aiming to progress towards

NLU. And for this goal, we study various representations and reasoning algorithms. In

summary, this thesis is centered around the following statement:

Thesis Statement. Progress in automated question answering could be facilitated by

incorporating the ability to reason over natural language abstractions and world knowledge.

More challenging, yet realistic QA datasets pose problems to current technologies; hence,

more opportunities for improvement.

1.4. Thesis outline

In the thesis we use QA as a medium to tackle a few important challenges in the context

of NLU. We start with an in-depth review of past work and its connections to our work in

Chapter 2. The main content of the thesis is organized as follows (see also Figure 4):

• Part 1: Reasoning-Driven QA System Design

– Chapter 3 discusses TableILP, a model for abductive reasoning over natural

language questions, with internal knowledge available in tabular representation.

– Chapter 4 presents SemanticILP, an extension of the system in the previous

chapter to function on raw text knowledge.

6

Category Sub-category Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8

Contribution type
system design ✓ ✓ ✓

dataset ✓ ✓

theory ✓

Challenges
addressed

Ambiguity
(grounding) ✓ ✓

Variability ✓ ✓ ✓ ✓ ✓

Combining
information ✓ ✓ ✓ ✓

Common-sense
understanding ✓ ✓ ✓

Figure 4: An overview of the contributions and challenges addressed in each chapter of this
thesis.

– Chapter 5 studies the notion of essential question terms with the goal of making

QA solvers more robust to distractions and irrelevant information.

• Part 2: Moving the Peaks Higher: More Challenging QA datasets

– Chapter 5 presents MultiRC, a reading comprehension challenge which requires

combining information from multiple sentences.

– Chapter 6 presents TacoQA, a reading comprehension challenge which requires

the ability to resolve temporal common sense.

• Part 3: Formal Study of Reasoning in Natural Language

– Chapter 7 presents a formalism, in an effort to provide theoretical grounds to

the existing intuitions on the limits and possibilities in reasoning, in the context

of natural language.

7

CHAPTER 2 : Background and Related Work

“Whoever wishes to foresee the future must consult the past.”

— Nicolo Machiavelli, 1469-1527

2.1. Overview

In this chapter, we review the related literature that addresses different aspects of natural

language understanding.

Before anything else, we define the terminology (Section 2.2). We divide the discussion into

multiple interrelated axes: Section 2.3 discusses various evaluation protocols and datasets

introduced in the field. We then provide an overview of the field from the perspective

of knowledge representation and abstraction in Section 2.4. Building on the discussion of

representation, we provide a survey of reasoning algorithms, in Section 2.5. We end the

chapter with a short section on the technical background necessary for the forthcoming

chapters (Section 2.6).

To put everything into perspective, we show a summary of the highlights of the field in

Figure 5. Each highlight is color-coded to indicate its contribution type. In the following

sections, we go over a select few of these works and explain the evolution of the field,

especially those directly related to the focus of this work.

2.2. Terminology

Before starting our main conversation, we define the terminology we will be using throughout

this document.

• Propositions are judgments or opinions which can be true or false. A proposition is

not necessarily a sentence, although a sentence can express a proposition (e.g., “cats

cannot fly”).

• A concept is either a physical entity (like a tree, bicycle, etc) or an abstract idea (like

8

Figure 5: Major highlights of NLU in the past 50 years (within the AI community). For
each work, its contribution-type is color-coded. To provide perspective about the role of
the computational resources available at each period, we show the progress of CPU/GPU
hardware over time.

9

happiness, thought, betrayal, etc).

• a belief is an expression of faith and/or trust in the truthfulness of a proposition. We

also use confidence or likelihood to refer to the same notion.

• Knowledge is information, facts, understanding acquired through experience or edu-

cation. The discussion on the philosophical nature of knowledge and its various forms

is studied under epistemology (Steup, 2014).

• Representation is a medium through which knowledge is provided to a system. For

example, the number 5 could be represented as the string “5”, as bits 101, or Roman

numeral “V”, etc.

• Abstraction defines the level of granularity in a representation. For example, the

mentions “New York City”, “Buenos Aires”, “Maragheh” could all be abstracted as

city.

• Knowledge acquisition is the process of identifying and acquiring the relevant knowl-

edge, according to the representation.

• Reasoning is the process of drawing a conclusion based on the given information. We

sometimes refer to this process as decision-making or inference.

2.3. Measuring the progress towards NLU

2.3.1. Measurement protocols

Evaluation protocols are critical in incentivizing the field to solve the right problems. One

of the earliest proposals is due to Alan Turing: if you had a pen-pal for years, you would

not know whether you’re corresponding to a human or a machine (Turing, 1950; Harnad,

1992). A major limitation of this test (and many of its extensions) is that it is “expensive”

to compute (Hernandez-Orallo, 2000; French, 2000).

The protocol we are focusing on in this work is through answering natural language ques-

10

tions; if an actor (human or computer) understands a given text, it should be able to answer

any questions about it. Throughout this thesis, we will refer to this protocol as Question

Answering (QA). This has been used in the field for many years (McCarthy, 1976; Wino-

grad, 1972; Lehnert, 1977). There are few other terms popularized in the community to

refer the same task we are solving here. The phrase Reading Comprehension is bor-

rowed from standardized tests (SAT, TOEFL, etc.), usually refers to the scenario where a

paragraph is attached to the given question. Another similar phrase is Machine Com-

prehension. Throughout this thesis, we use these phrases interchangeably to refer to the

same task.

To make it more formal, for an assumed scenario described by a paragraph P , a system f

equipped with NLU should be able to answer any questions Q about the given paragraph

P . One can measure the expected performance of the system on a set of questions D,

via some distance measure d(., .) between the predicted answers f(Q;P) and the correct

answers f∗(Q;P) (usually a prediction agreed upon by multiple humans):

R(f ;D) = E(Q,P)∼D

[
d
(
f (Q;P) , f∗ (Q;P)

)]

A critical question here is the choice of question set D so that R(f ;D) is an effective measure

of f ’s progress towards NLU. Denote the set of all the possible English questions as Du.

This is an enormous set and, in practice it is unlikely that we could write them all in one

place. Instead, it might be more practical to sample from this set. In practice, this sampling

is replaced with static datasets. This introduces a problem: datasets are hardly a uniform

subset of Du; instead, they are heavily skewed towards more simplicity.

Figure 6 depicts a hypothetical high-dimensional manifold of all the natural language ques-

tions in terms of an arbitrary representation (bytes, characters, etc.) Unfortunately, datasets

are usually biased samples of the universal set Du. And they are often biased towards sim-

plicity. This issue makes the dataset design of extra importance since performance results

11

on a single set might not be a true representative of our progress. Two chapters of this

work are dedicated to the construction of QA datasets.

Figure 6: A hypothetical manifold of all the NLU instances. Static datasets make it easy
to evaluate our progress but since they usually give a biased estimate, they limit the scope
of the challenge.

There are few flavors of QA in terms of their answer representations (see Table 2): (i)

questions with multiple candidate-answers, a subset of which are correct; (ii) extractive

questions, where the correct answer is a substring of a given paragraph; (iii) Direct-answer

questions; a hypothetical system has to generate a string for such questions. The choice

of answer-representation has direct consequences for the representational richness of the

dataset and ease of evaluation. The first two settings (multiple-choice and extractive ques-

tions) are easy to evaluate but restrict the richness of the dataset. Direct-answer questions

can result in richer datasets but are more expensive to evaluate.

Datasets make it possible to automate the evaluation of the progress towards NLU and

be able to compare systems to each other on fixed problems sets. One of the earliest

NLU datasets published in the field is the Remedia dataset (Hirschman et al., 1999) which

contains short-stories written in simple language for kids provided by Remedia Publications.

Each story has 5 types of questions (who, when, why, where, what). Since then, there has

been many suggestions as to what kind of question-answering dataset is a better test of NLU.

Brachman et al. (2005) suggests SAT exams as a challenge for AI. Davis (2014) proposes

12

M
u
lt

ip
le

-c
h
o
ic

e

Dirk Diggler was born as Steven Samuel Adams on April 15, 1961 outside of Saint Paul,
Minnesota. His parents were a construction worker and a boutique shop owner who
attended church every Sunday and believed in God. Looking for a career as a male model,
Diggler dropped out of school at age 16 and left home. He was discovered at a falafel stand
by Jack Horner. Diggler met his friend, Reed Rothchild, through Horner in 1979 while
working on a film.
Question: How old was Dirk when he met his friend Reed?
Answers: *(A) 18 (B) 16 (C) 22

E
x
tr

a
ct

iv
e

The city developed around the Roman settlement Pons Aelius and was named after the
castle built in 1080 by Robert Curthose, William the Conqueror’s eldest son. The city grew
as an important centre for the wool trade in the 14th century, and later became a major
coal mining area. The port developed in the 16th century and, along with the shipyards
lower down the River Tyne, was amongst the world’s largest shipbuilding and ship-repairing
centres.
Question: Who built a castle in Newcastle in 1080?
Answers: “Robert Curthose”

D
ir

ec
t-

a
n
sw

er

Question: Some birds fly south in the fall. This seasonal adaptation is known as
migration. Explain why these birds migrate.
Answers: “A(n) bird can migrate, which helps cope with lack of food resources in harsh
cold conditions by getting it to a warmer habitat with more food resources.”

Table 2: Various answer representation paradigms in QA systems; examples selected from
Khashabi et al. (2018a); Rajpurkar et al. (2016); Clark et al. (2016).

multiple-choice challenge sets that are easy for children but difficult for computers. In a

similar spirit, Clark and Etzioni (2016) advocate elementary-school science tests. Many

science questions have answers that are not explicitly stated in text and instead, require

combining information together. In Chapter 2, 3 we use elementary-school science tests as

our target challenge.

While the field has produced many datasets in the past few years, many of these datasets

are either too restricted in terms of their linguistic richness or they contain annotation

biases (Gururangan et al., 2018; Poliak et al., 2018). For many of these datasets, it has

been pointed out that many of the high-performing models neither need to ‘comprehend’

in order to correctly predict an answer, nor learn to ‘reason’ in a way that generalizes

across datasets (Chen et al., 2016; Jia and Liang, 2017; Kaushik and Lipton, 2018). In

Section 3.4.4 we show that adversarially-selected candidate-answers result in a significant

drop in performance of a few state-of-art science QA systems. To address these weaknesses,

13

in Chapter 4, 5 we propose two new challenge datasets which, we believe, pose better

challenges for systems.

A closely related task is the task of Recognizing Textual Entailment (RTE) (Khashabi

et al., 2018c; Dagan et al., 2013), as QA can be cast as entailment (Does P entail Q+ A?

(Bentivogli et al., 2008)). While we do not directly address this task, in some cases we use

it as a component within out proposed QA systems (in Chapter 3 and 4).

2.4. Knowledge Representation and Abstraction for NLU

The discussion of knowledge representation has been with AI since its beginning and it

is central to the progress of language understanding. Since directly dealing with the raw

input/output complicates the reasoning stage, historically researchers have preferred to

devise a middleman between the raw information and the reasoning engine. Therefore, the

need for an intermediate level seems to be essential. In addition, in many problems, there is

a significant amount of knowledge that is not mentioned directly, but rather implied from

the context. Somehow the extra information has to be provided to the reasoning system.

As a result, the discussion goes beyond just creating formalism for information, and also

includes issues like, how to acquire, encode and access it. The issue of representations

applies to both input level information and the internal knowledge of a reasoning system.

We refer to some of the relevant debates in the forthcoming sections.

2.4.1. Early Works: “Neats vs Scruffies”1

An early trend emerged as the family of symbolic and logical representations, such as propo-

sitional and 1st-order logic (McCarthy, 1963). This approach has deep roots in philosophy

and mathematical logic, where the theories have evolved since Aristotle’s time. Logic, pro-

vided a general purpose, clean and uniform language, both in terms of representations and

reasoning.

1Terms originally made by Roger Schank to characterize two different camps: the first group that repre-
sented commonsense knowledge in the form of large amorphous semantic networks, as opposed to another
from the camp of whose work was based on logic and formal extensions of logic.

14

Figure 7: Example frames used in this work. Generic basic science frames (left), used in
Chapter 3; event frames with values filled with the given sentence (right), used in Chapter 4.

The other closely-related school of thought evolved from linguistics and psychology. This

trend was less concerned with mathematical rigor, but more concerned with richer psy-

chological and linguistic motivations. For example, semantic networks (Quillan, 1966), a

network of concepts and links, was based on the idea that memory consists of associa-

tions between mental entities. In Chapter 8 we study a formalism for reasoning with such

graph-like representations. Scripts and plans are representational tools to model frequently

encountered activities; e.g., going to a restaurant (Schank and Abelson, 1975; Lehnert,

1977). Minsky and Fillmore, separately and in parallel, advocated frame-based representa-

tions (Minsky, 1974; Fillmore, 1977). The following decades, these approaches have evolved

into fine-grained representations and hybrid systems for specific problems. One of the first

NLU programs was the STUDENT program of Bobrow (1964), written in LISP (McCarthy

and Levin, 1965), which could read and solve high school algebra problems expressed in nat-

ural language.

Intuitively, a frame induces a grouping of concepts and creates abstract hierarchies among

them. For example, “Monday”, “Tuesday”, ... are distinct concepts, but all members of

the same conceptual frame. A frame consists of a group of slots and fillers to define a

stereotypical object or activity. A slot can contain values such as rules, facts, images, video,

procedures or even another frame (Fikes and Kehler, 1985). Frames can be organized

hierarchically, where the default values can be inherited the value directly from parent

frames. This is part of our underlying representation in Chapter 3, where the reasoning

is done over tables of information (an example in Figure 7, left). Decades later after

15

its proposal, the frame-based approach resulted in resources like FrameNet (Baker et al.,

1998), or tasks like Semantic Role Labeling (Gildea and Jurafsky, 2002; Palmer et al., 2005;

Punyakanok et al., 2004). This forms the basis for some of the key representations we use

in Chapter 4 (see Figure 7, right).

2.4.2. Connectionism

There is another important trend inspired by the apparent brain function emergent from

interconnected networks of neural units (Rosenblatt, 1958). It lost many of its fans after

Minsky and Papert (1969) showed representational limitations of shallow networks in ap-

proximating few functions. However, a series of events reinvigorated this thread: Notably,

Rumelhart et al. (1988) found a formalized way to train networks with more than one

layer (nowadays known as Back-Propagation algorithm). This work emphasized the paral-

lel and distributed nature of information processing and gave rise to the “connectionism”

movement. Around the same time (Funahashi, 1989) showed the universal approximation

property for feed-forward networks (any continuous function on the real numbers can be

uniformly approximated by neural networks). Over the past decade, this school has en-

joyed newfound excitement by effectively exploiting parallel processing power of GPUs and

harnessing large datasets to show progress on certain datasets.

2.4.3. Unsupervised representations

Unsupervised representations are one of the areas that have shown tangible impacts across

the board. A pioneering work is Brown et al. (1992) which creates binary term repre-

sentations based on co-occurrence information. Over the years, a wide variety of such

representations emerged; using Wikipedia concepts (Gabrilovich and Markovitch, 2007),

word co-occurrences (Turney and Pantel, 2010), co-occurrence factorization (Mikolov et al.,

2013; Levy and Goldberg, 2014; Pennington et al., 2014; Li et al., 2015), and using context-

sensitive representation (Peters et al., 2018; Devlin et al., 2018). In particular, the latter

two are inspired by the connectionist frameworks in the 80s and have shown to be effective

16

across a wide range of NLU tasks. In this thesis we use unsupervised representations in

various ways: In Chapter 3 and 4 we use such representations for phrasal semantic equiva-

lence within reasoning modules. In Chapter 5 we use as features of our supervised system.

In Chapter 6, 7 we create NLU systems based on such representations in order to create

baselines for the datasets we introduce.

A more recent highlight along this path is the emergence of new unsupervised represen-

tations that have been shown to capture many interesting associations in freely available

data (Peters et al., 2018; Devlin et al., 2018).

2.4.4. Grounding of meanings

A tightly related issue to the abstraction issue is grounding natural language surface infor-

mation to their actual meaning (Harnad, 1990), as discussed in Section 1.2. Practitioners

often address this challenging by enriching their representations; for example by mapping

textual information to Wikipedia entries (Mihalcea and Csomai, 2007). In Chapter 4 we use

the disambiguation of semantic actions and their roles (Punyakanok et al., 2004; Dang and

Palmer, 2005). Chapter 8 of this thesis provides a formalism that incorporates elements of

the symbol-grounding problem and shed theoretical light on existing empirical intuitions.

2.4.5. Common sense and implied meanings

A major portion of our language understanding is only implied in language and not explicitly

mention (examples in Section 1.2). This difficulty of this challenge has historically been

under-estimated. Early AI, during the sixties and onward, experienced a lot of interest

in modeling common sense knowledge. McCarthy, one of the founders of AI, believed

in formal logic as a solution to common sense reasoning (McCarthy and Lifschitz, 1990).

Minsky (1988) estimated that “... commonsense is knowing maybe 30 or 60 million things

about the world and having them represented so that when something happens, you can

make analogies with others”. There have been decade-long efforts to create knowledge bases

of common sense information, such as Cyc (Lenat, 1995) and ConceptNet (Liu and Singh,

17

2004), but none of these have yielded any major impact so far. A roadblock in progress

towards such goals is the lack of natural end-tasks that can provide an objective measure

of progress in the field. To facilitate research in this direction, in Chapter 6 we provide a

new natural language QA dataset that performing well on it requires significant progress

on multiple temporal common sense tasks.

2.4.6. Abstractions of the representations

Abstraction of information is one of the key issues in any effort towards an effective represen-

tation. Having coarser abstraction could result in better generalization. However, too much

abstraction could result in losing potentially-useful details. In general, there is a trade-off

between the expressive level of the representation and the reasoning complexity. We also

deal with this issue in multiple ways: (i) we use unsupervised representations that have

been shown to indirectly capture abstractions (Mahabal et al., 2018). (ii) we use systems

pre-trained with annotations that abstract over raw text; for example, in Chapter 4 we use

semantic roles representations of sentences, which abstract over low-level words and map

the argument into their high-level thematic roles.

For a given problem instance, how does a system internally choose the right level of abstrac-

tion? The human attention structure is extremely good in abstracting concepts (Johnson

and Proctor, 2004; Janzen and Vicente, 1997), although automating this is an open ques-

tion. One way of dealing with such issues is to use multiple levels of abstraction and let

the reasoning algorithm use the right level of abstraction when available (Rasmussen, 1985;

Bisantz and Vicente, 1994). In Chapter 4, we take a similar approach by using a collection

of different abstractions.

18

2.5. Reasoning/Decision-making Paradigms for NLU

2.5.1. Early formalisms of reasoning

The idea of automated reasoning dates back before AI itself and can be traced to ancient

Greece. Aristotle’s syllogisms paved the way for deductive reasoning formalism. It continued

its way with philosophers like Al-Kindi, Al-Farabi, and Avicenna (Davidson, 1992), before

culminating as the modern mathematics and logic.

Within AI research, McCarthy (1963) pioneered the use of logic for automating reasoning

for language problems, which over time branched into other classes of reasoning (Holland

et al., 1989; Evans et al., 1993).

A closely related reasoning to what we study here is abduction (Peirce, 1883; Hobbs et al.,

1993), which is the process of finding the best minimal explanation from a set of observations

(see Figure 8). Unlike in deductive reasoning, in abductive reasoning the premises do not

guarantee the conclusion. Informally speaking, abduction is inferring cause from effect

(reverse direction from deductive reasoning). The two reasoning systems in Chapter 3 and

4 can be interpreted as abductive systems.

We define the notation to make the exposition slightly more formal. Let ` denote entailment

and ⊥ denote contradiction. Formally, (logical) abductive reasoning is defined as follows:

Given background knowledge B and observations O, find a hypothesis H, such that

B ∪ H 0 ⊥ (consistency with the given background) and B ∪ H ` O (explaining the

observations).

In practical settings, this purely logical definition has many limitations: (a) There could be

multiple hypotheses H that explain a particular set of observations given the background

knowledge. The best hypothesis has to be selected based on some measure of goodness

and the simplicity of the hypothesis (Occam’s Razor). (b) Real life has many uncertain

19

Figure 8: Brief definitions for popular reasoning classes and their examples.

elements, i.e. there are degrees of certainties (rather than binary assignments) associated

with observations and background knowledge. Hence the decision of consistency and ex-

plainability has to be done with respect to this fuzzy measure. (c) The inference problem

in its general form is computationally intractable; often assumptions have to be made to

have tractable inference (e.g., restricting the representation to Horn clauses).

2.5.2. Incorporating “uncertainty” in reasoning

Over the years, a wide variety of soft alternatives have emerged for reasoning algorithms,

by incorporating uncertainty into symbolic models. This resulted in theories like fuzzy-

logic (Zadeh, 1975), or probabilistic Bayesian networks (Pearl, 1988; Dechter, 2013), soft

abduction (Hobbs et al., 1988; Selman and Levesque, 1990; Poole, 1990). In Bayesian net-

works, the (uncertain) background knowledge is encoded in a graphical structure and upon

receiving observations, the probabilistic explanation is derived by maximizing a posterior

probability distribution. These models are essentially based on propositional logic and can-

not handle quantifiers (Kate and Mooney, 2009). Weighted abduction combines the weights

of relevance/plausibility with first-order logic rules (Hobbs et al., 1988). However, unlike

probability theoretic frameworks, their weighting scheme does not have any solid theoret-

20

ical basis and does not lend itself to a complete probabilistic analysis. Our framework in

Chapter 3,4 is also a way to perform abductive reasoning under uncertainty. Our proposal

is different from the previous models in a few ways: (i) Unlike Bayesian network our frame-

work is not limited to propositional rules; in fact, there are first-order relations used in the

design of TableILP (more details in Chapter 3). (ii) unlike many other previous works,

we do not make representational assumptions to make the inference simpler (like limiting

to Horn clauses, or certain independence assumptions). In fact, the inference might be

NP-hard, but with the existence of industrial ILP solvers this is not an issue in practice.

Our work is inspired by a prior line of work on inference on structured representations to

reason on (and with) language; see Chang et al. (2008, 2010); ?, 2012), among others.

2.5.3. Macro-reading vs micro-reading

With increased availability of information (especially through the internet) macro-reading

systems have emerged with the aim of leveraging a large variety of resources and exploiting

the redundancy of information (Mitchell et al., 2009). Even if a system does not understand

one text, there might be many other texts that convey a similar meaning. Such systems de-

rive significant leverage from relatively shallow statistical methods with surprisingly strong

performance (Clark et al., 2016). Today’s Internet search engines, for instance, can success-

fully retrieve factoid style answers to many natural language queries by efficiently searching

the Web. Information Retrieval (IR) systems work under the assumption that answers to

many questions of interest are often explicitly stated somewhere (Kwok et al., 2001), and

all one needs, in principle, is access to a sufficiently large corpus. Similarly, statistical cor-

relation based methods, such as those using Pointwise Mutual Information or PMI (Church

and Hanks, 1989), work under the assumption that many questions can be answered by

looking for words that tend to co-occur with the question words in a large corpus. While

both of these approaches help identify correct answers, they are not suitable for questions

requiring language understanding and reasoning, such as chaining together multiple facts in

order to arrive at a conclusion. On the other hand, micro-reading aims at understanding

21

a piece of evidence given to the system, without reliance of redundancy. The focus of this

thesis is micro-reading as it directly addresses NLU; that being said, whenever possible, we

use macro-reading systems as our baselines.

2.5.4. Reasoning on “structured” representations

With increasing knowledge resources and diversity of the available knowledge representa-

tions, numerous QA systems are developed to operate over large-scale explicit knowledge

representations. These approaches perform reasoning over structured (discrete) abstrac-

tions. For instance, Chang et al. (2010) address RTE (and other tasks) via inference on

structured representations), Banarescu et al. (2013) use AMR annotators (Wang et al.,

2015), Unger et al. (2012) use RDF knowledge (Yang et al., 2017), Zettlemoyer and Collins

(2005); Clarke et al. (2010); Goldwasser and Roth (2014); Krishnamurthy et al. (2016) use

semantic parsers to answer a given question, and Do et al. (2011, 2012) employ constrained

inference for temporal/causal reasoning. The framework we study in Chapter 3 is a reason-

ing algorithm functioning over tabular knowledge (frames) of basic science concepts.

An important limitation of IR-based systems is their inability to connect distant pieces of

information together. However, many other realistic domains (such as science questions or

biology articles) have answers that are not explicitly stated in text, and instead require com-

bining facts together. Khot et al. (2017) creates an inference system capable of combining

Open IE tuples (Banko et al., 2007). Jansen et al. (2017) propose reasoning by aggregating

sentential information from multiple knowledge bases. Socher et al. (2013); McCallum et al.

(2017) propose frameworks for chaining relations to infer new (unseen) relations. Our work

in Chapter 3 creates chaining of information over multiple tables. The reasoning framework

in Chapter 4 investigates reasoning over multiple peaces of raw text. The QA dataset in

Chapter 5 we propose also encourages the use of information from different segments of the

story. Chapter 8 proposes a formalism to study limits of chaining long-range information.

22

2.5.5. Models utilizing massive annotated data

A highlight over the past two decades is the advent of statistical techniques into NLP (Hirschman

et al., 1999). Since then, a wide variety of supervised-learning algorithms have shown strong

performances on different datasets.

The increasingly large amount of data available for recent benchmarks make it possible to

train neural models (see “Connectionism”; Section 2.4.2) (Seo et al., 2016; Parikh et al.,

2016; Wang et al., 2018; Liu et al., 2018; Hu et al., 2018). Moreover, an additional tech-

nical shift was using distributional representation of words (word vectors or embeddings)

extracted from large-scale text corpora (Mikolov et al., 2013; Pennington et al., 2014) (see

Section 2.4.3).

Despite all the decade-long excited about supervised-learning algorithms, the main progress,

especially in the past few years, has mostly been due to the re-emergence of unsupervised

representations (Peters et al., 2018; Devlin et al., 2018).2

2.6. Technical background and notation

In this section, we provide the relevant mathematical background used throughout this

thesis. We cover three main areas used widely across this document.

2.6.1. Complexity theory

We follow the standard notation for asymptotic comparison of functions: O(.), o(.),Θ(.),Ω(.),

and ω(.) (Cormen et al., 2009).

We use P and NP to refer to the basic complexity classes. We briefly review these classes:

P consists of all problems that can be solved efficiently (in polynomial time). NP (non-

deterministic polynomial time) includes all problems that given a solution, one can efficiently

verify the solution. When a problem is called intractable, it refers to its complexity class

2Unsupervised in the sense that they are constructed with freely available data, as opposed to task-specific
annotated data.

23

being at least NP -hard.

2.6.2. Probability Theory

X ∼ f(θ) denotes a random variable X distributed according to probability distribution

f(θ), paramterized by θ. The mean and variance of X are denoted as EX∼f(θ)[X] and V[X],

resp. Bern(p) and Bin(n, p) denote the Bernoulli and Binomial distributions, resp.

2.6.3. Graph theory

We denote an undirected graph with G(V,E) where V and E are the sets of nodes and

edges, resp. We use the notations VG and EG to refer to the nodes and edges of a graph G,

respectively.

A subgraph of a graph G is another graph formed from a subset of the vertices and edges of

G. The vertex subset must include all endpoints of the edge subset, but may also include

additional vertices.

A cut C = (S, T) in G is a partition of the nodes V into subsets S and T . The size of the

cut C is the number of edges in E with one endpoint in S and the other in T .

2.6.4. Optimization Theory

As it is widely known an ILP can be written as the following:

maximize wTx (2.1)

subject to Ax ≤ b, (2.2)

and x ∈ Zn. (2.3)

We first introduce the basic variables, and define the full definition of the ILP program:

define the weights in the objective function (w in Equation 2.1), and the constraints (A

and b in Equation 2.2).

24

This formulation is incredibly powerful and has been used for many problems. In the

context of NLP problems, ILP based discrete optimization was introduced by Roth and Yih

(2004) and has been successfully used (Chang et al., 2010; Berant et al., 2010; Srikumar

and Roth, 2011; Goldwasser and Roth, 2014). In Chapter 3 and 4 also, we formalize our

desired behavior as an optimization problem.

This optimization problem with integrality constraint and its general form, is an NP-hard

problem. That being said, the industrial solvers (which use cutting-plane and other heuris-

tics) are quite fast across a wide variety of problems.

25

Part I

Reasoning-Driven System Design

26

CHAPTER 3 : QA as Subgraph Optimization on Tabular Knowledge

“The techniques of artificial intelligence are to the mind what
bureaucracy is to human social interaction.”

— Terry Winograd, Thinking Machines: Can there be? 1991

3.1. Overview

Consider a question from the NY Regents 4th Grade Science Test:1

In New York State, the longest period of daylight occurs during which month?

(A) June (B) March (C) December (D) September

We would like a QA system that, even if the answer is not explicitly stated in a document,

can combine basic scientific and geographic facts to answer the question, e.g., New York

is in the north hemisphere; the longest day occurs during the summer solstice; and the

summer solstice in the north hemisphere occurs in June (hence the answer is June). Figure 9

illustrates how our system approaches this, with the highlighted support graph representing

its line of reasoning.

Q: In New York State, the longest period of daylight occurs during which month?

Subdivision Country

New York State USA

California USA

Rio de Janeiro Brazil

… …

Orbital Event Day Duration Night Duration

Summer Solstice Long Short

Winter Solstice Short Long

…. …. …

(A) December

(B) June

(C) March

(D) September

Country Hemisphere

United States Northern

Canada Northern

Brazil Southern

….. …

Hemisphere Orbital Event Month

North Summer Solstice June

North Winter Solstice December

South Summer Solstice December

South Winter Solstice June

Semi-structured Knowledge

Figure 9: TableILP searches for the best support graph (chains of rea-
soning) connecting the question to an answer, in this case June. Con-
straints on the graph define what constitutes valid support and how to
score it (Section 3.3.3).

Further, we would like

the system to be ro-

bust under simple pertur-

bations, such as chang-

ing New York to New

Zealand (in the southern

hemisphere) or changing

an incorrect answer option

to an irrelevant word such

as “last” that happens to

have high co-occurrence

1This chapter is based on the following publication: Khashabi et al. (2016).

27

with the question text.

To this end, we propose a structured reasoning system, called TableILP, that operates

over a semi-structured knowledge base derived from text and answers questions by chain-

ing multiple pieces of information and combining parallel evidence.2 The knowledge base

consists of tables, each of which is a collection of instances of an n-ary relation defined over

natural language phrases. E.g., as illustrated in Figure 9, a simple table with schema (coun-

try, hemisphere) might contain the instance (United States, Northern) while a ternary table

with schema (hemisphere, orbital event, month) might contain (North, Summer Solstice,

June). TableILP treats lexical constituents of the question Q, as well as cells of potentially

relevant tables T , as nodes in a large graph GQ,T , and attempts to find a subgraph G of

GQ,T that “best” supports an answer option. The notion of best support is captured via

a number of structural and semantic constraints and preferences, which are conveniently

expressed in the Integer Linear Programming (ILP) formalism. We then use an off-the-shelf

ILP optimization engine called SCIP (Achterberg, 2009) to determine the best supported

answer for Q.

Following a recently proposed AI challenge (Clark, 2015), we evaluate TableILP on un-

seen elementary-school science questions from standardized tests. Specifically, we consider

a challenge set (Clark et al., 2016) consisting of all non-diagram multiple choice questions

from 6 years of NY Regents 4th grade science exams. In contrast to a state-of-the-art

structured inference method (Khot et al., 2015) for this task, which used Markov Logic

Networks (MLNs) (Richardson and Domingos, 2006), TableILP achieves a significantly

(+14% absolute) higher test score. This suggests that a combination of a rich and fine-

grained constraint language, namely ILP, even with a publicly available solver is more

effective in practice than various MLN formulations of the task. Further, while the scalabil-

ity of the MLN formulations was limited to very few (typically one or two) selected science

2A preliminary version of our ILP model was used in the ensemble solver of Clark et al. (2016). We
build upon this earlier ILP formulation, providing further details and incorporating additional syntactic and
semantic constraints that improve the score by 17.7%.

28

rules at a time, our approach easily scales to hundreds of relevant scientific facts. It also

complements the kind of questions amenable to IR and PMI techniques, as is evidenced by

the fact that a combination (trained using simple Logistic Regression (Clark et al., 2016))

of TableILP with IR and PMI results in a significant (+10% absolute) boost in the score

compared to IR alone.

Our ablation study suggests that combining facts from multiple tables or multiple rows

within a table plays an important role in TableILP’s performance. We also show that

TableILP benefits from the table structure, by comparing it with an IR system using

the same knowledge (the table rows) but expressed as simple sentences; TableILP scores

significantly (+10%) higher. Finally, we demonstrate that our approach is robust to a

simple perturbation of incorrect answer options: while the simple perturbation results in a

relative drop of 20% and 33% in the performance of IR and PMI methods, respectively, it

affects TableILP’s performance by only 12%.

3.2. Related Work

In this section, we provide additional related work, and augment our review related work

provided in Section 2.1.

Clark et al. (2016) proposed an ensemble approach for the science QA task, demonstrating

the effectiveness of a combination of information retrieval, statistical association, rule-based

reasoning, and an ILP solver operating on semi-structured knowledge. Our ILP system

extends their model with additional constraints and preferences (e.g., semantic relation

matching), substantially improving QA performance.

A number of systems have been developed for answering factoid questions with short answers

(e.g., “What is the capital of France?”) using document collections or databases (e.g.,

Freebase (Bollacker et al., 2008), NELL (Carlson et al., 2010)), for example (Brill et al.,

2002; Fader et al., 2014; Ferrucci et al., 2010; Ko et al., 2007; t. Yih et al., 2014; Yao and

Durme, 2014; Zou et al., 2014). However, many science questions have answers that are not

29

explicitly stated in text, and instead require combining information together. Conversely,

while there are AI systems for formal scientific reasoning (e.g., (Gunning et al., 2010; Novak,

1977)), they require questions to be posed in logic or restricted English. Our goal here is a

system that operates between these two extremes, able to combine information while still

operating with natural language.

There is a relatively rich literature in the databases community, on executing different

commands on the tablular content (e.g., searching, joining, etc) via a user commands issued

by a semi-novice user Talukdar et al. (2008, 2010). A major distinguishing perspective is

that in our problem the queries are generated completely independent of the the table

content. However, in a database system application, a user is at-least partially informed of

the common keywords, could observe the outputs of the queries and adjust the commands

accordingly.

3.3. QA as Subgraph Optimization

We begin with our knowledge representation formalism, followed by our treatment of QA

as an optimal subgraph selection problem over such knowledge, and then briefly describe

our ILP model for subgraph selection.

3.3.1. Semi-Structured Knowledge as Tables

We use semi-structured knowledge represented in the form of n-ary predicates over natural

language text (Clark et al., 2016). Formally, a k-column table in the knowledge base is a

predicate r(x1, x2, . . . , xk) over strings, where each string is a (typically short) natural lan-

guage phrase. The column headers capture the table schema, akin to a relational database.

Each row in the table corresponds to an instance of this predicate. For example, a sim-

ple country-hemisphere table represents the binary predicate rctry-hems(c, h) with instances

such as (Australia, Southern) and (Canada, Northern). Since table content is specified in

natural language, the same entity is often represented differently in different tables, posing

an additional inference challenge.

30

thAlthough techniques for constructing this knowledge base are outside the scope of this

paper, we briefly mention them. Tables were constructed using a mixture of manual and

semi-automatic techniques. First, the table schemas were manually defined based on the

syllabus, study guides, and training questions. Tables were then populated both manually

and semi-automatically using IKE (Dalvi et al., 2016), a table-building tool that performs

interactive, bootstrapped relation extraction over a corpus of science text. In addition, to

augment these tables with the broad knowledge present in study guides that doesn’t always

fit the manually defined table schemas, we ran an Open IE (Banko et al., 2007) pattern-based

subject-verb-object (SVO) extractor from Clark et al. (2014) over several science texts to

populate three-column Open IE tables. Methods for further automating table construction

are under development.

3.3.2. QA as a Search for Desirable Support Graphs

We treat question answering as the task of pairing the question with an answer such that

this pair has the best support in the knowledge base, measured in terms of the strength of

a “support graph” defined as follows.

Given a multiple choice question Q and tables T , we can define a labeled undirected graph

GQ,T over nodes V and edges E as follows. We first split Q into lexical constituents (e.g.,

non-stopword tokens, or chunks) q = {q`} and answer options a = {am}. For each table Ti,

we consider its cells t = {tijk} as well as column headers h = {hik}. The nodes of GQ,T are

then V = q ∪ a ∪ t ∪ h. For presentation purposes, we will equate a graph node with the

lexical entity it represents (such as a table cell or a question constituent). The undirected

edges of GQ,T are E = ((q ∪ a) × (t ∪ h)) ∪ (t × t) ∪ (h × h) excluding edges both whose

endpoints are within a single table.

Informally, an edge denotes (soft) equality between a question or answer node and a table

node, or between two table nodes. To account for lexical variability (e.g., that tool and

instrument are essentially equivalent) and generalization (e.g., that a dog is an animal), we

31

replace string equality with a phrase-level entailment or similarity function w : E → [0, 1]

that labels each edge e ∈ E with an associated score w(e). We use entailment scores

(directional) from q to t∪h and from t∪h to a, and similarity scores (symmetric) between

two nodes in t.3 In the special case of column headers across two tables, the score is

(manually) set to either 0 or 1, indicating whether this corresponds to a meaningful join.

Intuitively, we would like the support graph for an answer option to be connected, and to

include nodes from the question, the answer option, and at least one table. Since each table

row represents a coherent piece of information but cells within a row do not have any edges

in GQ,T (the same holds also for cells and the corresponding column headers), we use the

notion of an augmented subgraph to capture the underlying table structure. Let G = (V,E)

be a subgraph of GQ,T . The augmented subgraph G+ is formed by adding to G edges (v1, v2)

such that v1 and v2 are in V and they correspond to either the same row (possibly the

header row) of a table in T or to a cell and the corresponding column header.

Definition 1. A support graph G = G(Q,T, am) for a question Q, tables T , and an answer

option am is a subgraph (V,E) of GQ,T with the following basic properties:

1. V ∩ a = {am}, V ∩ q 6= φ, V ∩ t 6= φ;

2. w(e) > 0 for all e ∈ E;

3. if e ∈ E∩ (t× t) then there exists a corresponding e′ ∈ E∩ (h×h) involving the same

columns; and

4. the augmented subgraph G+ is connected.

A support graph thus connects the question constituents to a unique answer option through

table cells and (optionally) table headers corresponding to the aligned cells. A given question

and tables give rise to a large number of possible support graphs, and the role of the inference

3In our evaluations, w for entailment is a simple WordNet-based (Miller, 1995) function that computes
the best word-to-word alignment between phrases, scores these alignments using WordNet’s hypernym and
synonym relations normalized using relevant word-sense frequency, and returns the weighted sum of the
scores. w for similarity is the maximum of the entailment score in both directions. Alternative definitions
for these functions may also be used.

32

process will be to choose the “best” one under a notion of desirable support graphs developed

next. We do this through a number of additional structural and semantic properties; the

more properties the support graph satisfies, the more desirable it is.

3.3.3. ILP Formulation

We model the above support graph search for QA as an ILP optimization problem, i.e., as

maximizing a linear objective function over a finite set of variables, subject to a set of linear

inequality constraints (see Section 2.6.4 for a premier on ILP formulation). A summary of

the model is given below.4

We note that the ILP objective and constraints aren’t tied to the particular domain of

evaluation; they represent general properties that capture what constitutes a well supported

answer for a given question.

Element Description

Ti table i

hik header of the k-th column of i-th table

tijk cell in row j and column k of i-th table

rij row j of i-th table

`ik column k of i-th table

q` `-th lexical constituent of the question Q

am m-th answer option

Table 3: Notation for the ILP formulation.

Table 3 summarizes the notation

for various elements of the prob-

lem, such as tijk for cell (j, k) of ta-

ble i. All core variables in the ILP

model are binary, i.e., have do-

main {0, 1}. For each element, the

model has a unary variable captur-

ing whether this element is part of

the support graph G, i.e., it is “active”. For instance, row rij is active if at least one cell in

row j of table i is in G. The model also has pairwise “alignment” variables, capturing edges

of GQ,T . The alignment variable for an edge e in GQ,T is associated with the corresponding

weight w(e), and captures whether e is included in G. To improve efficiency, we create a

pairwise variable for e only if w(e) is larger than a certain threshold. These unary and

pairwise variables are then used to define various types of constraints and preferences, as

discussed next.

4Details of the ILP model may be found in Appendix A.1.1.

33

To make the definitions clear, we introduce the variables used in our optimization, which

we will use later to define constraints explicitly. We define variables over each element by

overloading x (.) or y (., .) notation to refer to a binary variable on a single elements or

their pair, respectively. Table 4 contains the complete list of the variables, all of which

are binary, i.e. they are defined on {0, 1} domain. The unary variables represent pres-

ence of a specific element in the support graph as a node. For example x (Ti) = 1 if

and only if the table Ti is active. Similarly basic variables are defined between pairs of

elements; e.g., y (tijk, q`) is a binary variable that takes value 1 if and only if the cor-

responding edge is present in the support graph, which can alternatively be referred to

as an alignment between cell (j, k) of table i and the `-th constituent of the question.

Basic Pairwise Activity Variables

y (tijk, tij′k′) cell to cell

y (tijk, q`) cell to question constituent

y (hik, q`)
header to question

constituent

y (tijk, am) cell to answer option

y (hik, am) header to answer option

y (`ik, am) column to answer option

y (Ti, am) table to answer option

y (`ik, `ik′) column to column relation

High-level Unary Variables

x (Ti) active table

x (rij) active row

x (`ik) active column

x (hik) active column header

x (q`) active question constituent

x (am) active answer option

Table 4: Variables used for defining
the optimization problem for TableILP
solver. All variables have domain {0, 1}.

As previously mentioned, in practice we do

not create all possible pairwise variables. In-

stead we choose the pairs which have the

alignment score w(e) exceeding a threshold.

For example we create the pairwise variables

y
(
tijk, ti′j′k′

)
only if the score w(tijk, ti′j′k′) ≥

MinCellCellAlignment. 5

The objective function is a weighted linear sum

of all the variables we instantiate for a given

problem. 6 There is a small set of auxiliary

variables defined for linearizing complicated con-

straints, which will later introduce among con-

straints.

Constraints are a significant part of our model,

5An exhaustive list of the minimum alignment thresholds for creating pairwise variables is in Table 28 in
the appendix.

6The complete list of weights for the pairwise and unary variables are included in Table 27 in the appendix.

34

which impose our desired behavior on the sup-

port graph. However due to lack of space we only show a representative subset here. 7

Some constraints relate variables to each other. The unary variables are defined through

constraints that relate them to the pairwise basic variables. For example, for active row

variable x (Ti), we ensure that it is active if and only if any cell in row j is active:

x (rij) ≥ y (tijk, ∗) ,∀(tijk, ∗) ∈ Rij ,∀i, j, k,

where Rij is collection of pairwise variables with one end in row j of table i.

In what follows we outline the some of the important behaviors we expect from our model

which come out with different combination of the active variables.

Basic Lookup

Consider the following question:

Which characteristic helps a fox find food? (A) sense of smell (B) thick fur (C) long

tail (D) pointed teeth

In order to answer such lookup-style questions, we generally seek a row with the high-

est aggregate alignment to question constituents. We achieve this by incorporating the

question-table alignment variables with the alignment scores, w(e), as coefficients and the

active question constituents variable with a constant coefficient in the objective function.

Since any additional question-table edge with a positive entailment score (even to irrelevant

tables) in the support graph would result in an increase in the score, we disallow tables with

alignments only to the question (or only to a choice) and add a small penalty for every table

used in order to reduce noise in the support graph. We also limit the maximum number of

alignments of a question constituent and table cells to prevent one constituent or cell from

7The complete list of the constraints is explained in Table 31 in the appendix.

35

having a large influence on the objective function and thereby the solution:

∑
(∗,q`)∈Ql

y (∗, q`) ≤MaxAlignmentsPerQCons, ∀l

where Ql is the set of all pairwise variables with one end in question constituent `.

Parallel Evidence

For certain questions, evidence needs to be combined from multiple rows of a table. For

example,

Sleet, rain, snow, and hail are forms of (A) erosion (B) evaporation (C) groundwater

(D) precipitation

To answer this question, we need to combine evidence from multiple table entries from

the weather terms table, (term, type), namely (sleet, precipitation), (rain, precipitation),

(snow, precipitation), and (hail, precipitation). To achieve this, we allow multiple active

rows in the support graph. Similar to the basic constraints, we limit the maximum number

of active rows per table and add a penalty for every active row to ensure only relevant rows

are considered for reasoning:

∑
j

x (rij) ≤MaxRowsPerTable, ∀i

To encourage only coherent parallel evidence within a single table, we limit our support

graph to always use the same columns across multiple rows within a table, i.e., every active

row has the active cells corresponding to the same set of columns.

Evidence Chaining

Questions requiring chaining of evidence from multiple tables, such as the example in Fig-

ure 9, are typically the most challenging in this domain. Chaining can be viewed as per-

36

forming a join between two tables. We introduce alignments between cells across columns

in pairs of tables to allow for chaining of evidence. To help minimize potential noise intro-

duced by chaining irrelevant facts, we add a penalty for every inter-table alignment and also

rely on the 0/1 weights of header-to-header edges to ensure only semantically meaningful

table joins are considered.

Semantic Relation Matching

Our constraints so far have only looked at the content of the table cells, or the structure

of the support graph, without explicitly considering the semantics of the table schema.

By using alignments between the question and column headers (i.e., type information), we

exploit the table schema to prefer alignments to columns relevant to the “topic” of the

question. In particular, for questions of the form “which X . . .”, we prefer answers that

directly entail X or are connected to cells that entail X. However, this is not sufficient for

questions such as:

What is one way to change water from a liquid to a solid? (A) decrease the temperature

(B) increase the temperature (C) decrease the mass (D) increase the mass

Even if we select the correct table, say rchange-init-fin(c, i, f) that describes the initial and

final states for a phase change event, both choice (A) and choice (B) would have the exact

same score in the presence of table rows (increase temperature, solid, liquid) and (decrease

temperature, liquid, solid). The table, however, does have the initial vs. final state structure.

To capture this semantic structure, we annotate pairs of columns within certain tables with

the semantic relationship present between them. In this example, we would annotate the

phase change table with the relations: changeFrom(c, i), changeTo(c, f), and fromTo(i, f).

Given such semantic relations for table schemas, we can now impose a preference towards

question-table alignments that respect these relations. We associate each semantic relation

with a set of linguistic patterns describing how it might be expressed in natural language.

TableILP then uses these patterns to spot possible mentions of the relations in the question

37

Q. We then add the soft constraint that for every pair of active columns in a table (with an

annotated semantic relation) aligned to a pair of question constituents, there should be a

valid expression of that relation in Q between those constituents. In our example, we would

match the relation fromTo(liquid, solid) in the table to “liquid to a solid” in the question

via the pattern “X to a Y” associated with fromTo(X,Y), and thereby prefer aligning with

the correct row (decrease temperature, liquid, solid).

3.4. Evaluation

We compare our approach to three existing methods, demonstrating that it outperforms the

best previous structured approach (Khot et al., 2015) and produces a statistically significant

improvement when used in combination with IR-based methods (Clark et al., 2016). For

evaluations, we use a 2-core 2.5 GHz Amazon EC2 linux machine with 16 GB RAM.

Question Set. We use the same question set as Clark et al. (2016), which consists of all

non-diagram multiple-choice questions from 12 years of the NY Regents 4th Grade Science

exams.8 The set is split into 108 development questions and 129 hidden test questions based

on the year they appeared in (6 years each). All numbers reported below are for the hidden

test set, except for question perturbation experiments which relied on the 108 development

questions.

Test scores are reported as percentages. For each question, a solver gets a score of 1 if it

chooses the correct answer and 1/k if it reports a k-way tie that includes the correct answer.

On the 129 test questions, a score difference of 9% (or 7%) is statistically significant at the

95% (or 90%, resp.) confidence interval based on the binomial exact test (Howell, 2012).

Corpora. We work with three knowledge corpora:

1. Web Corpus: This corpus contains 5 × 1010 tokens (280 GB of plain text) extracted

from Web pages. It was collected by Charles Clarke at the University of Waterloo,

8These are the only publicly available state-level science exams.
http://www.nysedregents.org/Grade4/Science/home.html

38

and has been used previously by Turney (2013) and Clark et al. (2016). We use it

here to compute statistical co-occurrence values for the PMI solver.

2. Sentence Corpus (Clark et al., 2016): This includes sentences from the Web corpus

above, as well as around 80,000 sentences from various domain-targeted sources for

elementary science: a Regents study guide, CK12 textbooks (www.ck12.org), and web

sentences with similar content as the course material.

3. Table Corpus (cf. Section 3.3.1): This includes 65 tables totaling around 5,000 rows,

designed based on the development set and study guides, as well as 4 Open IE-

style (Banko et al., 2007) automatically generated tables totaling around 2,600 rows.9

3.4.1. Solvers

TableILP (our approach). Given a question Q, we select the top 7 tables from the Table

Corpus using the the standard TF-IDF score of Q with tables treated as bag-of-words

documents. For each selected table, we choose the 20 rows that overlap with Q the most.

This filtering improves efficiency and reduces noise. We then generate an ILP and solve it

using the open source SCIP engine (Achterberg, 2009), returning the active answer option

am from the optimal solution. To check for ties, we disable am, re-solve the ILP, and

compare the score of the second-best answer, if any, with that of am.

MLN Solver (structured inference baseline). We consider the current state-of-the-art

structured reasoning method developed for this specific task by Khot et al. (2015). We

compare against their best performing system, namely Praline, which uses Markov Logic

Networks (Richardson and Domingos, 2006) to (a) align lexical elements of the question

with probabilistic first-order science rules and (b) to control inference. We use the entire

set of 47,000 science rules from their original work, which were also derived from same

domain-targeted sources as the ones used in our Sentence Corpus.

9Table Corpus and the ILP model are available at allenai.org.

39

IR Solver (information retrieval baseline). We use the IR baseline by Clark et al. (2016),

which selects the answer option that has the best matching sentence in a corpus. Specifically,

for each answer option ai, the IR solver sends q + ai as a query to a search engine (we use

Lucene) on the Sentence Corpus, and returns the search engine’s score for the top retrieved

sentence s, where s must have at least one non-stopword overlap with q, and at least one

with ai. The option with the highest Lucene score is returned as the answer.

PMI Solver (statistical co-occurrence baseline). We use the PMI-based approach by Clark

et al. (2016), which selects the answer option that most frequently co-occurs with the

question words in a corpus. Specifically, it extracts unigrams, bigrams, trigrams, and skip-

bigrams from the question and each answer option. For a pair (x, y) of n-grams, their

pointwise mutual information (PMI) (Church and Hanks, 1989) in the corpus is defined as

log p(x,y)
p(x)p(y) where p(x, y) is the co-occurrence frequency of x and y (within some window) in

the corpus. The solver returns the answer option that has the largest average PMI in the

Web Corpus, calculated over all pairs of question n-grams and answer option n-grams.

3.4.2. Results

We first compare the accuracy of our approach against the previous structured (MLN-

based) reasoning solver. We also compare against IR(tables), an IR solver using table rows

expressed as sentences, thus embodying an unstructured approach operating on the same

knowledge as TableILP.

Solver Test Score (%)

MLN 47.5

IR(tables) 51.2

TableILP 61.5

Table 5: TableILP signifi-
cantly outperforms both the
prior MLN reasoner, and IR
using identical knowledge as
TableILP

As Table 5 shows, among the two structured inference ap-

proaches, TableILP outperforms the MLN baseline by

14%. The preliminary ILP system reported by Clark et al.

(2016) achieves only a score of 43.8% on this question set.

Further, given the same semi-structured knowledge (i.e.,

the Table Corpus), TableILP is substantially (+10%)

better at exploiting the structure than the IR(tables)

40

baseline, which, as mentioned above, uses the same data

expressed as sentences.

Complementary Strengths

Solver Test Score (%)

IR 58.5

PMI 60.7

TableILP 61.5

TableILP + IR 66.1

TableILP + PMI 67.6

TableILP + IR+ PMI 69.0

Table 6: Solver combination results

While their overall score is similar, TableILP

and IR-based methods clearly approach

QA very differently. To assess whether

TableILP adds any new capabilities, we

considered the 50 (out of 129) questions in-

correctly answered by PMI solver (ignoring

tied scores). On these unseen but arguably

more difficult questions, TableILP answered 27 questions correctly, achieving a score of

54% compared to the random chance of 25% for 4-way multiple-choice questions. Results

with IR solver were similar: TableILP scored 24.75 on the 52 questions incorrectly an-

swered by IR (i.e., 47.6% accuracy).

This analysis highlights the complementary strengths of these solvers. Following Clark

et al. (2016), we create an ensemble of TableILP, IR, and PMI solvers, combining their

answer predictions using a simple Logistic Regression model trained on the development

set. This model uses 4 features derived from each solver’s score for each answer option,

and 11 features derived from TableILP’s support graphs. 10 Table 6 shows the results,

with the final combination at 69% representing a significant improvement over individual

solvers.

ILP Solution Properties

Table 7 summarizes various ILP and support graph statistics for TableILP, averaged across

all test questions.

10Details of the 11 features may be found in the Appendix B.

41

The optimization model has around 50 high-level constraints, which result, on average, in

around 4000 inequalities over 1000 variables. Model creation, which includes computing

pairwise entailment scores using WordNet, takes 1.9 seconds on average per question, and

the resulting ILP is solved by the SCIP engine in 2.1 seconds (total for all four options),

using around 1,300 LP iterations for each option.11

Category Quantity Average

ILP complexity

#variables 1043.8

#constraints 4417.8

#LP iterations 1348.9

Knowledge use
#rows 2.3

#tables 1.3

Timing stats
model creation 1.9 sec

solving the ILP 2.1 sec

Table 7: TableILP statistics averaged across
questions

Thus, TableILP takes only 4 seconds

to answer a question using multiple

rows across multiple tables (typically

140 rows in total), as compared to 17

seconds needed by the MLN solver for

reasoning with four rules (one per an-

swer option).

While the final support graph on this

question set relies mostly on a single table to answer the question, it generally combines

information from more than two rows (2.3 on average) for reasoning. This suggests parallel

evidence is more frequently used on this dataset than evidence chaining.

3.4.3. Ablation Study

Solver Test Score (%)

TableILP 61.5

No Multiple Row Inference 51.0

No Relation Matching 55.6

No Open IE Tables 52.3

No Lexical Entailment 50.5

Table 8: Ablation results for TableILP

To quantify the importance of various com-

ponents of our system, we performed sev-

eral ablation experiments, summarized in

Table 8 and described next.

No Multiple Row Inference: We mod-

ify the ILP constraints to limit inference

to a single row (and hence a single table),

11Commercial ILP solvers (e.g., CPLEX, Gurobi) are much faster than the open-source SCIP solver we
used for evaluations.

42

thereby disallowing parallel evidence and evidence chaining (Section 3.3.3). This drops the

performance by 10.5%, highlighting the importance of being able to combine evidence from

multiple rows (which would correspond to multiple sentences in a corpus) from one or more

tables.

No Relation matching: To assess the importance of considering the semantics of the

table, we remove the requirement of matching the semantic relation present between columns

of a table with its lexicalization in the question (Section 3.3.3). The 6% drop indicates

TableILP relies strongly on the table semantics to ensure creating meaningful inferential

chains.

No Open IE tables: To evaluate the impact of relatively unstructured knowledge from

a large corpus, we removed the tables containing Open IE extractions (Section 3.3.2). The

9% drop in the score shows that this knowledge is important and TableILP is able to

exploit it even though it has a very simple triple structure. This opens up the possibility

of extending our approach to triples extracted from larger knowledge bases.

No Lexical Entailment: Finally, we test the effect of changing the alignment metric w

(Section 3.3.2) from WordNet based scores to a simple asymmetric word-overlap measured

as score(T,H) = |T∩H|
|H| . Relying on just word-matching results in an 11% drop, which is

consistent with our knowledge often being defined in terms of generalities.

3.4.4. Question Perturbation

One desirable property of QA systems is robustness to simple variations of a question,

especially when a variation would make the question arguably easier for humans.

To assess this, we consider a simple, automated way to perturb each 4-way multiple-choice

question: (1) query Microsoft’s Bing search engine (www.bing.com) with the question text

and obtain the text snippet of the top 2,000 hits; (2) create a list of strings by chunking and

tokenizing the results; (3) remove stop words and special characters, as well as any words

43

(or their lemma) appearing in the question; (4) sort the remaining strings based on their

frequency; and (5) replace the three incorrect answer options in the question with the most

frequently occurring strings, thereby generating a new question. For instance:

In New York State, the longest period of daylight occurs during which month?

(A) eastern (B) June (C) history (D) years

Original % Drop with Perturbation

Solver Score (%) absolute relative

IR 70.7 13.8 19.5

PMI 73.6 24.4 33.2

TableILP 85.0 10.5 12.3

Table 9: Drop in solver scores (on the development set,
rather than the hidden test set) when questions are per-
turbed

As in this example, the per-

turbations (italicized) are of-

ten not even of the cor-

rect “type”, typically making

them much easier for humans.

They, however, still remain

difficult for solvers.

For each of the 108 development questions, we generate 10 new perturbed questions, using

the 30 most frequently occurring words in step (5) above. While this approach can introduce

new answer options that should be considered correct as well, only 3% of the questions in a

random sample exhibited this behavior. Table 9 shows the performance of various solvers on

the resulting 1,080 perturbed questions. As one might expect, the PMI approach suffers the

most at a 33% relative drop. TableILP’s score drops as well (since answer type matching

isn’t perfect), but only by 12%, attesting to its higher resilience to simple question variation.

3.5. Summary and Discussion

This chapter proposed a reasoning system for question answering on elementary-school sci-

ence exams, using a semi-structured knowledge base. We formulate QA as an Integer Linear

Program (ILP), that answers natural language questions using a semi-structured knowledge

base derived from text, including questions requiring multi-step inference and a combination

of multiple facts. On a dataset of real, unseen science questions, our system significantly

outperforms (+14%) the best previous attempt at structured reasoning for this task, which

44

used Markov Logic Networks (MLNs). When combined with unstructured inference meth-

ods, the ILP system significantly boosts overall performance (+10%). Finally, we show

our approach is substantially more robust to a simple answer perturbation compared to

statistical correlation methods.

There are a few factors that limit the ideas discussed in this chapter. In particular, the

knowledge consumed by this system are in the form of curated tables; constructing such

knowledge is not always easy. In addition, not everything might be representable in that

form. Another limitation stems from the nature of multi-step reasoning: larger number of

reasoning steps could result in more brittle decisions. We study this issue in Chapter 8.

45

CHAPTER 4 : QA as Subgraph Optimization over Semantic Abstractions

“It linked all the perplexed meanings
Into one perfect peace.”

— Procter and Sullivan, The Lost Chord, 1877

4.1. Overview

In this chapter, we consider the multiple-choice setting where Q is a question, A is a set

of answer candidates, and the knowledge required for answering Q is available in the form

of raw text P .1 A major difference here with the previous chapter is that, the knowledge

given a system is raw-text, instead of of being represented in tabular format.

We demonstrate that we can use existing NLP modules, such as semantic role labeling (SRL)

systems with respect to multiple predicate types (verbs, prepositions, nominals, etc.), to

derive multiple semantic views of the text and perform reasoning over these views to answer

a variety of questions.

As an example, consider the following snippet of sports news text and an associated question:

P : Teams are under pressure after PSG purchased Neymar this season. Chelsea purchased Morata.

The Spaniard looked like he was set for a move to Old Trafford for the majority of the summer only

for Manchester United to sign Romelu Lukaku instead, paving the way for Morata to finally move to

Chelsea for an initial £56m.

Q: Who did Chelsea purchase this season?

A: {XAlvaro Morata, Neymar, Romelu Lukaku }

Given the bold-faced text P ′ in P , simple word-matching suffices to correctly answer Q.

However, P ′ could have stated the same information in many different ways. As paraphrases

become more complex, they begin to involve more linguistic constructs such as coreference,

punctuation, prepositions, and nominals. This makes understanding the text, and thus the

QA task, more challenging.

1This chapter is based on the following publication: Khashabi et al. (2018b).

46

SpanLabel(Chunk)

PredArg(Verb-SRL)
Who

A1.thing purchased

SpanLabel(Chunk)

Alvaro MorataNeymar
SpanLabel(Chunk)

Romelu Lukaku

purchase

A0.purchaser

Answer: Alvaro Morata

Knowledge: … Morata, the recent acquisition by Chelsea,
will start for the team tomorrow…

Question: Who did Chelsea purchase this season?

Chelsea

Answer: Neymar Answer: Romelu Lukaku

PredArg(Comma-SRL)

Morata the recent acqisition,

left.substitute right.substitute

PredArg(Prep-SRL)

chelseathe recent acquisition by

objectgovernor

Figure 10: Depiction of SemanticILP reason-
ing for the example paragraph given in the text.
Semantic abstractions of the question, answers,
knowledge snippet are shown in different col-
ored boxes (blue, green, and yellow, resp.). Red
nodes and edges are the elements that are aligned
(used) for supporting the correct answer. There
are many other unaligned (unused) annotations
associated with each piece of text that are omit-
ted for clarity.

For instead, P ′ could instead say Morata

is the recent acquisition by Chelsea.

This simple looking transformation can

be surprisingly confusing for highly suc-

cessful systems such as BiDAF (Seo

et al., 2016), which produces the par-

tially correct phrase “Neymar this sea-

son. Morata”. On the other hand, one

can still answer the question confidently

by abstracting relevant parts of Q and

P , and connecting them appropriately.

Specifically, a verb SRL frame for Q

would indicate that we seek the object of

the verb purchase, a nominal SRL frame

for P ′ would capture that the acquisition

was of Morata and was done by Chelsea,

and textual similarity would align pur-

chase with acquisition.

Similarly, suppose P ′ instead said

Morata, the recent acquisition by Chelsea, will start for the team tomorrow. BiDAF now

incorrectly chooses Neymar as the answer, presumably due to its proximity to the words

purchased and this season. However, with the right abstractions, one could still arrive at

the correct answer as depicted in Figure 10 for our proposed system, SemanticILP. This

reasoning uses comma SRL to realize that the Morata is referring to the acquisition, and a

preposition SRL frame to capture that the acquisition was done by Chelsea.

One can continue to make P ′ more complex. For example, P ′ could introduce the need

for coreference resolution by phrasing the information as: Chelsea is hoping to have a

47

great start this season by actively hunting for new players in the transfer period. Morata,

the recent acquisition by the team, will start for the team tomorrow. Nevertheless, with

appropriate semantic abstractions of the text, the underlying reasoning remains relatively

simple.

Given sufficiently large QA training data, one could conceivably perform end-to-end training

(e.g., using a deep learning method) to address these linguistic challenges. However, existing

large scale QA datasets such as SQuAD (Rajpurkar et al., 2016) often either have a limited

linguistic richness or do not necessarily need reasoning to arrive at the answer (Jia and

Liang, 2017). Consequently, the resulting models do not transfer easily to other domains.

For instance, the above mentioned BiDAF model trained on the SQuAD dataset performs

substantially worse than a simple IR approach on our datasets. On the other hand, many

of the QA collections in domains that require some form of reasoning, such as the science

questions we use, are small (100s to 1000s of questions). This brings into question the

viability of the aforementioned paradigm that attempts to learn everything from only the

QA training data.

Towards the goal of effective structured reasoning in the presence of data sparsity, we

propose to use a rich set of general-purpose, pre-trained NLP tools to create various semantic

abstractions of the raw text2 in a domain independent fashion, as illustrated for an example

in Figure 10. We represent these semantic abstractions as families of graphs, where the

family (e.g., trees, clusters, labeled predicate-argument graphs, etc.) is chosen to match the

nature of the abstraction (e.g., parse tree, coreference sets, SRL frames, etc., respectively).

The collection of semantic graphs is then augmented with inter- and intra-graph edges

capturing lexical similarity (e.g., word-overlap score or word2vec distance).

This semantic graph representation allows us to formulate QA as the search for an optimal

support graph, a subgraph G of the above augmented graph connecting (the semantic graphs

of) Q and A via P . The reasoning used to answer the question is captured by a variety of

2This applies to all three inputs of the system: Q, A, and P .

48

requirements or constraints that G must satisfy, as well as a number of desired properties,

encapsulating the “correct” reasoning, that makes G preferable over other valid support

graphs. For instance, a simple requirement is that G must be connected and it must touch

both Q and A. Similarly, if G includes a verb from an SRL frame, it is preferable to also

include the corresponding subject. Finally, the resulting constrained optimization problem

is formulated as an Integer Linear Program (ILP), and optimized using an off-the-shelf ILP

solver (see Section 2.6.4 for a review of ILP).

This formalism may be viewed as a generalization of the systems introduced in the previous

chapter: instead of operating over table rows (which are akin to labeled sequence graphs or

predicate-argument graphs), we operate over a much richer class of semantic graphs. It can

also be viewed as a generalization of the recent TupleInf system (Khot et al., 2017), which

converts P into a particular kind of semantic abstraction, namely Open IE tuples (Banko

et al., 2007).

This generalization to multiple semantic abstractions poses two key technical challenges:

(a) unlike clean knowledge-bases (e.g., Dong et al. (2015)) used in many QA systems, ab-

stractions generated from NLP tools (e.g., SRL) are noisy; and (b) even if perfect, using

their output for QA requires delineating what information in Q, A, and P is relevant for

a given question, and what constitutes valid reasoning. The latter is especially challenging

when combining information from diverse abstractions that, even though grounded in the

same raw text, may not perfectly align. We address these challenges via our ILP formula-

tion, by using our linguistic knowledge about the abstractions to design requirements and

preferences for linking these abstractions.

We present a new QA system, SemanticILP,3 based on these ideas, and evaluate it on

multiple-choice questions from two domains involving rich linguistic structure and reasoning:

elementary and middle-school level science exams, and early-college level biology reading

comprehension. Their data sparsity, as we show, limits the performance of state-of-the-art

3Code available at: https://github.com/allenai/semanticilp

49

neural methods such as BiDAF (Seo et al., 2016). SemanticILP, on the other hand, is

able to successfully capitalize on existing general-purpose NLP tools in order to outper-

form existing baselines by 2%-6% on the science exams, leading to a new state of the art.

It also generalizes well, as demonstrated by its strong performance on biology questions

in the ProcessBank dataset (Berant et al., 2014). Notably, while the best existing sys-

tem for the latter relies on domain-specific structural annotation and question processing,

SemanticILP needs neither.

4.1.1. Related Work

We provide a brief review of the related work, in additional to the discussion provided in

Section 2.1.

Our formalism can be seen as an extension of the previous chapter. For instance, in our

formalism, each table used by TableILP can be viewed as a semantic frame and represented

as a predicate-argument graph. The table-chaining rules used there are equivalent to the

reasoning we define when combining two annotation components. Similarly, Open IE tuples

used by (Khot et al., 2017) can also be viewed as a predicate-argument structure.

One key abstraction we use is the predicate-argument structure provided by Semantic Role

Labeling (SRL). Many SRL systems have been designed (Gildea and Jurafsky, 2002; Pun-

yakanok et al., 2008) using linguistic resources such as FrameNet (Baker et al., 1998),

PropBank (Kingsbury and Palmer, 2002), and NomBank (Meyers et al., 2004). These sys-

tems are meant to convey high-level information about predicates (which can be a verb, a

noun, etc.) and related elements in the text. The meaning of each predicate is conveyed

by a frame, the schematic representations of a situation. Phrases with similar semantics

ideally map to the same frame and roles. Our system also uses other NLP modules, such as

for coreference resolution (Lee et al., 2013) and dependency parsing (Chang et al., 2015).

While it appears simple to use SRL systems for QA (Palmer et al., 2005), this has found

limited success (Kaisser and Webber, 2007; Pizzato and Mollá, 2008; Moreda et al., 2011).

50

The challenges earlier approaches faced were due to making use of VerbSRL only, while

QA depends on richer information, not only verb predicates and their arguments, along

with some level of brittleness of all NLP systems. Shen and Lapata (2007) have partly

addressed the latter challenge with an inference framework that formulates the task as a

bipartite matching problem over the assignment of semantic roles, and managed to slightly

improve QA. In this work we address both these challenges and go beyond the limitations

of using a single predicate SRL system; we make use of SRL abstractions that are based

on verbs, nominals, prepositions, and comma predicates, as well as textual similarity. We

then develop an inference framework capable of exploiting combinations of these multiple

SRL (and other) views, thus operating over a more complete semantic representation of the

text.

A key aspect of QA is handling textual variations, on which there has been prior work using

dependency-parse transformations (Punyakanok et al., 2004). These approaches often define

inference rules, which can generate new trees starting from a base tree. Bar-Haim et al.

(2015) and Stern et al. (2012) search over a space of a pre-defined set of text transformations

(e.g., coreference substitutions, passive to active). Our work differs in that we consider a

much wider range of textual variations by combining multiple abstractions, and make use

of a more expressive inference framework.

4.2. Knowledge Abstraction and Representation

We begin with our formalism for abstracting knowledge from text and representing it as a

family of graphs, followed by specific instantiations of these abstractions using off-the-shelf

NLP modules.

4.2.1. Semantic Abstractions

The pivotal ingredient of the abstraction is raw text. This representation is used for

question Q, each answer option Ai and the knowledge snippet P , which potentially con-

tains the answer to the question. The KB for a given raw text, consists of the text it-

51

self, embellished with various SemanticGraphs attached to it, as depicted in Figure 11.

Text

SemanticGraph 1
(Sequence)

SemanticGraph 2
(Tree)

SemanticGraph 3
(Predicate-
Argument)

SemanticGraph 4
(Cluster)

Figure 11: Knowledge Representation
used in our formulation. Raw text is
associated with a collection of Semantic-
Graphs, which convey certain informa-
tion about the text. There are implicit
similarity edges among the nodes of the
connected components of the graphs,
and from nodes to the corresponding
raw-text spans.

Each SemanticGraph is representable from a family

of graphs. In principle there need not be any con-

straints on the permitted graph families; however for

ease of representation we choose the graphs to belong

to one of the 5 following families: Sequence graphs

represent labels for each token in the sentence. Span

family represents labels for spans of the text. Tree,

is a tree representation of text spans. Cluster family,

contain spans of text in different groups. PredArg fam-

ily represents predicates and their arguments; in this

view edges represent the connections between each

single predicates and its arguments. Each SemanticGraph belongs to one of the graph fami-

lies and its content is determined by the semantics of the information it represents and the

text itself.

We define the knowledge more formally here. For a given paragraph, T , its representation

K(T) consists of a set of semantic graphs K(T) = {g1, g2, . . .}. We define v(g) = {ci} and

e(g) = {(ci, cj)} to be the set of nodes and edges of a given graph, respectively.

4.2.2. Semantic Graph Generators

Having introduced a graph-based abstraction for knowledge and categorized it into a family

of graphs, we now delineate the instantiations we used for each family. Many of the pre-

trained extraction tools we use are available in CogCompNLP.4

• Sequence or labels for sequence of tokens; for example Lemma and POS (Roth and Zelenko,

1998).

4Available at: http://github.com/CogComp/cogcomp-nlp

52

• Span which can contains labels for spans of text; we instantiated Shallow-Parse (Punyakanok

and Roth, 2001), Quantities (Roy et al., 2015), NER (Ratinov and Roth, 2009; Redman et al.,

2016)).

• Tree, a tree representation connecting spans of text as nodes; for this we used Dependency

of Chang et al. (2015).

• Cluster, or spans of text clustered in groups. An example is Coreference (Lee et al., 2011).

• PredArg; for this view we used Verb-SRL and Nom-SRL(Punyakanok et al., 2008; Roth and

Lapata, 2016), Prep-SRL (Srikumar and Roth, 2013), Comma-SRL (Arivazhagan et al., 2016).

Given SemanticGraph generators we have the question, answers and paragraph represented

as a collection of graphs. Given the instance graphs, creating augmented graph will be done

implicitly as an optimization problem in the next step.

4.3. QA as Reasoning Over Semantic Graphs

We introduce our treatment of QA as an optimal subgraph selection problem over knowl-

edge. We treat question answering as the task of finding the best support in the knowledge

snippet, for a given question and answer pair, measured in terms of the strength of a “sup-

port graph” defined as follows.

The inputs to the QA system are, a question K(Q), the set of answers {K(Ai)} and given

a knowledge snippet K(P).5 Given such representations, we will form a reasoning problem,

which is formulated as an optimization problem, searching for a “support graph” that

connects the question nodes to a unique answer option through nodes and edges of a snippet.

Define the instance graph I = I(Q, {Ai} , P) as the union of knowledge graphs: I , K(Q)∪

(K(Ai))∪K(P). Intuitively, we would like the support graph to be connected, and to include

nodes from the question, the answer option, and the knowledge. Since the SemanticGraph

5For simplicity, from now on, we drop “knowledge”; e.g., instead of saying “question knowledge”, we say
“question”.

53

is composed of many disjoint sub-graph, we define augmented graph I+ to model a bigger

structure over the instance graphs I. Essentially we augment the instance graph and weight

the new edges. Define a scoring function f : (v1, v2) labels pair of nodes v1 and v2 with an

score which represents their phrase-level entailment or similarity.

Definition 2. An augmented graph I+, for a question Q, answers {Ai} and knowledge P ,

is defined with the following properties:

1. Nodes: v(I+) = v(I(Q, {Ai} , P))

2. Edges:6

e(I+) = e(I) ∪ K(Q)⊗K(P) ∪ [∪iK(P)⊗K(Ai)]

3. Edge weights: for any e ∈ I+:

• If e /∈ I, the edge connects two nodes in different connected components:

∀e = (v1, v2) /∈ I : w(e) = f(v1, v2)

• If e ∈ I, the edge belongs to a connected component, and the edge weight

information about the reliability of the SemanticGraph and semantics of the two

nodes.

∀g ∈ I, ∀e ∈ g : w(e) = f ′(e, g)

Next, we have to define support graphs, the set of graphs that support the reasoning of a

question. For this we will apply some structured constraints on the augmented graph.

Definition 3. A support graph G = G(Q, {Ai} , P) for a question Q, answer-options {Ai}

and paragraph P , is a subgraph (V,E) of I+ with the following properties:

6Define K(T1)⊗K(T2) ,
⋃

(g1,g2)∈
K(T1)×K(T2)

v(g1)×v(g2), where v(g1)×v(g2) = {(v, w); v ∈ v(g1), w ∈ v(g2)} .

54

Sem. Graph Property

PredArg
Use at least (a) a predicate and
its argument, or (b) two
arguments

Cluster Use at least two nodes

Tree
Use two nodes with distance less
than k

SpanLabelView Use at least k nodes

Table 10: Minimum requirements for using each family of graphs. Each graph connected
component (e.g. a PredArg frame, or a Coreference chain) cannot be used unless the above-
mentioned conditioned is satisfied.

1. G is connected.

2. G has intersection with the question, the knowledge, and exactly one answer candi-

date:7

G ∩ K(Q) 6= ∅, G ∩ K(P) 6= ∅, ∃! i : G ∩ K(Ai) 6= ∅

3. G satisfies structural properties per each connected component, as summarized in

Table 10.

Definition 3 characterizes what we call a potential solution to a question. A given question

and paragraph give rise to a large number of possible support graphs. We define the space

of feasible support graphs as G (i.e., all the graphs that satisfy Definition 3, for a given

(Q, {Ai} , P)). To rank various feasible support graphs in such a large space, we define a

scoring function score(G) as:

∑
v∈v(G)

w(v) +
∑

e∈e(G)

w(e)−
∑
c∈C

wc 1{c is violated} (4.1)

for some set of preferences (or soft-constraints) C. When c is violated, denoted by the

indicator function 1{c is violated} in Eq. (4.1), we penalize the objective value by some fixed

amount wc. The second term is supposed to bring more sparsity to the desired solutions,

just like how regularization terms act in machine learning models (Natarajan, 1995). The

7∃! here denotes the uniqueness quantifier, meaning “there exists one and only one”.

55

first term is the sum of weights we defined when constructing the augmented-graph, and is

supposed to give more weight to the models that have better and more reliable alignments

between its nodes. The role of the inference process will be to choose the “best” one under

our notion of desirable support graphs:

G∗ = arg max
G∈G

(4.2)

4.3.1. ILP Formulation

Our QA system, SemanticILP, models the above support graph search of Eq. (4.2) as an

ILP optimization problem, i.e., as maximizing a linear objective function over a finite set

of variables, subject to a set of linear inequality constraints. A summary of the model is

given below.

The augmented graph is not explicitly created; instead, it is implicitly created. The nodes

and edges of the augmented graph are encoded as a set of binary variables. The value of

the binary variables reflects whether a node or an edge is used in the optimal graph G∗.

The properties listed in Table 10 are implemented as weighted linear constraints using the

variables defined for the nodes and edges.

As mentioned, edge weights in the augmented graph come from a function, f , which captures

(soft) phrasal entailment between question and paragraph nodes, or paragraph and answer

nodes, to account for lexical variability. In our evaluations, we use two types of f . (a) Similar

to Khashabi et al. (2016), we use a WordNet-based (Miller, 1995) function to score word-

to-word alignments, and use this as a building block to compute a phrase-level alignment

score as the weighted sum of word-level alignment scores. Word-level scores are computed

using WordNet’s hypernym and synonym relations, and weighted using relevant word-sense

frequency. f for similarity (as opposed to entailment) is taken to be the average of the

entailment scores in both directions. (b) For longer phrasal alignments (e.g., when aligning

phrasal verbs) we use the Paragram system of Wieting et al. (2015).

56

- Number of sentences used is more than k
- Active edges connected to each chunk of the answer option, more than k
- More than k chunks in the active answer-option
- More than k edges to each question constituent
- Number of active question-terms
- If using PredArgof K(Q), at least an argument should be used
- If using PredArg(Verb-SRL) of K(Q), at least one predicate should be used.

Table 11: The set of preferences functions in the objective.

The final optimization is done on Eq. (4.1). The first part of the objective is the sum of

the weights of the sub-graph, which is what an ILP does, since the nodes and edges are

modeled as variables in the ILP. The second part of Eq. (4.1) contains a set of preferences

C, summarized in Table 11, meant to apply soft structural properties that partly dependant

on the knowledge instantiation. These preferences are soft in the sense that they are applied

with a weight to the overall scoring function (as compare to a hard constraint). For each

preference function c there is an associated binary or integer variable with weight wc, and

we create appropriate constraints to simulate the corresponding behavior.

We note that the ILP objective and constraints aren’t tied to the particular domain of

evaluation; they represent general properties that capture what constitutes a well supported

answer for a given question.

4.4. Empirical Evaluation

We evaluate on two domains that differ in the nature of the supporting text (concatenated

individual sentences vs. a coherent paragraph), the underlying reasoning, and the way

questions are framed. We show that SemanticILP outperforms a variety of baselines,

including retrieval-based methods, neural-networks, structured systems, and the current

best system for each domain. These datasets and systems are described next, followed by

results.

57

4.4.1. Question Sets

For the first domain, we have a collection of question sets containing elementary-level sci-

ence questions from standardized tests (Clark et al., 2016; Khot et al., 2017). Specifically,

Regents 4th contains all non-diagram multiple choice questions from 6 years of NY Re-

gents 4th grade science exams (127 train questions, 129 test). Regents 8th similarly

contains 8th grade questions (147 train, 144 test). The corresponding expanded datasets

are AI2Public 4th (432 train, 339 test) and AI2Public 8th (293 train, 282 test).8

For the second domain, we use the ProcessBank9 dataset for the reading comprehension

task proposed by Berant et al. (2014). It contains paragraphs about biological processes and

two-way multiple choice questions about them. We used a broad subset of this dataset that

asks about events or about an argument that depends on another event or argument.10. The

resulting dataset has 293 train and 109 test questions, based on 147 biology paragraphs.

Test scores are reported as percentages. For each question, a system gets a score of 1 if it

chooses the correct answer, 1/k if it reports a k-way tie that includes the correct answer,

and 0 otherwise.

4.4.2. Question Answering Systems

We consider a variety of baselines, including the best system for each domain.

IR (information retrieval baseline). We use the IR solver from Clark et al. (2016), which

selects the answer option that has the best matching sentence in a corpus. The sentence is

forced to have a non-stopword overlap with both q and a.

SemanticILP (our approach). Given the input instance (question, answer options, and a

paragraph), we invoke various NLP modules to extract semantic graphs. We then generate

8AI2 Science Questions V1 at http://data.allenai.org/ai2-science-questions
9https://nlp.stanford.edu/software/bioprocess

10These are referred to as “dependency questions” by Berant et al. (2014), and cover around 70% of all
questions.

58

Combination Representation

Comb-1
K(Q) = {Shallow-Parse, Tokens}
K(P) = {Shallow-Parse, Tokens,Dependency}

Comb-2
K(Q) = {Verb-SRL,Shallow-Parse}
K(P) = {Verb-SRL}

Comb-3
K(Q) = {Verb-SRL,Shallow-Parse}
K(P) = {Verb-SRL,Coreference}

Comb-4
K(Q) = {Verb-SRL,Shallow-Parse}
K(P) = {Comma-SRL}

Comb-5
K(Q) = {Verb-SRL,Shallow-Parse}
K(P) = {Prep-SRL}

Table 12: The semantic annotator combinations used in our implementation of Semanti-
cILP.

an ILP and solve it using the open source SCIP engine (Achterberg, 2009), returning the

active answer option am from the optimal solution found. To check for ties, we disable am,

re-solve the ILP, and compare the score of the second-best answer, if any, with that of the

best score.

For the science question sets, where we don’t have any paragraphs attached to each question,

we create a passage by using the above IR solver to retrieve scored sentences for each answer

option and then combining the top 8 unique sentences (across all answer options) to form

a paragraph.

While the sub-graph optimization can be done over the entire augmented graph in one

shot, our current implementation uses multiple simplified solvers, each performing reason-

ing over augmented graphs for a commonly occurring annotator combination, as listed in

Table 12. For all of these annotator combinations, we let the representation of the answers

be K(A) = {Shallow-Parse, Tokens}. Importantly, our choice of working with a few annotator

combinations is mainly for simplicity of implementation and suffices to demonstrate that

reasoning over even just two annotators at a time can be surprisingly powerful. There is

no fundamental limitation in implementing SemanticILP using one single optimization

problem as stated in Eq. (4.2).

Each simplified solver associated with an annotator combination in Table 12 produces a

59

confidence score for each answer option. We create an ensemble of these solvers as a linear

combination of these scores, with weights trained using the union of training data from all

questions sets.

BiDAF (neural network baseline). We use the recent deep learning reading comprehension

model of Seo et al. (2016), which is one of the top performing systems on the SQuAD

dataset and has been shown to generalize to another domain as well (Min et al., 2017).

Since BiDAF was designed for fill-in-the-blank style questions, we follow the variation used

by Kembhavi et al. (2017) to apply it to our multiple-choice setting. Specifically, we compare

the predicted answer span to each answer candidate and report the one with the highest

similarity.

We use two variants: the original system, BiDAF, pre-trained on 100,000+ SQuAD ques-

tions, as well as an extended version, BiDAF’, obtained by performing continuous training

to fine-tune the SQuAD-trained parameters using our (smaller) training sets. For the latter,

we convert multiple-choice questions into reading comprehension questions by generating

all possible text-spans within sentences, with token-length at most correct answer length +

2, and choose the ones with the highest similarity score with the correct answer. We use

the AllenNLP re-implementation of BiDAF11, train it on SQuAD, followed by training

it on our dataset. We tried different variations (epochs and learning rates) and selected the

model which gives the best average score across all the datasets. As we will see, the variant

that was further trained on our data often gives better results.

TupleInf (semi-structured inference baseline). Recently proposed by Khot et al. (2017),

this is a state-of-the-art system designed for science questions. It uses Open IE (Banko

et al., 2007) tuples derived from the text as the knowledge representation, and performs

reasoning over it via an ILP. It has access to a large knowledge base of Open IE tuples, and

exploits redundancy to overcome challenges introduced by noise and linguistic variability.

Proread and SyntProx. Proreadis a specialized and best performing system on the

11Available at: https://github.com/allenai/allennlp

60

ProcessBank question set. Berant et al. (2014) annotated the training data with events

and event relations, and trained a system to extract the process structure. Given a question,

Proread converts it into a query (using regular expression patterns and keywords) and

executes it on the process structure as the knowledge base. Its reliance on a question-

dependent query generator and on a process structure extractor makes it difficult to apply

to other domains.

SyntProx is another solver suggested by (Berant et al., 2014). It aligns content word

lemmas in both the question and the answer against the paragraph, and select the answer

tokens that are closer to the aligned tokens of the questions. The distance is measured

using dependency tree edges. To support multiple sentences they connect roots of adjacent

sentences with bidirectional edges.

4.4.3. Experimental Results

We evaluate various QA systems on datasets from the two domains. The results are sum-

marized below, followed by some some insights into SemanticILP’s behavior and an error

analysis.

Science Exams. The results of experimenting on different grades’ science exams are sum-

marized in Table 13, which shows the exam scores as a percentage. The table demonstrates

that SemanticILP consistently outperforms the best baselines in each case by 2%-6%.

Further, there is no absolute winner among the baselines; while IR is good on the 8th grade

questions, TupleInf and BiDAF’ are better on 4th grade questions. This highlights the

differing nature of questions for different grades.

Biology Exam. The results on the ProcessBank dataset are summarized in Table 14.

While SemanticILP’s performance is substantially better than most baselines and close

to that of Proread, it is important to note that this latter baseline enjoys additional

supervision of domain-specific event annotations. This, unlike our other relatively general

61

Dataset BiDAF BiDAF’ IR TupleInf SemanticILP

Regents 4th 56.3 53.1 59.3 61.4 67.6
AI2Public 4th 50.7 57.4 54.9 56.1 59.7
Regents 8th 53.5 62.8 64.2 61.3 66.0
AI2Public 8th 47.7 51.9 52.8 51.6 55.9

Table 13: Science test scores as a percentage. On elementary level science exams, Seman-
ticILP consistently outperforms baselines. In each row, the best score is in bold and the
best baseline is italicized.

baselines, makes it limited to this dataset, which is also why we don’t include it in Table 13.

We evaluate IR on this reading comprehension dataset by creating an ElasticSearch index,

containing the sentences of the knowledge paragraphs.

Proread SyntProx IR BiDAF BiDAF’ SemanticILP

68.1 61.9 63.8 58.7 61.3 67.9

Table 14: Biology test scores as a percentage. SemanticILP outperforms various baselines
on the ProcessBank dataset and roughly matches the specialized best method.

4.4.4. Error and Timing Analysis

For some insight into the results, we include a brief analysis of our system’s output compared

to that of other systems.

We identify a few main reasons for SemanticILP’s errors. Not surprisingly, some mistakes

(see Appendix figure for an example) can be traced back to failures in generating proper

annotation (SemanticGraph). Improvement in SRL modules or redundancy can help address

this. Some mistakes are from the current ILP model not supporting the ideal reasoning,

i.e., the requisite knowledge exists in the annotations, but the reasoning fails to exploit it.

Another group of mistakes is due to the complexity of the sentences, and the system lacking

a way to represent the underlying phenomena with our current annotators.

A weakness (that doesn’t seem to be particular to our solver) is reliance on explicit mentions.

If there is a meaning indirectly implied by the context and our annotators are not able to

capture it, our solver will miss such questions. There will be more room for improvement

62

on such questions with the development of discourse analysis systems.

When solving the questions that don’t have an attached paragraph, relevant sentences need

to be fetched from a corpus. A subset of mistakes on this dataset occurs because the

extracted knowledge does not contain the correct answer.

ILP Solution Properties.

Our system is implemented using many constraints, requires using many linear inequalities

which get instantiated on each input instanced, hence there are a different number of vari-

ables and inequalities for each input instance. There is an overhead time for pre-processing

an input instance, and convert it into an instance graph. Here in the timing analysis we

provide we ignore the annotation time, as it is done by black-boxes outside our solver.

Table 15 summarizes various ILP and support graph statistics for SemanticILP, aver-

aged across ProcessBank questions. Next to SemanticILP we have included numbers

from TableILP which has similar implementation machinery, but on a very different rep-

resentation. While the size of the model is a function of the input instance, on average,

SemanticILP tends to have a bigger model (number of constraints and variables). The

model creation time is significantly time-consuming in SemanticILP as involves many

graph traversal operations and jumps between nodes and edges. We also providing times

statistics for TupleInf which takes roughly half the time of TableILP, which means that

it is faster than SemanticILP.

Category Quantity
Avg. Avg. Avg.

(SemanticILP) (TableILP) (TupleInf)

ILP complexity
#variables 2254.9 1043.8 1691.0
#constraints 4518.7 4417.8 4440.0

Timing stats
model creation 5.3 sec 1.9 sec 1.7 sec
solving the ILP 1.8 sec 2.1 sec 0.3 sec

Table 15: SemanticILP statistics averaged across questions, as compared to TableILP
and TupleInf statistics.

63

4.4.5. Ablation Study

In order to better understand the results, we ablate the contribution of different annotation

combinations, where we drop different combination from the ensemble model. We retrain

the ensemble, after dropping each combination.

The results are summarized in Table 16. While Comb-1 seems to be important for science

tests, it has limited contribution to the biology tests. On 8th grade exams, the Verb-SRL

and Comma-SRL-based alignments provide high value. Structured combinations (e.g., Verb-

SRL-based alignments) are generally more important for the biology domain.

AI2Public
8th

ProcessBank

Full SemanticILP 55.9 67.9

no Comb-1 -3.1 -1.8
no Comb-2 -2.0 -4.6
no Comb-3 -0.6 -1.8
no Comb-4 -3.1 -1.8
no Comb-5 -0.1 -5.1

Table 16: Ablation study of SemanticILP components on various datasets. The first row
shows the overall test score of the full system, while other rows report the change in the
score as a result of dropping an individual combination. The combinations are listed in
Table 12.

Figure 12: Overlap of the predictions of Se-
manticILP and IR on 50 randomly-chosen
questions from AI2Public 4th.

Complementarity to IR. Given that in

the science domain the input snippets fed

to SemanticILP are retrieved through a

process similar to the IR solver, one might

naturally expect some similarity in the pre-

dictions. The pie-chart in Figure 12 shows

the overlap between mistakes and correct

predictions of SemanticILP and IR on

50 randomly chosen training questions from

AI2Public 4th. While there is substantial

overlap in questions that both answer cor-

64

Figure 13: Performance change for varying knowledge length.

rectly (the yellow slice) and both miss (the

red slice), there is also a significant number of questions solved by SemanticILP but not IR

(the blue slice), almost twice as much as the questions solved by IRbut not SemanticILP

(the green slice).

Cascade Solvers.

In Tables 13 and 14, we presented one single instance of SemanticILP with state-of-art

results on multiple datasets, where the solver was an ensemble of semantic combinations

(presented in Table 12). Here we show a simpler approach that achieves stronger results on

individual datasets, at the cost of losing a little generalization across domains. Specifically,

we create two “cascades” (i.e., decision lists) of combinations, where the ordering of com-

binations in the cascade is determined by the training set precision of the simplified solver

representing an annotator combination (combinations with higher precision appear earlier).

One cascade solver targets science exams and the other the biology dataset.

The results are reported in Table 17. On the 8th grade data, the cascade solver created

for science test achieves higher scores than the generic ensemble solver. Similarly, the

cascade solver on the biology domain outperforms the ensemble solver on the ProcessBank

dataset.

65

Dataset Ensemble
Cascade

(Science)

Cascade

(Biology)

S
ci

en
ce

Regents 4th 67.6 64.7 63.1

AI2Public 4th 59.7 56.7 55.7

Regents 8th 66.0 69.4 60.3

AI2Public 8th 55.9 56.5 54.3

ProcessBank 67.9 59.6 68.8

Table 17: Comparison of test scores of SemanticILP
using a generic ensemble vs. domain-targeted cascades
of annotation combinations.

Effect of Varying Knowledge

Length. We analyze the perfor-

mance of the system as a func-

tion of the length of the paragraph

fed into SemanticILP, for 50 ran-

domly selected training questions

from the Regents 4th set. Fig-

ure 13 (left) shows the overall sys-

tem, for two combinations introduced earlier, as a function of knowledge length, counted as

the number of sentences in the paragraph.

As expected, the solver improves with more sentences, until around 12-15 sentences, after

which it starts to worsen with the addition of more irrelevant knowledge. While the cascade

combinations did not show much generalization across domains, they have the advantage of

a smaller drop when adding irrelevant knowledge compared to the ensemble solver. This can

be explained by the simplicity of cascading and minimal training compared to the ensemble

of annotation combinations.

Figure 13 (right) shows the performance of individual combinations as a function of knowl-

edge length. It is worth highlighting that while Comb-1 (blue) often achieves higher coverage

and good scores in simple paragraphs (e.g., science exams), it is highly sensitive to knowl-

edge length. On the other hand, highly-constrained combinations have a more consistent

performance with increasing knowledge length, at the cost of lower coverage.

4.5. Summary and Discussion

This chapter extends our abductive reasoning system from Chapter 3 to consume raw text

as input knowledge. This is the first system to successfully use a wide range of semantic

abstractions to perform a high-level NLP task like Question Answering. The approach

is especially suitable for domains that require reasoning over a diverse set of linguistic

66

constructs but have limited training data. To address these challenges, we present the

first system, to the best of our knowledge, that reasons over a wide range of semantic

abstractions of the text, which are derived using off-the-shelf, general-purpose, pre-trained

natural language modules such as semantic role labelers. Representing multiple abstractions

as a family of graphs, we translate question answering (QA) into a search for an optimal

subgraph that satisfies certain global and local properties. This formulation generalizes

several prior structured QA systems. Our system, SemanticILP, demonstrates strong

performance on two domains simultaneously. In particular, on a collection of challenging

science QA datasets, it outperforms various state-of-the-art approaches, including neural

models, broad coverage information retrieval, and specialized techniques using structured

knowledge bases, by 2%-6%.

A key limitation of the system here is that its abstractions are mostly extracted from explicit

mentions of in a given text. However, a major portion of our understanding come is only

implied from text (not directly mention). We propose a challenge dataset for such questions

(limited to the temporal domain) in Chapter 7. Additionally, the two systems discussed

in Chapter 3 and here, lack explicit explicit attention mechanism to the content of the

questions. We study this topic in Chapter 5.

67

CHAPTER 5 : Learning Essential Terms in Questions

“The trouble with Artificial Intelligence is that computers don’t give a
damn-or so I will argue by considering the special case of
understanding natural language.”

— John Haugeland, 1979

5.1. Overview

Many of today’s QA systems often struggle with seemingly simple questions because they

are unable to reliably identify which question words are redundant, irrelevant, or even

intentionally distracting.1 This reduces the systems’ precision and results in questionable

“reasoning” even when the correct answer is selected among the given alternatives. The

variability of subject domain and question style makes identifying essential question words

challenging. Further, essentiality is context dependent—a word like ‘animals’ can be critical

for one question and distracting for another. Consider the following example:

One way animals usually respond to a sudden drop in temperature is by (A) sweating (B) shivering

(C) blinking (D) salivating.

The system we discussed in Chapter 3, TableILP (Khashabi et al., 2016), which performs

reasoning by aligning the question to semi-structured knowledge, aligns only the word ‘an-

imals’ when answering this question. Not surprisingly, it chooses an incorrect answer. The

issue is that it does not recognize that “drop in temperature” is an essential aspect of the

question.

0

0.25

0.5

0.75

1

O
ne

w
ay
	

an
im
al
s

us
ua
lly
	

re
sp
on

d	 to
	 a	

su
dd

en

dr
op

	 in

te
m
pe
ra
tu
re
	 is by

Chart	 Title

Figure 14: Essentiality scores generated by our
system, which assigns high essentiality to “drop”
and “temperature”.

Towards this goal, we propose a system that

can assign an essentiality score to each term in

the question. For the above example, our sys-

tem generates the scores shown in Figure 14,

where more weight is put on “temperature”

1This chapter is based on the following publication: Khashabi et al. (2017)

68

and “sudden drop”. A QA system, when

armed with such information, is expected to exhibit a more informed behavior.

We make the following contributions:

(A) We introduce the notion of question term essentiality and release a new dataset of 2,223

crowd-sourced essential term annotated questions (total 19K annotated terms) that capture

this concept.2 We illustrate the importance of this concept by demonstrating that humans

become substantially worse at QA when even a few essential question terms are dropped.

(B) We design a classifier that is effective at predicting question term essentiality. The F1

(0.80) and per-sentence mean average precision (MAP, 0.90) scores of our classifier supercede

the closest baselines by 3%-5%. Further, our classifier generalizes substantially better to

unseen terms.

(C) We show that this classifier can be used to improve a surprisingly effective IR based

QA system (Clark et al., 2016) by 4%-5% on previously used question sets and by 1.2%

on a larger question set. We also incorporate the classifier in TableILP (Khashabi et al.,

2016), resulting in fewer errors when sufficient knowledge is present for questions to be

meaningfully answerable.

5.1.1. Related Work

Our work can be viewed as the study of an intermediate layer in QA systems. Some systems

implicitly model and learn it, often via indirect signals from end-to-end training data. For

instance, Neural Networks based models (Wang et al., 2016; Tymoshenko et al., 2016; Yin

et al., 2016) implicitly compute some kind of attention. While this is intuitively meant

to weigh key words in the question more heavily, this aspect hasn’t been systematically

evaluated, in part due to the lack of ground truth annotations.

There is related work on extracting question type information (Li and Roth, 2002; Li et al.,

2 Annotated dataset and classifier available at https://github.com/allenai/essential-terms

69

2007) and applying it to the design and analysis of end-to-end QA systems (Moldovan

et al., 2003). The concept of term essentiality studied in this work is different, and so is our

supervised learning approach compared to the typical rule-based systems for question type

identification.

Another line of relevant work is sentence compression (Clarke and Lapata, 2008), where the

goal is to minimize the content while maintaining grammatical soundness. These approaches

typically build an internal importance assignment component to assign significance scores

to various terms, which is often done using language models, co-occurrence statistics, or

their variants (Knight and Marcu, 2002; Hori and Sadaoki, 2004). We compare against

unsupervised baselines inspired by such importance assignment techniques.

In a similar spirit, Park and Croft (2015) use translation models to extract key terms to

prevent semantic drift in query expansion.

One key difference from general text summarization literature is that we operate on ques-

tions, which tend to have different essentiality characteristics than, say, paragraphs or news

articles. As we discuss in Section 5.2.1, typical indicators of essentiality such as being a

proper noun or a verb (for event extraction) are much less informative for questions. Simi-

larly, while the opening sentence of a Wikipedia article is often a good summary, it is the

last sentence (in multi-sentence questions) that contains the most pertinent words.

In parallel to our effort, Jansen et al. (2017) recently introduced a science QA system that

uses the notion of focus words. Their rule-based system incorporates grammatical structure,

answer types, etc. We take a different approach by learning a supervised model using a new

annotated dataset.

5.2. Essential Question Terms

In this section, we introduce the notion of essential question terms, present a dataset anno-

tated with these terms, and describe two experimental studies that illustrate the importance

70

of this notion—we show that when dropping terms from questions, humans’ performance

degrades significantly faster if the dropped terms are essential question terms.

Given a question q, we consider each non-stopword token in q as a candidate for being

an essential question term. Precisely defining what is essential and what isn’t is not an

easy task and involves some level of inherent subjectivity. We specified three broad criteria:

1) altering an essential term should change the intended meaning of q, 2) dropping non-

essential terms should not change the correct answer for q, and 3) grammatical correctness is

not important. We found that given these relatively simple criteria, human annotators had

a surprisingly high agreement when annotating elementary-level science questions. Next we

discuss the specifics of the crowd-sourcing task and the resulting dataset.

5.2.1. Crowd-Sourced Essentiality Dataset

We collected 2,223 elementary school science exam questions for the annotation of essential

terms. This set includes the questions used by Clark et al. (2016)3 and additional ones

obtained from other public resources such as the Internet or textbooks. For each of these

questions, we asked crowd workers4 to annotate essential question terms based on the above

criteria as well as a few examples of essential and non-essential terms. Figure 15 depicts

the annotation interface.

The questions were annotated by 5 crowd workers,5 and resulted in 19,380 annotated terms.

The Fleiss’ kappa statistic (Fleiss, 1971) for this task was κ = 0.58, indicating a level of

inter-annotator agreement very close to ‘substantial’. In particular, all workers agreed on

36.5% of the terms and at least 4 agreed on 69.9% of the terms. We use the proportion of

workers that marked a term as essential to be its annotated essentiality score.

On average, less than one-third (29.9%) of the terms in each question were marked as

3These are the only publicly available state-level science exams.
http://www.nysedregents.org/Grade4/Science/

4We use Amazon Mechanical Turk for crowd-sourcing.
5A few invalid annotations resulted in about 1% of the questions receiving fewer annotations. 2,199

questions received at least 5 annotations (79 received 10 annotations due to unintended question repetition),
21 received 4 annotations, and 4 received 3 annotations.

71

Figure 15: Crowd-sourcing interface for annotating essential terms in a question, including
the criteria for essentiality and sample annotations.

essential (i.e., score > 0.5). This shows the large proportion of distractors in these science

tests (as compared to traditional QA datasets), further showing the importance of this task.

Next we provide some insights into these terms.

We found that part-of-speech (POS) tags are not a reliable predictor of essentiality, making

it difficult to hand-author POS tag based rules. Among the proper nouns (NNP, NNPS)

mentioned in the questions, fewer than half (47.0%) were marked as essential. This is in

contrast with domains such as news articles where proper nouns carry perhaps the most

important information. Nearly two-thirds (65.3%) of the mentioned comparative adjectives

(JJR) were marked as essential, whereas only a quarter of the mentioned superlative adjec-

tives (JJS) were deemed essential. Verbs were marked essential less than a third (32.4%)

of the time. This differs from domains such as math word problems where verbs have been

found to play a key role (Hosseini et al., 2014).

The best single indicator of essential terms, not surprisingly, was being a scientific term6

(such as precipitation and gravity). 76.6% of such terms occurring in questions were marked

as essential.

In summary, we have a term essentiality annotated dataset of 2,223 questions. We split this

6We use 9,144 science terms from Khashabi et al. (2016).

72

into train/development/test subsets in a 70/9/21 ratio, resulting in 483 test sentences used

for per-question evaluation.

We also derive from the above an annotated dataset of 19,380 terms by pooling together all

terms across all questions. Each term in this larger dataset is annotated with an essentiality

score in the context of the question it appears in. This results in 4,124 test instances (derived

from the above 483 test questions). We use this dataset for per-term evaluation.

5.2.2. The Importance of Essential Terms

Here we report a second crowd-sourcing experiment that validates our hypothesis that

the question terms marked above as essential are, in fact, essential for understanding and

answering the questions. Specifically, we ask: Is the question still answerable by a human if

a fraction of the essential question terms are eliminated? For instance, the sample question

in the introduction is unanswerable when “drop” and “temperature” are removed from the

question: One way animals usually respond to a sudden * in * is by ?

Figure 16: Crowd-sourcing interface for verifying the validity of essentiality annotations
generated by the first task. Annotators are asked to answer, if possible, questions with a
group of terms dropped.

To this end, we consider both the annotated essentiality scores as well as the score produced

by our trained classifier (to be presented in Section 5.3). We first generate candidate sets of

terms to eliminate using these essentiality scores based on a threshold ξ ∈ {0, 0.2, . . . , 1.0}:

73

(a) essential set: terms with score ≥ ξ; (b) non-essential set: terms with score < ξ. We

then ask crowd workers to try to answer a question after replacing each candidate set of

terms with “***”. In addition to four original answer options, we now also include “I don’t

know. The information is not enough” (cf. Figure 16 for the user interface).7 For each value

of ξ, we obtain 5 × 269 annotations for 269 questions. We measure how often the workers

feel there is sufficient information to attempt the question and, when they do attempt, how

often do they choose the right answer.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
fraction of question terms dropped

0

0.2

0.4

0.6

0.8

1

fr
ac

tio
n

of
 q

ue
st

io
ns

 a
tte

m
pt

ed
Annotation:drop-essentials-above-x
Annotation:drop-essentials-below-x
Classifier:drop-essentials-above-x
Classifier:drop-essentials-below-x

Figure 17: The relationship between the fraction
of question words dropped and the fraction of the
questions attempted (fraction of the questions workers
felt comfortable answering). Dropping most essential
terms (blue lines) results in very few questions remain-
ing answerable, while least essential terms (red lines)
allows most questions to still be answerable. Solid
lines indicate human annotation scores while dashed
lines indicate predicted scores.

Each value of ξ results in some fraction of

terms to be dropped from a question; the

exact number depends on the question and

on whether we use annotated scores or our

classifier’s scores. In Figure 17, we plot the

average fraction of terms dropped on the

horizontal axis and the corresponding frac-

tion of questions attempted on the vertical

axis. Solid lines indicate annotated scores

and dashed lines indicate classifier scores.

Blue lines (bottom left) illustrate the effect

of eliminating essential sets while red lines

(top right) reflect eliminating non-essential

sets.

We make two observations. First, the solid blue line (bottom-left) demonstrates that drop-

ping even a small fraction of question terms marked as essential dramatically reduces the

QA performance of humans. E.g., dropping just 12% of the terms (with high essentiality

scores) makes 51% of the questions unanswerable. The solid red line (top-right), on the

7It is also possible to directly collect essential term groups using this task. However, collecting such
sets of essential terms would be substantially more expensive, as one must iterate over exponentially many
subsets rather than the linear number of terms used in our annotation scheme.

74

other hand, shows the opposite trend for terms marked as not-essential: even after dropping

80% of such terms, 65% of the questions remained answerable.

Second, the dashed lines reflecting the results when using scores from our ET classifier are

very close to the solid lines based on human annotation. This indicates that our classifier,

to be described next, closely captures human intuition.

5.3. Essential Terms Classifier

Given the dataset of questions and their terms annotated with essential scores, is it possible

to learn the underlying concept? Towards this end, given a question q , answer options

a, and a question term ql, we seek a classifier that predicts whether ql is essential for

answering q. We also extend it to produce an essentiality score et(ql, q, a) ∈ [0, 1].8 We use

the annotated dataset from Section 2, where real-valued essentiality scores are binarized to

1 if they are at least 0.5, and to 0 otherwise.

We train a linear SVM classifier (Joachims, 1998), henceforth referred to as ET classi-

fier. Given the complex nature of the task, the features of this classifier include syntactic

(e.g., dependency parse based) and semantic (e.g., Brown cluster representation of words

(Brown et al., 1992), a list of scientific words) properties of question words, as well as their

combinations. In total, we use 120 types of features (cf. Appendix A.3.1).

Baselines. To evaluate our approach, we devise a few simple yet relatively powerful base-

lines.

First, for our supervised baseline, given (ql, q, a) as before, we ignore q and compute how

often is ql annotated as essential in the entire dataset. In other words, the score for ql is

the proportion of times it was marked as essential in the annotated dataset. If the instance

is never observer in training, we choose an arbitrary label as prediction. We refer to this

8The essentiality score may alternatively be defined as et(ql, q), independent of the answer options a.
This is more suitable for non-multiple choice questions. Our system uses a only to compute PMI-based
statistical association features for the classifier. In our experiments, dropping these features resulted in only
a small drop in the classifier’s performance.

75

baseline as label proportion baseline and create two variants of it: PropSurf based on

surface string and PropLem based on lemmatizing the surface string. For unseen ql, this

baseline makes a random guess with uniform distribution.

Our unsupervised baseline is inspired by work on sentence compression (Clarke and Lapata,

2008) and the PMI solver of Clark et al. (2016), which compute word importance based on

co-occurrence statistics in a large corpus. In a corpus C of 280 GB of plain text (5 × 1010

tokens) extracted from Web pages,9 we identify unigrams, bigrams, trigrams, and skip-

bigrams from q and each answer option ai. For a pair (x, y) of n-grams, their pointwise

mutual information (PMI) (Church and Hanks, 1989) in C is defined as log p(x,y)
p(x)p(y) where

p(x, y) is the co-occurrence frequency of x and y (within some window) in C. For a given

word x, we find all pairs of question n-grams and answer option n-grams. MaxPMI and

SumPMI score the importance of a word x by max-ing or summing, resp., PMI scores

p(x, y) across all answer options y for q. A limitation of this baseline is its dependence on

the existence of answer options, while our system makes essentiality predictions independent

of the answer options.

We note that all of the aforementioned baselines produce real-valued confidence scores (for

each term in the question), which can be turned into binary labels (essential and non-

essential) by thresholding at a certain confidence value.

5.3.1. Evaluation

We consider two natural evaluation metrics for essentiality detection, first treating it as a

binary prediction task at the level of individual terms and then as a task of ranking terms

within each question by the degree of essentiality.

Binary Classification of Terms. We consider all question terms pooled together as

described in Section 5.2.1, resulting in a dataset of 19,380 terms annotated (in the context

of the corresponding question) independently as essential or not. The ET classifier is trained

9Collected by Charles Clarke at the University of Waterloo, and used previously by Turney (2013).

76

on the train subset, and the threshold is tuned using the dev subset.

AUC Acc P R F1

MaxPMI † 0.74 0.67 0.88 0.65 0.75

SumPMI † 0.74 0.67 0.88 0.65 0.75

PropSurf 0.79 0.61 0.68 0.64 0.66

PropLem 0.80 0.63 0.76 0.64 0.69

ET Classifier 0.79 0.75 0.91 0.71 0.80

Table 18: Effectiveness of various methods for identi-
fying essential question terms in the test set, including
area under the PR curve (AUC), accuracy (Acc), pre-
cision (P), recall (R), and F1 score. ET classifier sub-
stantially outperforms all supervised and unsupervised
(denoted with †) baselines.

For each term in the corresponding test

set of 4,124 instances, we use various

methods to predict whether the term

is essential (for the corresponding ques-

tion) or not. Table 18 summarizes

the resulting performance. For the

threshold-based scores, each method

was tuned to maximize the F1 score

based on the dev set. The ET clas-

sifier achieves an F1 score of 0.80, which is 5%-14% higher than the baselines. Its accuracy

at 0.75 is statistically significantly better than all baselines based on the Binomial10 exact

test (Howell, 2012) at p-value 0.05.

0 0.2 0.4 0.6 0.8 1
Recall

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
re

ci
si
o
n

MaxPMI
SumPMI
PropSurf
PropLemma
ET

Figure 18: Precision-recall trade-off for various
classifiers as the threshold is varied. ET classifier
(green) is significantly better throughout.

As noted earlier, each of these essentiality

identification methods are parameterized by

a threshold for balancing precision and re-

call. This allows them to be tuned for end-

to-end performance of the downstream task.

We use this feature later when incorporat-

ing the ET classifier in QA systems. Fig-

ure 18 depicts the PR curves for various

methods as the threshold is varied, high-

lighting that the ET classifier performs re-

liably at various recall points. Its precision, when tuned to optimize F1, is 0.91, which

is very suitable for high-precision applications. It has a 5% higher AUC (area under the

curve) and outperforms baselines by roughly 5% throughout the precision-recall spectrum.

10Each test term prediction is assumed to be a binomial.

77

AUC Acc P R F1

MaxPMI † 0.75 0.63 0.81 0.65 0.72

SumPMI † 0.75 0.63 0.80 0.66 0.72

PropSurf 0.57 0.51 0.49 0.61 0.54

PropLem 0.58 0.49 0.50 0.59 0.54

ET Classifier 0.78 0.71 0.88 0.71 0.78

Table 19: Generalization to unseen terms: Effective-
ness of various methods, using the same metrics as in
Table 18. As expected, supervised methods perform
poorly, similar to a random baseline. Unsupervised
methods generalize well, but the ET classifier again
substantially outperforms them.

As a second study, we assess how well

our classifier generalizes to unseen

terms. For this, we consider only the

559 test terms that do not appear in

the train set.11 Table 19 provides the

resulting performance metrics. We see

that the frequency based supervised

baselines, having never seen the test

terms, stay close to the default preci-

sion of 0.5. The unsupervised baselines, by nature, generalize much better but are substan-

tially dominated by our ET classifier, which achieves an F1 score of 78%. This is only 2%

below its own F1 across all seen and unseen terms, and 6% higher than the second best

baseline.

System MAP

MaxPMI † 0.87

SumPMI † 0.85

PropSurf 0.85

PropLem 0.86

ET Classifier 0.90

Table 20: Effectiveness of various
methods for ranking the terms in a ques-
tion by essentiality. † indicates unsuper-
vised method. Mean-Average Precision
(MAP) numbers reflect the mean (across
all test set questions) of the average pre-
cision of the term ranking for each ques-
tion. ET classifier again substantially
outperforms all baselines.

Ranking Question Terms by Essentiality.

Next, we investigate the performance of the ET

classifier as a system that ranks all terms within a

question in the order of essentiality. Thus, unlike

the previous evaluation that pools terms together

across questions, we now consider each question as a

unit. For the ranked list produced by each classifier

for each question, we compute the average precision

(AP).12 We then take the mean of these AP values

across questions to obtain the mean average precision

(MAP) score for the classifier.

11In all our other experiments, test and train questions are always distinct but may have some terms in
common.

12We rank all terms within a question based on their essentiality scores. For any true positive instance
at rank k, the precision at k is defined to be the number of positive instances with rank no more than k,
divided by k. The average of all these precision values for the ranked list for the question is the average
precision.

78

The results for the test set (483 questions) are shown in Table 20. Our ET classifier achieves

a MAP of 90.2%, which is 3%-5% higher than the baselines, and demonstrates that one can

learn to reliably identify essential question terms.

5.4. Using ET Classifier in QA Solvers

In order to assess the utility of our ET classifier, we investigate its impact on two end-to-end

QA systems. We start with a brief description of the question sets.

Question Sets. We use three question sets of 4-way multiple choice questions.13 Re-

gents and AI2Public are two publicly available elementary school science question set.

Regents comes with 127 training and 129 test questions; AI2Public contains 432 train-

ing and 339 test questions that subsume the smaller question sets used previously (Clark

et al., 2016; Khashabi et al., 2016). RegtsPertd set, introduced by Khashabi et al. (2016),

has 1,080 questions obtained by automatically perturbing incorrect answer choices for 108

New York Regents 4th grade science questions. We split this into 700 train and 380 test

questions.

For each question, a solver gets a score of 1 if it chooses the correct answer and 1/k if it

reports a k-way tie that includes the correct answer.

QA Systems. We investigate the impact of adding the ET classifier to two state-of-the-

art QA systems for elementary level science questions. Let q be a multiple choice question

with answer options {ai}. The IR Solver from Clark et al. (2016) searches, for each ai, a

large corpus for a sentence that best matches the (q, ai) pair. It then selects the answer

option for which the match score is the highest. The inference based TableILP Solver from

Khashabi et al. (2016), on the other hand, performs QA by treating it as an optimization

problem over a semi-structured knowledge base derived from text. It is designed to answer

questions requiring multi-step inference and a combination of multiple facts.

13Available at http://allenai.org/data.html

79

For each multiple-choice question (q, a), we use the ET classifier to obtain essential term

scores sl for each token ql in q; sl = et(ql, q, a). We will be interested in the subset ω of all

terms Tq in q with essentiality score above a threshold ξ: ω(ξ; q) = {l ∈ Tq | sl > ξ}. Let

ω(ξ; q) = Tq \ ω(ξ; q). For brevity, we will write ω(ξ) when q is implicit.

5.4.1. IR solver + ET

To incorporate the ET classifier, we create a parameterized IR system called IR + ET(ξ)

where, instead of querying a (q, ai) pair, we query (ω(ξ; q), ai).

While IR solvers are generally easy to implement and are used in popular QA systems with

surprisingly good performance, they are often also sensitive to the nature of the questions

they receive. Khashabi et al. (2016) demonstrated that a minor perturbation of the ques-

tions, as embodied in the RegtsPertd question set, dramatically reduces the performance

of IR solvers. Since the perturbation involved the introduction of distracting incorrect an-

swer options, we hypothesize that a system with better knowledge of what’s important in

the question will demonstrate increased robustness to such perturbation.

Dataset Basic IR IR + ET

Regents 59.11 60.85

AI2Public 57.90 59.10

RegtsPertd 61.84 66.84

Table 21: Performance of the IR solver with-
out (Basic IR) and with (IR + ET) essential
terms. The numbers are solver scores (%) on
the test sets of the three datasets.

Table 21 validates this hypothesis, showing

the result of incorporating ET in IR, as IR

+ ET(ξ = 0.36), where ξ was selected by

optimizing end-to-end performance on the

training set. We observe a 5% boost in the

score on RegtsPertd, showing that incor-

porating the notion of essentiality makes the

system more robust to perturbations.

Adding ET to IR also improves its performance on standard test sets. On the larger

AI2Public question set, we see an improvement of 1.2%. On the smaller Regents set,

introducing ET improves IRsolvers score by 1.74%, bringing it close to the state-of-the-art

solver, TableILP, which achieves a score of 61.5%. This demonstrates that the notion of

80

essential terms can be fruitfully exploited to improve QA systems.

5.4.2. TableILP solver + ET

Our essentiality guided query filtering helped the IR solver find sentences that are more

relevant to the question. However, for TableILP an added focus on essential terms is ex-

pected to help only when the requisite knowledge is present in its relatively small knowledge

base. To remove confounding factors, we focus on questions that are, in fact, answerable.

To this end, we consider three (implicit) requirements for TableILP to demonstrate reli-

able behavior: (1) the existence of relevant knowledge, (2) correct alignment between the

question and the knowledge, and (3) a valid reasoning chain connecting the facts together.

Judging this for a question, however, requires a significant manual effort and can only be

done at a small scale.

Question Set. We consider questions for which the TableILP solver does have access

to the requisite knowledge and, as judged by a human, a reasoning chain to arrive at the

correct answer. To reduce manual effort, we collect such questions by starting with the

correct reasoning chains (‘support graphs’) provided by TableILP. A human annotator

is then asked to paraphrase the corresponding questions or add distracting terms, while

maintaining the general meaning of the question. Note that this is done independent of

essentiality scores. For instance, the modified question below changes two words in the

question without affecting its core intent:

Original question: A fox grows thicker fur as a season changes. This adaptation helps the fox

to (A) find food(B) keep warmer(C) grow stronger(D) escape from predators

Generated question: An animal grows thicker hair as a season changes. This adaptation helps

to (A) find food(B) keep warmer(C) grow stronger(D) escape from predators

While these generated questions should arguably remain correctly answerable by TableILP,

we found that this is often not the case. To investigate this, we curate a small dataset QR

with 12 questions (see the Appendix) on each of which, despite having the required knowl-

81

edge and a plausible reasoning chain, TableILP fails.

Modified Solver. To incorporate question term essentiality in the TableILP solver while

maintaining high recall, we employ a cascade system that starts with a strong essentiality

requirement and progressively weakens it.

Following the notation of Chapter 3, let x(ql) be a binary variable that denotes whether

or not the l-th term of the question is used in the final reasoning graph. We enforce that

terms with essentiality score above a threshold ξ must be used: x(ql) = 1, ∀l ∈ ω(ξ).

Let TableILP+ET(ξ) denote the resulting system which can now be used in a cascading

architecture:

TableILP+ET(ξ1) → TableILP+ET(ξ2) → ...

where ξ1 < ξ2 < . . . < ξk is a sequence of thresholds. Questions unanswered by the

first system are delegated to the second, and so on. The cascade has the same recall as

TableILP, as long as the last system is the vanilla TableILP. We refer to this configuration

as Cascades(ξ1, ξ2, . . . , ξk).

This can be implemented via repeated calls to TableILP+ET(ξj) with j increasing from 1

to k, stopping if a solution is found. Alternatively, one can simulate the cascade via a single

extended ILP using k new binary variables zj with constraints: |ω(ξj)| ∗ zj ≤
∑

l∈ω(ξj) x(ql)

for j ∈ {1, . . . , k}, and adding M ∗
∑k

j=1 zj to the objective function, for a sufficiently large

constant M .

We evaluate Cascades(0.4, 0.6, 0.8, 1.0) on our question set, QR. By employing essentiality

information provided by the ET classifier, Cascades corrects 41.7% of the mistakes made

by vanilla TableILP. This error-reduction illustrates that the extra attention mechanism

added to TableILP via the concept of essential question terms helps it cope with distracting

terms.

82

5.5. Summary

This chapter introduces and studies the notion of essential question terms with the goal

of improving such QA solvers. We illustrate the importance of essential question terms

by showing that humans’ ability to answer questions drops significantly when essential

terms are eliminated from questions. We then develop a classifier that reliably (90% mean

average precision) identifies and ranks essential terms in questions. Finally, we use the

classifier to demonstrate that the notion of question term essentiality allows state-of-the-

art QA solvers for elementary-level science questions to make better and more informed

decisions, improving performance by up to 5%.

83

Part II

Moving the Peaks Higher:

Designing More Challenging

Datasets

84

CHAPTER 6 : A Challenge Set for Reasoning on Multiple Sentences

“Human beings, viewed as behaving systems, are quite simple. The
apparent complexity of our behavior over time is largely a reflection of
the complexity of the environment in which we find ourselves.”

— Herbert A. Simon, The Sciences of the Artificial, 1968

6.1. Overview

In this chapter we develop a reading comprehension challenge in which answering each of

the questions requires reasoning over multiple sentences.1

There is evidence that answering ‘single-sentence questions’, i.e. questions that can be

answered from a single sentence of the given paragraph, is easier than answering multi-

sentence questions’, which require multiple sentences to answer a given question. For exam-

ple, (Richardson et al., 2013) released a reading comprehension dataset that contained both

single-sentence and multi-sentence questions; models proposed for this task yielded con-

siderably better performance on the single-sentence questions than on the multi-sentence

questions (according to (Narasimhan and Barzilay, 2015) accuracy of about 83% and 60%

on these two types of questions, respectively).

There could be multiple reasons for this. First, multi-sentence reasoning seems to be inher-

ently a difficult task. Research has shown that while complete-sentence construction emerges

as early as first grade for many children, their ability to integrate sentences emerges only in

fourth grade (Berninger et al., 2011). Answering multi-sentence questions might be more

challenging for an automated system because it involves more than just processing individ-

ual sentences but rather combining linguistic, semantic and background knowledge across

sentences—a computational challenges in itself. Despite these challenges, multi-sentence

questions can be answered by humans and hence present an interesting yet reasonable goal

for AI systems (Davis, 2014).

1This chapter is based on the following publication: Khashabi et al. (2018a).

85

Figure 19: Examples from our MultiRCcorpus. Each
example shows relevant excerpts from a paragraph;
multi-sentence question that can be answered by com-
bining information from multiple sentences of the para-
graph; and corresponding answer-options. The correct
answer(s) is indicated by a *. Note that there can be
multiple correct answers per question.

In this work, we propose a multi-

sentence QA challenge in which ques-

tions can be answered only using

information from multiple sentences.

Specifically, we present MultiRC

(Multi-Sentence Reading Comprehen-

sion)2—a dataset of short paragraphs

and multi-sentence questions that can

be answered from the content of the

paragraph. Each question is associ-

ated with several choices for answer-

options, out of which one or more

correctly answer the question. Fig-

ure 19 shows two examples from our

dataset. Each instance consists of a

multi-sentence paragraph, a question,

and answer-options. All instances were

constructed such that it is not possible

to answer a question correctly without

gathering information from multiple sentences. Due to space constraints, the figure shows

only the relevant sentences from the original paragraph. The entire corpus consists of 871

paragraphs and about ∼ 6k multi-sentence questions.

The goal of this dataset is to encourage the research community to explore approaches that

can do more than sophisticated lexical-level matching. To accomplish this, we designed

the dataset with three key challenges in mind. (i) The number of correct answer-options

for each question is not pre-specified. This removes the over-reliance of current approaches

on answer-options and forces them to decide on the correctness of each candidate answer

2http://cogcomp.org/multirc/

86

independently of others. In other words, unlike previous work, the task here is not to

simply identify the best answer-option, but to evaluate the correctness of each answer-option

individually. For example, the first question in Figure 19 can be answered by combining

information from sentences 3, 5, 10, 13 and 15. It requires not only understanding that the

stalker’s name is Timothy but also that he is the man who Mary had hit. (ii) The correct

answer(s) is not required to be a span in the text. For example, the correct answer, A, of

the second question in Figure 19 is not present in the paragraph verbatim. It is instead a

combination of two spans from 2 sentences: 12 and 13. Such answer-options force models

to process and understand not only the paragraph and the question but also the answer-

options. (iii) The paragraphs in our dataset have diverse provenance by being extracted

from 7 different domains such as news, fiction, historical text etc., and hence are expected

to be more diverse in their contents as compared to single-domain datasets. We also expect

this to lead to diversity in the types of questions that can be constructed from the passage.

Overall, we introduce a reading comprehension dataset that significantly differs from most

other datasets available today in the following ways:

• ∼6k high-quality multiple-choice RC questions that are generated (and manually ver-

ified via crowdsourcing) to require integrating information from multiple sentences.

• The questions are not constrained to have a single correct answer, generalizing exist-

ing paradigms for representing answer-options.

• Our dataset is constructed using 7 different sources, allowing more diversity in con-

tent, style, and possible question types.

• We show a significant performance gap between current solvers and human perfor-

mance, indicating an opportunity for developing sophistical reasoning systems.

87

6.2. Relevant Work

Some recent datasets proposed for machine comprehension pay attention to type of ques-

tions and reasoning required. For example, RACE (Lai et al., 2017) attempts to incorporate

different types of reasoning phenomena, and MCTest (Richardson et al., 2013) attempted to

contain at least 50% multi-sentence reasoning questions. However, since the crowdsourced

workers who created the dataset were only encouraged, and not required, to write such

questions, it is not clear how many of these questions actually require multi-sentence rea-

soning (see Sec. 6.3.5). Similarly, only about 25% of question in the RACE dataset require

multi-sentence reasoning as reported in their paper. Remedia (Hirschman et al., 1999) also

contains 5 different types of questions (based on question words) but is a much smaller

dataset. Other datasets which do not deliberately attempt to include multi-sentence rea-

soning, like SQuAD (Rajpurkar et al., 2016) and the CNN/Daily Mail dataset (Hermann

et al., 2015), suffer from even lower percentage of such questions (12% and 2% respec-

tively (Lai et al., 2017)). There are several other corpora which do not guarantee specific

reasoning types, including MS MARCO (Nguyen et al., 2016), WikiQA (Yang et al., 2015),

and TriviaQA (Joshi et al., 2017).

The complexity of reasoning required for a reading comprehension dataset would depend on

several factors such as the source of questions or paragraphs; the way they are generated;

and the order in which they are generated (i.e. questions from paragraphs, or the reverse).

Specifically, paragraphs’ source could influence the complexity and diversity of the language

of the paragraphs and questions, and hence the required level of reasoning capabilities.

Unlike most current datasets which rely on only one or two sources for their paragraphs

(e.g. CNN/Daily Mail and SQuAD rely only on news and Wikipedia articles respectively)

our dataset uses 7 different domains.

Another factor that distinguishes our dataset from previously proposed corpora is the way

answers are represented. Several datasets represent answers as multiple-choices with a single

correct answer. While multiple-choice questions are easy to grade, coming up with non-

88

trivial correct and incorrect answers can be challenging. Also, assuming exactly one correct

answer (e.g., as in MCTest and RACE) inadvertently changes the task from choosing the

correct answer to choosing the most likely answer. Other datasets (e.g MS-MARCO and

SQuAD) represent answers as a contiguous substring within the passage. This assumption

of the answer being a span of the paragraph, limits the questions to those whose answer is

contained verbatim in the paragraph. Unfortunately, it rules out more complicated ques-

tions whose answers are only implied by the text and hence require a deeper understanding.

Because of these limitations, we designed our dataset to use multiple-choice representations,

but without specifying the number of correct answers for each question.

6.3. Construction of MultiRC

In this section we describe our principles and methodology of dataset collection. This in-

cludes automatically collecting paragraphs, composing questions and answer-options through

crowd-sourcing platform, and manually curating the collected data. We also summarize a

pilot study that helped us design this process, and end with a summary of statistics of the

collected corpus.

6.3.1. Principles of design

Questions and answers in our dataset are designed based on the following key principles:

Multi-sentenceness. Questions in our challenge require models to use information from

multiple sentences of a paragraph. This is ensured through explicit validation. We exclude

any question that can be answered based on a single sentence from a paragraph.

Open-endedness. Our dataset is not restricted to questions whose answer can be found

verbatim in a paragraph. Instead, we provide a set of hand-crafted answer-options for each

question. Notably, they can represent information that is not explicitly stated in the text

but is only inferable from it (e.g. implied counts, sentiments, and relationships).

89

Answers to be judged independently. The total number of answer options per ques-

tion is variable in our data and we explicitly allow multiple correct and incorrect answer

options (e.g. 2 correct and 1 incorrect options). As a consequence, correct answers cannot

be guessed solely by a process of elimination or by simply choosing the best candidates out

of the given options.

Through these principles, we encourage users to explicitly model the semantics of text be-

yond individual words and sentences, to incorporate extra-linguistic reasoning mechanisms,

and to handle answer options independently of one another.

Variability. We encourage variability on different levels. Our dataset is based on para-

graphs from multiple domains, leading to linguistically diverse questions and answers. Also,

we do not impose any restrictions on the questions, to encourage different forms of reasoning.

6.3.2. Sources of documents

The paragraphs used in our dataset are extracted from various sources. Here is the com-

plete list of the text types and sources used in our dataset, and the number of paragraphs

extracted from each category (indicated in square brackets on the right):

1. News: [121]

• CNN (Hermann et al., 2015)

• WSJ (Ide et al., 2008)

• NYT (Ide et al., 2008)

2. Wikipedia articles [92]

3. Articles on society, law and justice (Ide and Suderman, 2006) [91]

4. Articles on history and anthropology (Ide et al., 2008) [65]

5. Elementary school science textbooks 3 [153]

6. 9/11 reports (Ide and Suderman, 2006) [72]

3https://www.ck12.org

90

7. Fiction: [277]

• Stories from the Gutenberg project

• Children stories from MCTest (Richardson et al., 2013)

• Movie plots from CMU Movie Summary corpus (Bamman et al., 2013)

Condition bound

Number of sentences ≥ 6 & ≤ 18

Number of NER(CoNLL) mentions ≥ 2

Avg. number of NER(CoNLL) mentions ≥ 0.2

Number of NER(Ontonotes) mentions ≥ 4

Avg. number of NER(Ontonotes) mentions ≥ 0.25

Avg. number of words per sentence ≥ 5

Number of coreference mentions ≥ 3

Avg. number of coreference mentions ≥ 0.1

Number of coreference relations ≥ 3

Avg. number of coreference relations ≥ 0.08

Number of coreference chains ≥ 2

Avg. number of coreference chains ≥ 0.1

Number of discourse markers ≥ 2

Table 22: Bounds used to select paragraphs for
dataset creation.

From each of the above-mentioned

sources we extracted paragraphs that

had enough content. To ensure this

we followed a 3-step process. In the

first step we selected top few sentences

from paragraphs such that they con-

tained 1k-1.5k characters. To ensure

coherence, all sentences were contigu-

ous and extracted from the same para-

graph. In this process we also dis-

carded paragraphs that seemed to de-

viate too much from third person nar-

rative style. For example, while processing Gutenberg corpus we considered files that had

at least 5k lines because we found that most of them were short poetic texts. In the second

step, we annotated (Khashabi et al., 2018c) the paragraphs and automatically filtered texts

using conditions such as the average number of words per sentence; number of named enti-

ties; number of discourse connectives in the paragraph. These were designed by the authors

of this paper after reviewing a small sample of paragraphs. A complete set of conditions is

listed in Table 22. Finally in the last step, we manually verified each paragraph and filtered

out the ones that had formatting issues or other concerns that seemed to compromise their

usability.

91

6.3.3. Pipeline of question extraction

In this section, we delineate details of the process for collecting questions and answers.

Figure 20 gives a high-level idea of the process. The first two steps deal with creating multi-

sentence questions, followed by two steps for construction of candidate answers. Interested

readers can find more details on set-ups of each step in Appendix I.

Step 1:
generating
multi-sentence questions
given paragraphs

Step 2:
Verifying
multi-sentenceness

Step 3:
Generating
candidate answers

Step 4:
Judging quality of
questions & candidates

Figure 20: Pipeline of our dataset construction.

Step 1: Generating questions. The goal of the first step of our pipeline is to collect

multi-sentence questions. We show each paragraph to 5 turkers and ask them to write 3-5

questions such that: (1) the question is answerable from the passage, and (2) only those

questions are allowed whose answer cannot be determined from a single sentence. We clarify

this point by providing example paragraphs and questions. In order to encourage turkers to

write meaningful questions that fit our criteria, we additionally ask them for a correct answer

and for the sentence indices required to answer the question. To ensure the grammatical

quality of the questions collected in this step, we limit the turkers to the countries with

English as their major language. After the acquisition of questions in this step, we filter out

questions which required less than 2 or more than 4 sentences to be answered; we also run

them through an automatic spell-checker4 and manually correct questions regarding typos

and unusual wordings.

Step 2: Verifying multi-sentenceness of questions. In a second step, we verify that

each question can only be answered using more than one sentence. For each question

collected in the previous step, we create question-sentence pairs by pairing it with each

of the sentences necessary for answering it as indicated in the previous step. For a given

question-sentence pair, we then ask turkers to annotate if they could answer the question

from the sentence it is paired with (binary annotation). The underlying idea of this step

4Grammarly: www.grammarly.com

92

is that a multi-sentence question would not be answerable from a single sentence, hence

turkers should not be able to give a correct answer for any of the question-sentence pair.

Accordingly, we determine a question as requiring multiple sentences only if the correct

answer cannot be guessed from any single question-sentence pair. We collected at least 3

annotations per pair, and to avoid sharing of information across sentences, no two pairs

shown to a turker came from the same paragraph. We aggregate the above annotations for

each question-answer pair and retain only those questions for which no pair was judged as

answerable by a majority of turkers.

Step 3: Generating answer-options. In this step, we collect answer-options that will

be shown with each question. Specifically, for each verified question from the previous steps,

we ask 3 turkers to write as many correct and incorrect answer options as they can think

of. In order to not curb creativity, we do not place a restriction on the number of options

they have to write. We explicitly ask turkers to design difficult and non-trivial incorrect

answer-options (e.g. if the question is about a person, a non-trivial incorrect answer-option

would be other people mentioned in the paragraph).

After this step, we perform a light clean up of the candidate answers by manually correcting

minor errors (such as typos), completing incomplete sentences and rephrasing any ambigu-

ous sentences. We further make sure there is not much repetition in the answer-options,

to prevent potential exploitation of correlation between some candidate answers in order

to find the correct answer. For example, we drop obviously duplicate answer-options (i.e.

identical options after lower-casing, lemmatization, and removing stop-words).

Step 4: Verifying quality of the dataset. This step serves as the final quality check

for both questions and the answer-options generated in the previous steps. We show each

paragraph, its questions, and the corresponding answer-options to 3 turkers, and ask them

to indicate if they find any errors (grammatical or otherwise), in the questions and/or

answer-options. We then manually review, and correct if needed, all erroneous questions

93

and answer-options. This ensures that we have meaningful questions and answer-options.

In this step, we also want to verify that the correct (or incorrect) options obtained from

Step 3 were indeed correct (or incorrect). For this, we additionally ask the annotators to

select all correct answer-options for the question. If their annotations did not agree with

the ones we had after Step 3 (e.g. if they unanimously selected an ‘incorrect’ option as the

answer), we manually reviewed and corrected (if needed) the annotation.

6.3.4. Pilot experiments

The 4-step process described above was a result of detailed analysis and substantial refine-

ment after two small pilot studies.

In the first pilot study, we ran a set of 10 paragraphs extracted from the CMU Movie

Summary Corpus through our pipeline. Our then pipeline looked considerably different from

the one described above. We found the steps that required turkers to write questions and

answer-options to often have grammatical errors, possibly because a large majority of turkers

were non-native speakers of English. This probslem was more prominent in questions than

in answer-options. Because of this, we decided to limit the task to native speakers. Also,

based on the results of this pilot, we overhauled the instructions of these steps by including

examples of grammatically correct—but undesirable (not multi-sentence)—questions and

answer-options, in addition to several minor changes.

Thereafter, we decided to perform a manual validation of the verification steps (current

Steps 2 and 4). For this, we (the authors of this paper) performed additional annotations

ourselves on the data shown to turkers, and compared our results with those provided by

the turkers. We found that in the verification of answer-options, our annotations were in

high agreement (98%) with those obtained from mechanical turk. However, that was not

the case for the verification of multi-sentence questions. We made several further changes

to the first two steps. Among other things, we clarified in the instructions that turkers

should not use their background knowledge when writing and verifying questions, and also

94

included negative examples of such questions. Additionally, when turkers judged a question

to be answerable using a single sentence, we decided to encourage (but not require) them to

guess the answer to the question. This improved our results considerably, possibly because

it forced annotators to think more carefully about what the answer might be, and whether

they actually knew the answer or they just thought that they knew it (possibly because

of background knowledge or because the sentence contained a lot of information relevant

to the question). Guessed answers in this step were only used to verify the validity of

multi-sentence questions. They were not used in the dataset or subsequent steps.

After revision, we ran a second pilot study in which we processed a set of 50 paragraphs

through our updated pipeline. This second pilot confirmed that our revisions were helpful,

but thanks to its larger size, also allowed us to identify a couple of borderline cases for

which additional clarifications were required. Based on the results of the second pilot, we

made some additional minor changes and then decided to apply the pipeline for creating

the final dataset.

6.3.5. Verifying multi-sentenceness

While collecting our dataset, we found that, even though Step 1 instructed turkers to write

multi-sentence questions, not all generated questions indeed required multi-sentence reason-

ing. This happened even after clarifications and revisions to the corresponding instructions,

and we attribute it to honest mistakes. Therefore, we designed the subsequent verification

step (Step 2).

There are other datasets which aim to include multi-sentence reasoning questions, especially

MCTest. Using our verification step, we systematically verify their multi-sentenceness. For

this, we conducted a small pilot study on about 60 multi-sentence questions from MCTest.

As for our own verification, we created question-sentence pairs for each question and asked

annotators to judge whether they can answer a question from the single sentence shown.

Because we did not know which sentences contain information relevant to a question, we

95

created question-sentence pairs using all sentences from a paragraph. After aggregation of

turker annotations, we found that about half of the questions annotated as multi-sentence

could be answered from a single sentence of the paragraph. This study, though performed on

a subset of the data, underscores the necessity of rigorous verification step for multi-sentence

reasoning when studying this phenomenon.

6.3.6. Statistics on the dataset

We now provide a brief summary of MultiRC. Overall, it contains roughly ∼ 6k multi-

sentence questions collected for about +800 paragraphs.5 The median number of correct

and total answer options for each question is 2 and 5, respectively. Additional statistics are

given in Table 23.

Parameter Value

of paragraphs 871

of questions 9,872

of multi-sentence questions 5,825

avg # of candidates (per question) 5.44

avg # of correct answers (per question) 2.58

avg paragraph length (in sentences) 14.3 (4.1)

avg paragraph length (in tokens) 263.1 (92.4)

avg question length (in tokens) 10.9 (4.8)

avg answer length (in tokens) 4.7 (5.5)

% of yes/no/true/false questions 27.57%

avg # of sent. used for questions 2.37 (0.63)

avg distance between the sent.’s used 2.4 (2.58)

% of correct answers verbatim in paragraph 34.96%

% of incorrect answers verbatim in paragraph 25.84%

Table 23: Various statistics of our dataset.
Figures in parentheses represent standard de-
viation.

In Step 1, we also asked annotators to iden-

tify sentences required to answer a given

question. We found that answering each

question required 2.4 sentences on average.

Also, required sentences are often not con-

tiguous, and the average distance between

sentences is 2.4. Next, we analyze the types

of questions in our dataset. Figure 22 shows

the count of first word(s) for our questions.

We can see that while the popular question

words (What, Who, etc.) are very common,

there is a wide variety in the first word(s)

indicating a diversity in question types. About 28% of our questions require binary decisions

(true/false or yes/no).

We randomly selected 60 multi-sentence questions from our corpus and asked two indepen-

5We will also release the 3.7k questions that did not pass Step 2. Though not multi-sentence questions,
they could be a valuable resource on their own.

96

Figure 21: Distribution of (left) general phenomena; (right) variations of the “coreference”
phenomena.

dent annotators to label them with the type of reasoning phenomenon required to answer

them.6 During this process, the annotators were shown a list of common reasoning phenom-

ena (shown below), and they had to identify one or more of the phenomena relevant to a

given question. The list of phenomena shown to the annotators included the following cat-

egories: mathematical and logical reasoning, spatio-temporal reasoning, list/enumeration,

coreference resolution (including implicit references, abstract pronouns, event coreference,

etc.), causal relations, paraphrases and contrasts (including lexical relations such as syn-

onyms, antonyms), commonsense knowledge, and ‘other’. The categories were selected after

a manual inspection of a subset of questions by two of the authors. The annotation pro-

cess revealed that answering questions in our corpus requires a broad variety of reasoning

phenomena. The left plot in Figure 21 provides detailed results.

The figure shows that a large fraction of questions require coreference resolution, and a

more careful inspection revealed that there were different types of coreference phenomena

at play here. To investigate these further, we conducted a follow-up experiment in which

manually annotated all questions that required coreference resolution into finer categories.

Specifically, each question was shown to two annotators who were asked to select one or

more of the following categories: entity coreference (between two entities), event coreference

(between two events), set inclusion coreference (one item is part of or included in the

6The annotations were adjudicated by two authors of this paper.

97

Figure 22: Most frequent first chunks of the questions (counts in log scale).

other) and ‘other’. Figure 21 (right) shows the results of this experiment. We can see

that, as expected, entity coreference is the most common type of coreference resolution

needed in our corpus. However, a significant number of questions also require other types

of coreference resolution. We provide some examples of questions along with the required

reasoning phenomena in Appendix II.

6.4. Analysis

In this section, we provide a quantitative analysis of several baselines for our challenge.

Evaluation Metrics. We define precision and recall for a question q as: Pre(q) =

|A(q)∩Â(q)|
|Â(q)|

and Rec(q) = |A(q)∩Â(q)|
|A(q)| , where A(q) and Â(q) are the sets of correct and selected

answer-options. We define (macro-average) F1m as the harmonic mean of average-precision

avgq∈Q(Pre(q)) and average-recall avgq∈Q(Rec(q)) with Q as the set of all questions.

Since by design, each answer-option can be judged independently, we consider another

metric, F1a, evaluating binary decisions on all the answer-options in the dataset. We

define F1a to be the harmonic mean of Pre(Q) and Rec(Q), with Pre(Q) = |A(Q)∩Â(Q)|
|Â(Q)|

;

A(Q) =
⋃
q∈QA(q); and similar definitions for Â(Q) and Rec(Q).

6.4.1. Baselines

Human. Human performance provides us with an estimate of the best achievable results

on datasets. Using mechanical turk, we ask 4 people (limited to native speakers) to solve

98

our data. We evaluate score of each label by averaging the decision of the individuals.

Random. To get an estimate on the lower-bound we consider a random baseline, where

each answer option is selected as correct with a probability of 50% (an unbiased coin toss).

The numbers reported for this baseline represent the expected outcome (statistical expec-

tation).

IR (information retrieval baseline). This baseline selects answer-options that best match

sentences in a text corpus (Clark et al., 2016). Specifically, for each question q and answer

option ai, the IR solver sends q + ai as a query to a search engine (we use Lucene) on a

corpus, and returns the search engine’s score for the top retrieved sentence s, where s must

have at least one non-stopword overlap with q, and at least one with ai.

We create two versions of this system. In the first variation IR(paragraphs) we create

a corpus of sentences extracted from all the paragraphs in the dataset. In the second

variation, IR(web) in addition to the knowledge of the paragraphs, we use extensive external

knowledge extracted from the web (Wikipedia, science textbooks and study guidelines, and

other webpages), with 5× 1010 tokens (280GB of plain text).

SurfaceLR (logistic regression baseline). As a simple baseline that makes use of our

small training set, we reimplemented and trained a logistic regression model using word-

based overlap features. As described in (Merkhofer et al., 2018), this baseline takes into

account the lengths of a text, question and each answer candidate, as well as indicator

features regarding the (co-)occurrences of any words in them.

SemanticILP (semi-structured baseline). This state-of-the-art solver, originally pro-

posed for science questions and biology tests, uses a semi-structured representation to

formalize the scoring problem as a subgraph optimization problem over multiple layers of se-

mantic abstractions (Khashabi et al., 2018b). Since the solver is designed for multiple-choice

with single-correct answer, we adapt it to our setting by running it for each answer-option.

99

Specifically for each answer-option, we create a single-candidate question, and retrieve a

real-valued score from the solver.

Dev Test

F1m F1a F1m F1a

Random 44.3 43.8 47.1 47.6

IR(paragraphs) 64.3 60.0 54.8 53.9

SurfaceLR 66.1 63.7 66.7 63.5

Human 86.4 83.8 84.3 81.8

Table 24: Performance comparison for different
baselines tested on a subset of our dataset (in per-
centage). There is a significant gap between the
human performance and current statistical meth-
ods.

BiDAF (neural network baseline). As a

neural baseline, we apply this solver by Seo

et al. (2016), which was originally proposed

for SQuAD but has been shown to gener-

alize well to another domain (Min et al.,

2017). Since BiDAF was designed for cloze

style questions, we apply it to our multiple-

choice setting following the procedure by

Kembhavi et al. (2017): Specifically, we

score each answer-option by computing the

similarity value of it’s output span with each of the candidate answers, computed by phrasal

similarity tool of Wieting et al. (2015).

6.4.2. Results

Figure 23: PR curve for each of the baselines.
There is a considerable gap with the baselines
and human.

To get a sense of our dataset’s hardness, we

evaluate both human performance and mul-

tiple computational baselines. Each base-

line scores an answer-option with a real-

valued score, which we threshold to decide

whether an answer option is selected or not,

where the threshold is tuned on the devel-

opment set. Table 24 shows performance

results for different baselines. The signifi-

cantly high human performance shows that

humans do not have much difficulties in an-

swering the questions. Similar observations

100

can be made in Figure 23 where we plot

avgq∈Q(Pre(q)) vs. avgq∈Q(Rec(q)), for different threshold values.

6.5. Summary

To motivate the community to work on more challenging forms of natural language com-

prehension, in this chapter we discussed a dataset that requires reasoning over multiple

sentences. We solicit and verify questions and answers for this challenge through a 4-step

crowdsourcing experiment. Our challenge dataset contains ∼6k questions for +800 para-

graphs across 7 different domains (elementary school science, news, travel guides, fiction

stories, etc) bringing in linguistic diversity to the texts and to the questions wordings. On

a subset of our dataset, we found human solvers to achieve an F1-score of 86.4%. We ana-

lyze a range of baselines, including a recent state-of-art reading comprehension system, and

demonstrate the difficulty of this challenge, The dataset is the first to study multi-sentence

inference at scale, with an open-ended set of question types that requires reasoning skills.

An additional important aspect of this work is that we challenged the community to change

the harmful “fixed” test set methodology, and committed to updating the test set every few

months.

101

CHAPTER 7 : A Question Answering Benchmark for Temporal Common-sense

“Everything changes and nothing stands still.”

— Heraclitus, 535 BC - 475 BC

7.1. Overview

Automating natural language understanding requires models that are informed by com-

monsense knowledge and the ability to reason with it in both common and unexpected

situations. The NLP community has started in the last few year to investigate how to

acquire such knowledge Forbes and Choi (2017); Zhang et al. (2017); Yang et al. (2018);

Rashkin et al. (2018); Bauer et al. (2018); Tandon et al. (2018); Zellers et al. (2018).

This work studies a specific type of commonsense, temporal commonsense.1 For instance,

given two events “going on a vacation” and “going for a walk,” most humans would know

that a vacation is typically longer and occurs less often than a walk, but our programs

currently do not know that.

Temporal commonsense has received limited attention so far. Our first contribution is

that, to the best of our knowledge, we are the first to systematically study and quantify

performance on a range of temporal commonsense phenomena. Specifically, we consider

five temporal properties: duration (how long an event takes), temporal ordering (typical

order of events), typical time (when an event happens), frequency (how often an event

occurs), and stationarity (whether a state holds for a very long time). Previous works have

investigated some of them, either explicitly or implicitly (e.g., duration DivyeKhilnani and

Jurafsky (2011); Williams (2012) and ordering Chklovski and Pantel (2004); Ning et al.

(2018a)), but none of them have defined or studied all aspects of temporal commonsense

in a unified framework. Kozareva and Hovy (2011) came close, when they defined a few

temporal aspects to be investigated, but failed short of distinguishing in text and quantifying

1This chapter is based on the following publication: Zhou et al. (2019).

102

Figure 24: Five types of temporal commonsense in TacoQA. Note that a question may have
multiple answers.

103

performances on these.

Given the lack of an evaluation standards and datasets for temporal commonsense, our sec-

ond contribution is the collection of a new dataset dedicated for it, TacoQA (short for

temporal common-sense question answering).2 TacoQA is constructed via crowdsourcing

with three meticulously-designed stages to guarantee its quality. An entry in TacoQA

contains a sentence providing context information, a question requiring temporal common-

sense, and candidate answers with or without correct ones (see Fig. 24). More details about

TacoQA are in Sec. 7.3.

Our third contribution is that we propose multiple systems, including ESIM, BERT

and their variants, for this task. TacoQA allows us to investigate how state-of-the-art

NLP techniques do on temporal commonsense tasks. Results in Sec. 7.4 show that, despite

a significant improvement over random-guess baselines, BERT is still far behind human

performance on temporal commonsense reasoning, indicating that existing NLP techniques

still have limited capability of capturing high-level semantics like time.

7.2. Related Work

commonsense has been a very popular topic in recent years and existing NLP works have

mainly investigated the acquisition and evaluation of commonsense in the physical world,

including but not limited to, size, weight, and strength Forbes and Choi (2017), roundness

and deliciousness Yang et al. (2018), and intensity Cocos et al. (2018). In terms of common-

sense on “events”, Rashkin et al. (2018) investigated the intent and reaction of participants

of an event, and Zellers et al. (2018) tried to select the most likely subsequent event. As

far as we know, no existing work has focused on temporal commonsense yet.

There have also been many works trying to understand time in natural language but not

necessarily with respect to commonsense, such as the extraction and normalization of tem-

poral expressions Lee et al. (2014), temporal relation extraction Ning et al. (2018b), and

2The dataset and code will be released upon publication.

104

Measure Value

of unique questions 1893
of unique question-answer pairs 13,225
avg. sentence length 17.8
avg. question length 8.2
avg. answer length 3.3

Category # questions avg # of candidate

event frequency 433 8.5
event duration 440 9.4
event stationarity 279 3.1
event ordering 370 5.4
event typical time 371 6.8

Table 25: Statistics of TacoQA.

timeline construction Leeuwenberg and Moens (2018). Among these, some works are im-

plicitly on temporal commonsense, such as event durations Williams (2012); Vempala et al.

(2018), typical temporal ordering Chklovski and Pantel (2004); Ning et al. (2018a), and

script learning (i.e., what happens next after certain events) Granroth-Wilding and Clark

(2016); Li et al. (2018). However, either in terms of datasets or approaches, existing works

did not study all five types of temporal commonsense in a unified framework as we do here.

Instead of working on each individual aspect of temporal commonsense, we formulate the

problem as a machine reading comprehension task in the format of question-answering

(QA). The past few years have also seen significant progress on QA Clark et al. (2018);

Ostermann et al. (2018); Merkhofer et al. (2018), but mainly on general natural language

comprehension tasks without tailoring it to test specific reasoning capabilities such as tem-

poral commonsense. Therefore, a new dataset like TacoQA is strongly desired.

7.3. Construction of TacoQA

We describe our crowdsourcing scheme for TacoQA that is designed after extensive pilot

studies. The multi-step scheme asks annotators to generate questions, validate questions,

and then label candidate answers. We use Amazon Mechanical Turk and restrict our tasks

to English-speakers only. Before working on our task, annotators need to read through our

105

guidelines and pass a qualification test designed to ensure their understandings.3

Step 1: Question generation. In the first step, we ask crowdsourcers to generate

questions given a sentence. We randomly select 630 sentences from MultiRC Khashabi

et al. (2018a) (70 from each of the 9 domains) as input sentences. To make sure that

the questions indeed require temporal commonsense knowledge, we instruct annotators to

follow two requirements when generating questions: (a) “temporal” questions, from one

of our five categories (see Fig. 24); (b) not having direct answers mentioned in the given

sentence. We also ask annotators to provide a correct answer for each of their questions to

make sure that the questions are answerable at least by themselves.

Step 2: Question verification. To improve the quality of the questions generated in

Step 1, we further ask two different annotators to check (a) whether the two requirements

above are satisfied and (b) whether there exist grammatical or logical errors. We keep

a question if and only if both annotators agree on its quality; since the annotator who

provided the question in Step 1 also agrees on it, this leads to a [3/3] agreement for each

question. For the questions that we keep, we continue to ask annotators to give one correct

answer and one incorrect answer, which serve as a seed set for automatic answer expansion

in the next step.

Step 3: Candidate answer expansion. In the previous steps, we have collected 3

positive and 2 negative answers for each question.4 Step 3 aims to automatically expand this

set of candidate answers by three approaches. First, we use a set of rules to extract temporal

terms (e.g. “a.m.”, “1990”, “afternoon”, “day”), or numbers and quantities (“2”, “once”),

which are replaced by terms randomly selected from a list of temporal units (“second”),

adjectives (“early”), points (“a.m.”) and adverbs (“always”); see the appendix for more

details. Examples are “2 a.m.” → “3 p.m.”, “1 day” → “10 days”, “once a week”→
3Our dataset and some related details (such as, our annotation interfaces, guidelines and qualification

tests) are available at the following link: https://bit.ly/2tZ1mkd
4One positive answer from Step 1; one positive and one negative answer from each of the two annotators

in Step 2.

106

“twice a month”. Second, we mask each individual token in a candidate answer and use

BERT Devlin et al. (2018) to predict them; we rank those predictions by the confidence

level of BERT and keep the top ones. Third, for those candidates representing events,

typically there are no temporal terms in them. We then create a pool of 60k event phrases

using PropBank Kingsbury and Palmer (2002), and retrieve the most similar ones to a given

candidate answer using an information retrieval (IR) system.5 We use the three approaches

sequentially to expand the candidate answer set to 20 candidates per question.

Step 4: Answer labeling. In this step, we ask annotators to label each answer with

three options: “likely”, “unlikely”, or “garbage” (incomplete or meaningless phrases). We

keep a candidate answer if and only if all 4 annotators agree on “likely” or “unlikely”, and

“garbage” is not marked by any annotator. We also discard any questions that end up with

no valid candidate answers. Finally, the statistics of TacoQA is in Table 25.

7.4. Experiments

We assess the quality of our dataset using a couple of baseline systems. We create a

uniform split of 30%/70% of the data to dev/test. The rationale behind this split is that, a

successful system has to bring in a huge amount of world knowledge and derive commonsense

understandings prior to the current task evaluation. We therefore believe that it make no

sense to expect a system to train solely on this data, and we think of the development data

as only providing a definition of the task. Indeed, the gains from our development data

are marginal after a certain number of observations. This intuition has been studied and

verified in Appendix A.5.2.

Evaluation metrics. Two question-level metrics are adopted in this work: exact match

(EM) and F1. EM measures in how many questions a system is able to correctly label all

candidate answers, while F1 measures the average overlap between one’s predictions and

the ground truth (see Appendix A.5.3 for full definition).

5www.elastic.co

107

Human performance. An expert annotator also worked on TacoQA to gain a better

understanding of the human performance on it. The expert specifically answered 100 ques-

tions randomly sampled from the test set, and could only see a single answer at a time,

with its corresponding question and sentence.

Systems. We propose to use two state-of-the-art systems in machine reading compre-

hension that are suitable for our task. ESIM Chen et al. (2017) is a neural model effec-

tive on natural language inference. We initialize the word embeddings in ESIM via either

GloVe Pennington et al. (2014) or ELMo Peters et al. (2018) to demonstrate the effect of

pre-training in this task. BERT is a recent state-of-the-art contextualized representation

used in a broad range of high-level tasks Devlin et al. (2018). We also add unit normaliza-

tion to BERT, which extracts and converts temporal expressions in candidate answers to

their most proper units. For example, “30 months” will be converted to “2.5 years”.

Experimental setting. In both ESIM baselines, we model the process as a sentence-pair

labeling task, following the SNLI setting provided in AllenNLP.6 In both versions of BERT,

we use the same sequence pair classification model and the same parameters as in BERT ’s

GLUE experiment.7 A system receives two phrases at a time: (a) the concatenation of the

sentence and question, and (b) the answer. The system makes a binary prediction on each

instance, positive or negative.

Results and discussion. Table 26 provides a summary of the results on TacoQA, where

we compare the ESIM and BERT baselines, along with a few naive baselines (always-

positive, always-negative, uniformly random), to the human performance. The significant

improvement brought by contextualized pre-training such as BERT and ELMo indicates

that a significant portion of commonsense knowledge is actually acquired via pre-training.

We can also see that human annotators achieved a very high performance under both

metrics, indicating the high agreement level humans are on for this task. Our baselines,

6https://github.com/allenai/allennlp
7github.com/huggingface/pytorch-pretrained-BERT

108

System F1 EM

Random 36.2 8.1
Always Positive 49.8 12.1
Always Negative 17.4 17.4

ESIM + GloVe 50.3 20.9
ESIM + ELMo 54.9 26.4

BERT 66.1 39.6
BERT + unit normalization 69.9 42.7

Single Human 87.1 75.8

Table 26: Summary of the performances for different baselines. All numbers are in percentages.

including BERT, still fall behind the human performance with a significantly margin.

Further analysis shows that BERT, as a language model, is good at associating surface-

forms (e.g. associating “sunrise” and “morning” since they often co-occur), which is highly

sensitive to units (days, years, etc). To address the high sensitivity, we added unit normal-

ization on top of BERT, but even with normalization, BERT+unit normalization is still

far behind the human performance. This implies that the information acquired by BERT

is still not sufficient to solve this task. Moreover, the low EM scores show that the current

systems do not truly understand time in those questions.

Figure 25 reveals that the performance of BERT is not uniform across different categories,

which could stem from the nature of those different types of temporal commonsense, quality

of the candidate answers, etc. For example, the number of candidates for stationarity

questions are much smaller than those for other questions, leading to a relatively easy task,

but the performance gain from a random baseline to BERT+normalization is not large,

indicating that further improvement on stationarity is still difficult.

7.5. Summary

This chapter has focused on the challenge of temporal commonsense. Specifically, we framed

it as a QA task, defined five categories of questions that capture such ability, and developed

a novel crowdsourcing scheme to generate a high-quality dataset for temporal commonsense.

109

Figure 25: BERT + unit normalization performance per temporal reasoning category (top), per-
formance gain over random baseline per category (bottom)

We then showed that systems equipped with state-of-the-art language models such as ELMo

and BERT are still far behind humans, thus motivating future research in this area. Our

analysis sheds light on the capabilities as well as limitations of current models. We hope

that this study will inspire further research on temporal commonsense.

110

Part III

Formal Study of Reasoning in

Natural Language

111

CHAPTER 8 : Capabilities and Limitations of Reasoning in Natural Language

“Language is froth on the surface of thought.”

— John McCarthy

8.1. Introduction

Reasoning can be defined as the process of combining facts and beliefs, in order to make

decisions (Johnson-Laird, 1980). In particular, in natural language processing (NLP), it has

been studied under various settings, such as question-answering (QA) (Hirschman et al.,

1999).

Figure 26: The interface between meanings
and symbols: each meaning (top) can be

uttered in many ways into symbolic forms
(bottom).

While there is a rich literature on reason-

ing, there is little understanding of the na-

ture of the problem and its limitations,

especially in the context of natural lan-

guage. In particular, there remains a siz-

able gap between empirical understanding

of reasoning algorithms for language and

the theoretical guarantees for their quality,

often due to the complexity of the reality

they operate on. An important challenge

in many language understanding problems

is the symbol grounding problem (Harnad,

1990), the problem of accurately mapping

symbols into its underlying meaning repre-

sentation. Practitioners often address this

challenging by enriching their representations; for example by mapping textual information

to Wikipedia entries (Mihalcea and Csomai, 2007; Ratinov et al., 2011), or grounding text

to executable rules via semantic parsing (Reddy et al., 2017). Building upon such rep-

112

resentations, has produced various reasoning systems that essentially work by combining

local information.

This work introduces a formalism that incorporates elements of the symbol-grounding prob-

lem, via the two spaces illustrated in Figure 26, and sheds theoretical light on existing

intuitions.1 The formalism consists of (A) an abstract model of linguistic knowledge, and

(B) a reasoning model.

(A) Linguistically-inspired abstract model: We propose a theoretical framework to

model and study the capabilities/limitations of reasoning, especially when taking into ac-

count key difficulties that arise when formalizing linguistic reasoning. Our model uses two

spaces; cf. Figure 26. We refer to the internal conceptualization in the human mind as

the meaning space . We assume the information in this space is free of noise and uncer-

tainty. In contrast to human thinking in this space, human expression of thought via the

utterance of language introduces many imperfections. The information in this linguistic

space—which we refer to as the symbol space —has many language-specific properties. The

symbolic space is often redundant (e.g., multiple symbols “CPU” and “computer processor”

express the same meaning), ambiguous (e.g., a symbol like “chips” could refer to multiple

meanings), incomplete (relations between some symbolic nodes might be missing), and

inaccurate (there might be incorrect edges). Importantly, this noisy symbol space is also

what a machine reasoning algorithm operates in.

(B) Reasoning model: We define reasoning as the ability to infer the existence of

properties of interest in the meaning space , by observing only its representation in the

symbol space . The target property in the meaning graph is what characterizes the nature

of the reasoning algorithm, e.g., are two nodes connected. While there are many flavors of

reasoning (including multi-hop reasoning), in this first study, we explore a common primi-

tive shared among various reasoning formalisms; namely, the connectivity problem between

a pair of nodes in an undirected graph in the meaning space , while observing its noisy ver-

1This chapter is based on the following publication: Khashabi et al. (2019).

113

Figure 27: The meaning space contains [clean and unique] symbolic representation and the facts,

while the symbol space contains [noisy, incomplete and variable] representation of the facts. We
show sample meaning and symbol space nodes to answer the question: Is a metal spoon a good
conductor of heat?.

sion in the symbol space . This simplification clarifies the exposition and the analysis,and

we expect similar results to hold for a broader class of reasoning algorithms that rely on

connectivity.

Figure 27 illustrates a reasoning setting where the semantics of the edges is included. Most

humans understand that V1:“present day spoons” and V2:“the metal spoons” are equiva-

lent nodes (have the same meaning). However, a machine has to infer this understanding.

The semantics of the connection between nodes are expressed through natural language sen-

tences. For example, connectivity could express the semantic relation between two nodes:

has-property(metal,thermal-conductor). However a machine may find it difficult to infer

this fact from, say, reading text over the Internet as it may be expressed in many different

ways, e.g., can be found in a sentence like “dense materials such as [V3:]metals and stones

are [V5:]good conductors of heat”.

To ground this in existing efforts, consider multi-hop reasoning for QA systems (Khashabi

et al., 2016; Jansen et al., 2018). Here the reasoning task is to connect local information, via

multiple local “hops”, in order to arrive at a conclusion. In the meaning graph, one can trace

a path of locally connected nodes to verify the correctness of a query; for example the query

has-property(metal-spoon, thermal-conductor) can be verified by tracing a sequence of

nodes, as shown in Figure 27. In other words, answering queries can be cast as inferring the

114

existence of a path connecting two nodesm andm′. 2 While doing so on the meaning graph

is straightforward, doing so on the noisy symbol graph is not. Intuitively, each local “hop”

introduces more noise, allowing reliable inference to be performed only when it does not

require too many steps in the underlying meaning space . To study this issue, one must

quantify the effect of noise accumulation for long-range reasoning.

Contributions. We believe that this is the first work to provide a mathematical study of

the challenges and limitations of reasoning algorithms in the presence of the symbol-meaning

mapping challenge. We make three main contributions.

First, we establish a novel, linguistically motivated formal framework for analyzing the

problem of reasoning about the ground truth (the meaning space) while operating over a

noisy and incomplete linguistic representation (the symbol space). This framework allows

one to derive rigorous intuitions about what various classes of reasoning algorithms can and

cannot achieve.

Second, we study in detail the connectivity reasoning problem, in particular the interplay

between the noise level in the symbol space (due to ambiguity, variability, and missing

information) and the distance (in terms of inference steps, or hops) between two elements

in the meaning space. We prove that under low noise levels, it is indeed possible to perform

reliable connectivity reasoning up to a few hops (Theorem 1). On the flip side, even a

moderate increase in the noise level makes it difficult to assess the connectivity of elements

if they are logarithmic distance apart in the meaning space (Theorems 2 and 3). This

finding is aligned with empirical observations of “semantic drift”, i.e., substantial drop in

performance beyond a few (usually 2-3) hops (Fried et al., 2015; Jansen, 2016).

Third, we apply the framework to a subset of a real-world knowledge-base, FB15k237,

treated as the meaning graph, illustrating how key noise parameters influence the possibility

(or not) of accurately solving the connectivity problem.

2This particular grounding is meant to help relate our graph-based formalism to existing applications,
and is not the only way of realizing reasoning on graphs.

115

8.2. Related Work

Classical views on reasoning. Philosophers, all the way from Aristotle and Avicenna,

were the first ones to notice reasoning and rationalism (Kirk et al., 1983; Davidson, 1992).

In modern philosophy, the earlier notions were mixed with mathematical logic, resulting in

formal theories of reasoning, such as deductive, inductive, and abductive reasoning (Peirce,

1883). Our treatment of reasoning applies to all these, that can be modeled and executed

using graphical representations.

Reasoning in AI literature. The AI literature has seen a variety of formalisms for

automated reasoning. These include, reasoning with logical representations (McCarthy,

1963), semantic networks (Quillan, 1966), frame-semantic based systems (Fillmore, 1977),

Bayesian networks (Pearl, 1988), among others.

It is widely believed that a key obstacle to progress has been the symbol grounding prob-

lem (Harnad, 1990; Taddeo and Floridi, 2005). Our formalism is directly relevant to this

issue. We assume that symbols available to reasoning systems are results of communica-

tion meaning n natural language. This results in ambiguity since a given symbol could be

mapped to multiple actual meanings but also in variablity (redundancy).

Reasoning for natural language comprehension. In the context of natural language

applications (such as QA) flavors of linguistic theories are blended with the foundation

provided by AI. A major roadblock has been the problem of symbol grounding, or grounding

free-form texts to a higher-level meaning. Example proposals to deal with this issue are,

extracting semantic parses (Kaplan et al., 1982; Steedman and Baldridge, 2011; Banarescu

et al., 2013), linking to the knowledge bases (Mihalcea and Csomai, 2007), mapping to

semantic frames (Punyakanok et al., 2004), etc. These methods can be thought of as

approximate solutions for grounding symbolic information to some meaning. (Roth and Yih,

2004) suggested a general abductive framework that addresses it by connecting reasoning to

models learned from data; it has been used in multiple NLP reasoning problems (Khashabi

116

et al., 2018b).

On the execution of reasoning with the disambiguated inputs there are varieties of proposals,

e.g., using executable formulas (Reddy et al., 2017; Angeli and Manning, 2014), chaining

relations to infer new relations (Socher et al., 2013; McCallum et al., 2017; Khot et al.,

2017), and possible combinations of the aforementioned paradigms (Gardner et al., 2015;

Clark et al., 2016). Our analysis covers any algorithm for inferring patterns that can be

formulated in graph-based knowledge, e.g., chaining local information, often referred to as

multi-hop reasoning (Jansen et al., 2016, 2018; Lin et al., 2018). For example, Jansen et al.

(2017) propose a structured multi-hop reasoning by aggregating sentential information from

multiple knowledge bases. The work shows that while this strategy improves over baselines

with no reasoning (showing the effectiveness of reasoning), with aggregation of more than 2-3

sentences the quality declines (showing a limitation for reasoning). Similar observations were

also made in (Khashabi et al., 2016). These empirical observations support the theoretical

intuition proven in this work.

8.3. Background and Notation

We start with basic definitions and notation.

Graph Theory. We denote an undirected graph with G(V,E) where V and E are the

sets of nodes and edges, resp. We use the notations VG and EG to refer to the nodes and

edges of a graph G, respectively. Let dist(vi, vj) be the distance between nodes vi and vj

in G. A simple path (henceforth referred to as just a path) is a sequence of adjacent nodes

that does not have repeating nodes. Let vi
d
! vj denote the existence of a path of length d

between vi and vj . Similarly, vi��!vj denotes that there is no path between vi and vj . We

define the notion of d-neighborhood in order to analyze local properties of the graphs:

Definition 4. For a graph G = (V,E), s ∈ V , and d ∈ N, the d-neighbourhood of s is

{v | dist(s, v) ≤ d}, i.e., the ‘ball’ of radius d around s. B(s, d) denotes the number of nodes

in this d-neighborhood, and B(d) = maxs∈V B(s, d).

117

Finally, a cut C = (S, T) in G is a partition of the nodes V into subsets S and T . The size

of the cut C is the number of edges in E with one endpoint in S and the other in T .

Probability Theory. X ∼ f(θ) denotes a random variable X distributed according to

probability distribution f(θ), paramterized by θ.

Given random variables X ∼ Bern(p) and Y ∼ Bern(q), their disjunction X ∨ Y is another

Bernoulli Bern(p⊕ q), where p⊕ q , 1− (1−p)(1− q) = p+ q−pq. We will make extensive

use of this notation throughout this work.

8.4. The Meaning-Symbol Interface

We introduce two notions of knowledge spaces:

• The meaning space, M , is a conceptual hidden space where all the facts are accurate

and complete. We assume the knowledge in this space can be represented as an undi-

rected graph, denoted GM (VM , EM). This knowledge is hidden, and representative

of the information that exists within human minds.

• The symbol space, S, is the space of written sentences, curated knowledge-based, etc.,

in which knowledge is represented for human and machine consumption. We assume

access to a knowledge graph GS(VS , ES) in this space that is an incomplete, noisy,

redundant, and ambiguous approximation of GM .

There are interactions between the two spaces: when we read a sentence, we are reading

from the symbol space and interpreting it in the meaning space. When writing out our

thoughts, we symbolize our thought process, by moving them from meaning space to the

symbol space. Figure 26 provides a high-level view of the framework. A reasoning system

is not aware of the exact structure and information encoded in the meaning graph.

The only information given is the ball-assumption, i.e., we assume that each node m is

connected to at most B(m, d) many nodes, within distance at most d. If this bound holds

118

Algorithm 1: Generative construction of knowledge graphs; sampling a symbol knowledge
graph GS given a meaning graph GM .
Input: Meaning graph GM (VM , EM), discrete distribution r(λ), edge retention probability p+, edge

creation probability p−
Output: Symbol graph GS(VS , ES)
foreach v ∈ VM do

sample k ∼ r(λ)
construct a collection of new nodes U s.t. |U | = k
VS ← VS ∪ U
O(v)← U

foreach (m1,m2) ∈ (VM × VM),m1 6= m2 do
S1 ← O(m1), S2 ← O(m2)
foreach e ∈ S1 × S2 do

if (m1,m2) ∈ EM then
with probability p+: ES ← ES ∪ {e}

else
with probability p−: ES ← ES ∪ {e}

for all the nodes in a graph, we’d simply write it as B(d). The ball assumption is a simple

understanding of the maximum-connectivity in the meaning-graph, without knowing the

details of the connections.

Meaning-Symbol mapping. We define an oracle function O : M → 2S that map nodes

in the meaning space to those in the symbol space. When s ∈ O(m), with some abuse of

notation, we write O−1(s) = m.

Generative Modeling of Symbol Graphs. We now explain a generative process for

constructing symbol graphs. Starting with GM , we sample a symbol graph GS ← ALG(GM)

using a stochastic process, detailed in Algorithm 1. Informally, the algorithm simulates

the process of transforming conceptual information into linguistic utterances (web-pages,

conversations, knowledge-bases).

Our stochastic process has three main parameters: (a) the distribution r(λ) of the number of

replicated symbols to be created for each node in the meaning space; (b) the edge retention

probability p+; and (c) the noisy edge creation probability p−. We will discuss later the

regimes under which Algorithm 1 generates interesting symbol graphs.

119

This construction models a few key properties of linguistic representation of meaning. Each

node in the meaning space is potentially mapped to multiple nodes in the symbol space,

which models redundancy. Incompleteness of knowledge is modeled by the fact that not

all meaning space edges appear in the symbol space (controlled by parameter p+ in Algo-

rithm 1). There are also edges in the symbol space that do not correspond to any edges in

the meaning space and account for the noise (controlled by parameter p− in Algorithm 1).

Next, we introduce a linguistic similarity based connection to model ambiguity, i.e., a single

node in the symbol graph mapping to multiple nodes in the meaning graph. The ambiguity

phenomena is modelled indirectly via the linguistic similarity based connections (discussed

next). We view ambiguity as treating (or confusing) two symbol nodes as the same even

when they originate from different nodes in the meaning space.

Noisy Similarity Metric. Similarity metrics are typically used to judge the equivalence

of symbolic assertions. Let ρ : VS×VS → {0, 1} be such a metric, where ρ(s, s′) = 1 denotes

the equivalence of two nodes in the symbol graph. Specifically, we define the similarity to

be a noisy version of the true node similarity between node pairs:

ρ(s, s′) ,

1− Bern(ε+) if O−1(s) = O−1(s′)

Bern(ε−) otherwise

,

where ε+, ε− ∈ (0, 1) are the noise parameters of the similarity function, both typically

close to zero. Intuitively, the similarity function is a perturbed version of ground-truth

similarities, with small random noise (parameterized with ε+ and ε−). Specifically with a

high probability 1−ε+/−, it returns the correct similarity decision (i.e., whether two symbols

have the same meaning); and with a low probability ε+/− it returns an incorrect similarity

decision. In particular, ε+ = ε− = 0 models the perfect similarity metric. In practice, even

the best entailment/similarity systems have some noise (modeled as ε+/− > 0).

We assume algorithms have access to the symbol graph GS and the similarity function ρ,

120

and that they use the following procedure to verify the existence of a connection between

two nodes:

function NodePairConnectivity(s, s′)

return (s, s′) ∈ ES or ρ(s, s′) = 1

end function

There are many corner cases that result in uninteresting meaning or symbol graphs. Below

we define the regime of realistic instances:

Definition 5 (Nontrivial Graph Instances). A pair (GM , GS) of a meaning graph and a

symbol graph sampled from it is non-trivial if it satisfies:

1. non-zero noise, i.e., p−, ε−, ε+ > 0;

2. incomplete information, i.e., p+ < 1;

3. noise content does not dominate the actual information, i.e., p− � p+, ε+ < 0.5 and

p+ > 0.5;

4. GM is not overly-connected, i.e., B(d) ∈ o(n), where n is the number of nodes in GM ;

5. GM is not overly-sparse, i.e., |EGM
| ∈ ω(1).

Henceforth, we will only consider sampling parameters satisfying the above conditions.

Reasoning About Meaning, through Symbols. While the reasoning engine only sees

the symbol graph GS , it must make inferences about the potential latent meaning graph.

Given a pair of nodes VS := {s, s′} ⊂ VS in the symbol graph, the reasoning algorithm must

then predict properties about the corresponding nodes VM = {m,m′} = {O−1(s),O−1(s′)}

in the meaning graph.

We use a hypothesis testing setup to assess the likelihood of two disjoint hypotheses de-

fined over these meaning nodes: H 1

M (VM) and H 2

M (VM). Given observations about the

symbol nodes, defined as XS(VS), the goal of a reasoning algorithm is to identify which of

121

the two hypotheses about the meaning graph has a higher likelihood of resulting in these

observations under the sampling process of Algorithm 1. Formally, we are interested in:

argmax
h∈{H 1

M (VM),H 2
M (VM)}

P(h) [XS(VS)] (8.1)

where P(h) [x] denotes the probability of an event x in the sample space induced by Algo-

rithm 1 on the latent meaning graph GM when it satisfies hypothesis h.

Since we start with two disjoint hypotheses on GM , the resulting probability spaces are gen-

erally different, making it plausible to identify the correct hypothesis with high confidence.

At the same time, with sufficient noise in the sampling process, it can also become difficult

for an algorithm to distinguish the two resulting probability spaces (corresponding to the

two hypotheses) especially depending on the observations XS(VS) used by the algorithm.

For example, the distance between the symbolic nodes can often be an insufficient indicator

for distinguishing these hypotheses. We will explore these two contrasting behaviors in the

next section.

Definition 6 (Reasoning Problem). The input for an instance P of the reasoning problem

is a collection of parameters that characterize how a symbol graph GS is generated from a

(latent) meaning graph GM , two hypotheses H 1

M (VM), H 2

M (VM) about GM , and available

observations XS(VS) in GS . The reasoning problem, P(p+, p−, ε+, ε−, B(d), n, λ, H 1

M (VM),

H 2

M (VM), XS(VS)), is to map the input to the hypothesis h as per Eq. (8.1).

We use the following notion to measure the effectiveness of the observation XS in distin-

guishing between the two hypotheses as in Eq. (8.1):

Definition 7 (γ-Separation). For γ ∈ [0, 1] and a problem instance P with two hypotheses

h1 = H 1

M (VM) and h2 = H 2

M (VM), we say an observation XS(VS) in the symbol space

γ-separates h1 from h2 if:

P(h1) [XS(VS)]− P(h2) [XS(VS)] ≥ γ.

122

We can view γ as the gap between the likelihoods of the observation XS(VS) having orig-

inated from a meaning graph satisfying hypothesis h1 vs. one satisfying hypothesis h2.

When γ = 1, XS(VS) is a perfect discriminator for distinguishing h1 and h2. In general,

any positive γ bounded away from 1 yields a valuable observation.3

Given an observation XS that γ-separates h1 and h2, there is a simple algorithm that

distinguishes h1 from h2:

function SeparatorXS
(GS ,VS = {s, s′})

if XS(VS) = 1 then return h1 else return h2

end function

Importantly, this algorithm does not compute the probabilities in Definition 7. Rather,

it works with a particular instantiation GS of the symbol graph. We refer to such an

algorithm A as γ-accurate for h1 and h2 if, under the sampling choices of Algorithm 1,

it outputs the ‘correct’ hypothesis with probability at least γ; that is, for both i ∈ {1, 2}:

P(hi) [A outputs hi] ≥ γ.

Proposition 1. If observation XS γ-separates h1 and h2, then algorithm SeparatorXS

is γ-accurate for h1 and h2.

Proof. Let A denote SeparatorXS
for brevity. Combining γ-separation of XS with how

A operates, we obtain:

P(h1) [A outputs h1]− P(h2) [A outputs h1] ≥ γ

⇒ P(h1) [A outputs h1] + P(h2) [A outputs h2] ≥ 1 + γ

Since each term on the left is bounded above by 1, each of them must also be at least

γ.

In the rest of work, we will analyze when one can obtain a γ-accurate algorithm, using

γ-separation of the underlying observation as a tool for the analysis.

3If the above probability gap is negative, one can instead use the complement of XS(VS) for γ-separation.

123

We will assume that the replication factor (i.e., the number of symbol nodes corresponding

to each meaning node) is a constant, i.e., r is such that P [|U | = λ] = 1.

8.5. Connectivity Reasoning Algorithm

One simple but often effective approach for reasoning is to focus on connectivity (as de-

scribed in Figure 27). Specifically, we consider reasoning chains as valid if they correspond

to a short path in the meaning space, and invalid if they correspond to disconnected nodes.

Given nodes m,m′ ∈ GM , this corresponds to two possible hypotheses:

h1 = m
d
! m′, and h2 = m��!m′

We refer to distinguishing between these two worlds as the d-connectivity reasoning

problem. While we consider two extreme hypotheses for our analysis, we find that with a

small amount of noise, even these extreme hypotheses can be difficult to distinguish.

For the reasoning algorithm, one natural observation that can be used is the connectivity

of the symbol nodes in GS . Existing models of multi-hop reasoning (Khot et al., 2017) use

similar features to identify valid reasoning chains. Specifically, we consider the observation

that there is a path of length at most d̃ between s and s′:

X d̃
S(s, s′) = s

≤d̃
! s′

The corresponding connectivity algorithm is Separator
X d̃

S
, which we would like to be

γ-accurate for the two hypotheses under consideration. Next, we derive bounds on γ for

these specific hypotheses and observation. Note that while the space of possible hypotheses

and observations is large, the above natural and simple choices still allow us to derive

valuable intuitions for the limits of reasoning.

124

8.5.1. Possibility of accurate connectivity

We begin by defining the following accuracy threshold, γ∗, as a function of the parameters

for sampling a symbol graph:

Definition 8. Given n, d ∈ N and symbol graph sampling parameters p+, ε+, λ, define

γ∗(n, d, p+, ε+, ε−, λ) as

(
1− (1− (p+ ⊕ ε−))

λ2
)d
·
(

1− 2e3ε
λ/2
+

)d+1

− 2en(λB(d))2p−.

This expression is somewhat difficult to follow. Nevertheless, as one might expect, the accu-

racy threshold γ∗ increases (higher accuracy) as p+ increases (higher edge retention) or ε+

decreases (fewer dropped connections between replicas). As λ increases (higher replication),

the impact of the noise on edges between node cluster or d decreases (shorter paths), the

accuracy threshold will also increase.

The following theorem (see Appendix for a proof) establishes the possibility of a γ-accurate

algorithm for the connectivity problem:

Theorem 1. Let p+, p−, ε+, ε−, λ be parameters of the sampling process in Algorithm 1

on a meaning graph with n nodes. Let d ∈ N and d̃ = d(1 + λ). If p− and d satisfy

(p− ⊕ ε−) · B2(d) <
1

2eλ2n
,

and γ = max{0, γ∗(n, d, p+, ε+, ε−, λ)}, then the connectivity algorithm Separator
X d̃

S
is

γ-accurate for the d-connectivity problem.

Proof idea. The proof consists of two steps: first show that for the assumed choice of parameters,

connectivity in the meaning space is recoverable in the symbol space, with high-probability. Then

show that spurious connectivity in the symbol space (with no meaning space counterparts) has low

probability.

Corollary 1. (Informal) If p−, ε−, d, and γ are small enough, then the connectivity algo-

125

rithm Separator
X d̃

S
with d̃ = d(1 + λ) is γ-accurate for the d-connectivity problem.

8.5.2. Limits of connectivity algorithm

We show that as d, the distance between two nodes in the meaning space, increases, it is

unlikely that we will be able to make any inference about their connectivity by assessing

connectivity of the corresponding symbol-graph nodes. More specifically, if d is at least

logarithmic in the number of nodes in the graph, then, even for relatively small amounts

of noise, the algorithm will see all node-pairs as connected within distance d; hence any

informative inference will be unlikely.

Theorem 2. Let c > 1 be a constant and p−, ε−, λ be parameters of the sampling process

in Algorithm 1 on a meaning graph GM with n nodes. Let d ∈ N and d̃ = λd. If

p− ⊕ ε− ≥
c

λn
and d ∈ Ω(log n),

then the connectivity algorithm Separator
X d̃

S
almost-surely infers any node-pair in GM

as connected, and is thus not γ-accurate for any γ > 0 for the d-connectivity problem.

Proof idea. One can show that, for the given choice of parameters, noisy edges would dominate

over informative ones and the symbol-graph would be a densely connected graph (i.e., one cannot

distinguish actual connectivities from the spurious ones).

This result exposes an inherent limitation to multi-hop reasoning: even for small values

of noise, the diameter of the symbol graph becomes very small, namely, logarithmic in n.

This has a resemblance to similar observations in various contexts, commonly known as the

small-world phenomenon. This principle states that in many real-world graphs, nodes are

all linked by short chains of acquaintances, such as “six degrees of separation” (Milgram,

1967; Watts and Strogatz, 1998). Our result affirms that if NLP reasoning algorithms are

not designed carefully, such macro behaviors will necessarily become bottlenecks.

We note that the preconditions of Theorems 1 and 2 are disjoint, that is, both results do not

126

apply simultaneously. Since B(.) ≥ 1 and λ ≥ 1, Theorem 1 requires p− ⊕ ε− ≤ 1
2eλ2n

< 1
λ2n

,

whereas Theorem 2 applies when p− ⊕ ε− ≥ c
λn >

1
λ2n

.

8.6. Limits of General Algorithms

While in the previous section we showed limitations of multi-hop reasoning in inferring

long-range relations, here we extend the argument to prove the difficulty for any reasoning

algorithm.

Our exposition is algorithm independent; in other words, we do not make any assumption

on the choice of ES(s, s′) in Equation 8.1. In our analysis we use the spectral properties of

the graph to quantify local information within graphs.

Figure 28: The construction considered
in Definition 9. The node-pair m-m′ is
connected with distance d in GM , and dis-
connected in G′M , after dropping the edges
of a cut C. For each symbol graph, we
consider it “local” Laplacian.

Consider a meaning graph GM in which two nodes

m and m′ are connected. We drop edges in a min-

cut C to make the two nodes disconnected and get

G′M (Figure 28).

Definition 9. Define a pair of meaning-graphs G

and G′, both with size n and satisfying the ball

assumption B(d), with the following properties: (1)

m
d
! m′ in G, (2) m��!m′ in G′, (3) EG′ ⊂ EG,

(4) C = EG \ EG′ , an (m,m′) min-cut of G.

We define a uniform distribution over all the in-

stances that satisfy the construction explained in

Definition 9:

Definition 10. We define a distribution G over pairs of possible meaning graphs G,G′

and pairs of nodes m,m′ which satisfies the requirements of Definition 9. Formally, G is a

uniform distribution over the following set:

{(G,G′,m,m′) | G,G′,m,m′satisfy Definition 9}.

127

For the meaning graphs, we sample a symbol graph GS and G′S , as denoted in Figure 28. In

the sampling of GS and G′S , all the edges share the randomization, except for the ones that

correspond to C (i.e., the difference between the GM and G′M). Let U be the union of the

nodes involved in d̃-neighborhood of s, s′, in GS and G′S . Define L,L′ to be the Laplacian

matrices corresponding to the nodes of U . As n grows, the two Laplacians become less

distinguishable whenever p− ⊕ ε− and d are large enough:

Lemma 1. Let c > 0 be a constant and p−, λ be parameters of the sampling process in

Algorithm 1 on a pair of meaning graphs G and G′ on n nodes constructed according to

Definition 9. Let d ∈ N, d̃ ≥ λd, and L,L′ be the Laplacian matrices for the d̃-neighborhoods

of the corresponding nodes in the sampled symbol graphs GS and GS
′. If p− ⊕ ε− ≥ c logn

n

and d > log n, then, with a high probability, the two Laplacians are close:

‖L̃− L̃′‖ ≤
√

2λB(1)√
n log(nλ)

This can be used to show that, for such large enough p− and d, the two symbol graphs,

GS and G′S sampled as above, are indistinguishable by any function operating over a λd-

neighborhood of s, s′ in GS , with a high probability.

A reasoning function can be thought of a mapping defined on normalized Laplacians, since

they encode all the information in a graph. For a reasoning function f with limited precision,

the input space can be partitioned into regions where the function is constant; and for large

enough values of n both L̃, L̃′ (with a high probability) fall into regions where f is constant.

Note that a reasoning algorithm is oblivious to the the details of C, i.e. it does not know

where C is, or where it has to look for the changes. Therefore a realistic algorithm ought

to use the neighborhood information collectively.

In the next lemma, we define a function f to characterize the reasoning function, which

uses Laplacian information and maps it to binary decisions. We then prove that for any

such functions, there are regimes that the function won’t be able to distinguish L̃ and L̃′:

128

Lemma 2. Let meaning and symbol graphs be constructed under the conditions of Lemma 1.

Let β > 0 and f : R|U|×|U| → {0, 1} be the indicator function of an open set. Then there

exists n0 ∈ N such that for all n ≥ n0:

P(G,G′,m,m′)∼G
GS←ALG(G),
G′S←ALG(G′)

[
f(L̃) = f(L̃′)

]
≥ 1− β.

This yields the following result:

Theorem 3. Let c > 0 be a constant and p−, ε−, λ be parameters of the sampling process

in Algorithm 1 on a meaning graph GM with n nodes. Let d ∈ N. If

p− ⊕ ε− >
c log n

λn
and d > log n,

then there exists n0 ∈ N such that for all n ≥ n0, any algorithm cannot distinguish, with a

high probability, between two nodes in GM having a d-path vs. being disconnected, and is

thus not γ-accurate for any γ > 0 for the d-connectivity problem.

Proof idea. The proof uses Lemma 2 to show that for the given choice of parameters, the informative

paths are indistinguishable from the spurious ones, with high probability.

This reveals a fundamental limitation: under noisy conditions, our ability to infer interesting

phenomena in the meaning space is limited to a small, logarithmic neighborhood.

8.7. Empirical Analysis

Our formal analysis thus far provides worst-case bounds for two regions in the rather large

spectrum of noisy sampling parameters for the symbol space, namely, when p− ⊕ ε− and d

are either both small (Theorem 1), or both large (Theorem 2).

This section complements the theoretical findings in two ways: (a) by grounding the for-

malism empirically into a real-world knowledge graph, and (b) by quantifying the impact of

129

noisy sampling parameters on the success of the connectivity algorithm. We use ε− = 0 for

this experiments, but the effect turns out to be identical as long as p−⊕ε− stays unchanged

(see Remark 1 in Appendix).

Specifically, we consider FB15k237 (Toutanova and Chen, 2015) containing a set of 〈head,

relation, target〉 triples from a curated knowledge base, FreeBase (Bollacker et al., 2008).

For scalability, we use a subset that relates to the movies domain,4 resulting in 2855 distinct

entity nodes and 4682 relation edges. We treat this as the meaning graph and sample a

symbol graph as per Algorithm 1 to simulate the observed graph derived from text.

We sample symbol graphs for various values of p− and plot the resulting symbol and meaning

graph distances in Figure 29. For every value of p− (y-axis), we sample points in the meaning

graph separated by distance d (x-axis). For these points, we compute the average distance

between the corresponding symbol nodes, and indicate that in the heat map using color

shades.

We make two observations from this simulation. First, for lower values of p−, disconnected

nodes in the meaning graph (rightmost column) are clearly distinguishable from meaning

nodes with short paths (small d) as predicted by Theorem 1, but harder to distinguish from

nodes at large distances (large d). Second, and in contrast, for higher values of p−, almost

every pair of symbol nodes is connected with a very short path (dark color), making it

impossible for a distance-based reasoning algorithm to confidently assess d-connectivity in

the meaning graph. This simulation also confirms our finding in Theorem 2: any graph

with p− ≥ 1/λn, which is ∼ 0.0001 in this case, cannot distinguish disconnected meaning

nodes from nodes with paths of short (logarithmic) length (top rows).

8.8. Summary, Discussion and Practical Lessons

Our work is inspired by empirical observations of “semantic drift” of reasoning algorithms,

as the number of hops is increased. There are series of works sharing this empirical ob-

4Specifically, relations beginning with /film/.

130

Figure 29: Various colors in the figure depict the average distance between node-pairs in the
symbol graph, for each true meaning-graph distance d (x-axis), as the noise parameter p−
(y-axis) is varied. The goal is to distinguish squares in the column for a particular d with
the corresponding squares in the right-most column, which corresponds to node-pairs being
disconnected. This is easy in the bottom-left regime and becomes progressively harder as we
move upward (more noise) or rightward (higher meaning-graph distance). (ε+ = 0.7, λ = 3)

servation; for example, Fried et al. (2015) show modest benefits up to 2-3 hops, and then

decreasing performance; Jansen (2016); Jansen et al. (2018) made similar observations in

graphs built out of larger structures such as sentences, where the performance drops off

around 2 hops. This pattern has interestingly been observed in a number of results with

a variety of representations, including word-level representations, graphs, and traversal

methods. The question we are after in this work is whether the field might be hitting a

fundamental limit on multi-hop information aggregation using existing methods and noisy

knowledge sources.

Our “impossibility” results are reaffirmations of the empirical intuition in the field. This

means that multi-hop inference (and any algorithm that can be cast in that form), as we’ve

been approaching it, is exceptionally unlikely to breach the few-hop barrier predicted in our

analysis.

There are at least two practical lessons:

1. There are several efforts in the field pursuing “very long” multi-hop reasoning. Our

results suggest that such efforts, especially without a careful understanding of the limi-

131

tations, are unlikely to succeed, unless some fundamental building blocks are altered.

2. A corollary of this observation suggests that, due to the limited number of hops, prac-

titioners must focus on richer representations that allow reasoning with only a “few”

hops. This, in part, requires higher-quality abstraction and grounding mechanisms. It

also points to alternatives, such as offline KB completion/expansion, which indirectly

reduce the number of steps needed at inference time. It basically suggests that ambiguity

and variability must be handled well to reduce the number of hops needed.

Finally, we note that our proposed framework applies to any machine comprehension task

over natural text that requires multi-step decision making, such as multi-hop QA or textual

entailment.

132

CHAPTER 9 : Summary and Future Work

 اسرار ازل را نه تو دانی و نه من
 وين حرف معما نه تو خوانی و نه من
 هست از پس پرده گفتگوی من و تو

 چون پرده در افتد نه تو مانی و نه من

There was a Door to which I found no Key
There was a Veil past which I could not see:
Some little Talk awhile of ME and THEE
There seemed--and then no more of THEE and ME.

(Khayyam)

We see the world through you and yet we don’t see you عالم تو ببينيم و نبينيم ترا

(Rumi)

— Omar Khayyam, Rubaiyat, 1120 CE

This thesis aims at progressing towards natural language understanding, by means of the

task of question answering. This chapter, gives a summary of our contributions across this

document and provides a few angles along which we would like to extend this work.

9.1. Summary of Contributions

We start the discussion in Chapter 2 by providing a thorough review of the past literature

concerning NLU, highlighting the ones that are related to the works in this thesis.

Chapter 3 studies reasoning systems for question answering on elementary-school science

exams, using a semi-structured knowledge base. We treat QA as a subgraph selection

problem and then formulate this as an ILP optimization. Most importantly, this formula-

tion allows multiple, semi-formally expressed facts to be combined to answer questions, a

capability outside the scope of IR-based QA systems. In our experiments, this approach

significantly outperforms both the previous best attempt at structured reasoning for this

task, and an IR engine provided with the same knowledge. Our effort has had great impacts

since publication. Our work has inspired others to to build systems based on our design

and to improve the state of the art in other domains; for instance, Khot et al. (2017) uses

similar ideas to reasoning with OpenIE tuples (Etzioni et al., 2008). In addition, the system

has been incorporated into Allen Institute’s reading-comprehension project1 and is shown

to give a significant boost to their performance (Clark et al., 2016). Even after a couple

of years, the system has been shown to be among the best systems on a recently-proposed

reading comprehension task (Clark et al., 2018).

1https://allenai.org/aristo/

133

Chapter 4 extends our abductive reasoning system (from Chapter 3) to consume raw text

as input knowledge. This is the first system to successfully use a wide range of semantic

abstractions to perform a high-level NLP task like Question Answering. Departing from the

currently popular paradigm of generating a very large dataset and learning “everything”

from it in an end-to-end fashion, we demonstrate that one can successfully leverage pre-

trained NLP modules to extract a sufficiently complete linguistic abstraction of the text

that allows answering interesting questions about it. This approach is particularly valuable

in settings where there is a small amount of data. Instead of exploiting peculiarities of

a large but homogeneous dataset, as many state-of-the-art QA systems end up doing, we

focus on confidently performing certain kinds of reasoning, as captured by our semantic

graphs and the ILP formulation of support graph search over them.

Chapter 5 introduces the concept of essential question terms and demonstrates its impor-

tance for question answering. We introduce a dataset for this task and show that our

classifier trained on this dataset substantially outperforms several baselines in identifying

and ranking question terms by the degree of essentiality. Since the publication, this work

has been picked up by others to significantly improve their systems (Ni et al., 2018).

Chapter 6 presents a reading comprehension dataset in which questions require reasoning

over multiple sentences. This dataset contains ∼ 6k questions from different domains and

wide variety of complexities. We have shown a significant performance different between

human and state-of-the-art systems and we hope that this performance gap will encourage

the community to work towards more sophisticated reasoning systems. It is encouraging to

see that the work is already been used in a couple of works (Sun et al., 2019; Trivedi et al.,

2019; Wang et al., 2019).

Chapter 7 offers a question answering dataset dedicated to temporal common sense under-

standing. We show that systems equipped with the state-of-the-art techniques are still far

behind human performance. We hope that the dataset will bring more attention to the

study of common sense (especially in the context of understanding of time).

134

In Chapter 8, we develop a theoretical formalism to investigate fundamental limitations

pertaining to multi-step reasoning in the context of natural language problems. We present

the first analysis of reasoning in the context of properties like ambiguity, variability, in-

completeness, and inaccuracy. We show that a multi-hop inference (and any algorithm

that can be cast in that form), as we’ve been approaching it, is exceptionally unlikely to

breach the few-hop barrier predicted in our analysis. Our results suggest that such efforts,

especially without a careful understanding of the limitations, are unlikely to succeed, un-

less some fundamental building blocks are altered. A corollary of this observation suggests

that, practitioners must focus on richer representations that allow reasoning with only a

“few” hops. This, in part, requires higher-quality abstraction and grounding mechanisms.

In other words, ambiguity and variability must be handled well to reduce the number of

hops needed.

9.2. Discussion and Future Directions

This thesis has taken a noticeably distinct approach towards a few important problems in

the field and has shown progress on multiple ends. For example, the formalism of Chapter 3

and 4 are novel and provide general ways to formalize and implement reasoning algorithms.

The datasets of Chapter 6 and 7 are distinct from the many QA datasets in the field. The

theoretical analysis of Chapter 8 takes a uniquely distinct formal analysis of reasoning in

the context of natural language.

All these said, there are many issues that are not addressed as extensively as we could have

(or should have), or there are aspects that turned out slightly differently from what we

initially expected.

Looking back at the reasoning formalism of Chapter 4, we underestimated the hardness

of extracting the underlying semantic representations. Even though the field has made

significant progress in low-level NLP tasks (like SRL or Coreference), such tasks still suffer

from brittleness and lack of transfer across domains. And brittleness in the extraction

135

of such annotations, result in exponentially bigger errors when reasoning with them (as

also justified by the theoretical observations of Chapter 8); in practice, it worked well

only for short-ranged chains (1, 2, and sometimes 3 hops). With more recent progress in

unsupervised representations and improvement of semantic extraction systems, my hope is

to redo these ideas in the coming years and revisit the remaining challenges.

A vision that I would like to pursue (influenced by discussions with my advisor) is reasoning

with minimal data. We (humans) are able to perform the same reasoning on many high-

level concepts and are able to transfer them in all sorts of domains: for instance, an average

human uses the same inductive reasoning to conclude the sky is blue and inferring that

there is another number after every number. Effective (unsupervised) representation could

potentially need a huge amount of data (and many parameters), but successful reasoning

systems will likely need very minimal data (and very simple, but general definitions).

Over the past years, the field has witnessed a wave of activity on unsupervised language

models (Peters et al., 2018; Devlin et al., 2018). There are many questions with respect

to the success of such models on several datasets: for instance, what kinds of reasoning

are they capable of? what is it that they are missing? And how we can address them by

possibly creating hybrid systems. What is clear is that these systems will offer increasingly

richer representations of meaning; we need better ways to effectively understand what these

systems are capable of and what are the scenarios they are used to represent. And in

conjunction to understanding their capabilities and limitations, we have to build reasoning

algorithms on top of them. It’s unlikely that these tools will ever be enough to solve all of

our challenges; one has to equip these representations with the ability to reason, especially

when they face an unusual/unseen scenario.

In Chapter 5 (essential terms) an initial motivation was to model knowing what we don’t

know (Rajpurkar et al., 2018); basically, systems should be able to infer whether they

have enough confidence about the answer to a given query before acting. In hindsight, I

think our supervised system ended up using too many shallow features, which didn’t end

136

up generalizing to tricky instances. Additionally, it would have been better if the decision

of essentiality was more involved within reasoning systems (rather than an independently

supervised classifier, which limited its domain transfer).

The datasets of Chapter 6 and 7 are critical parts of this thesis which, I suspect, are likely

to be remembered longer than the rest of the chapters. In general, the construction of

datasets (including the ones we described) is a menial task. It’s unfortunate that many

small empirical details are usually left out. It is not clear to me whether using static

datasets is the best way for the road ahead. In the future, I hope that the field discovers

more effective ways of measuring the progress towards NLU.

A key issue contributing to the complexity of NLU (and Question Answering) is the set

of implied information (common sense). We touch upon a class of such understanding in

Chapter 7, where we introduce a dataset for such problems. A natural next step is addressing

such questions and exploring the many ways we can incorporate such understanding in the

models.

The analysis of Chapter 8 is uniquely distinct within the field. That said, there are many

issues that make me feel unsatisfied about our current attempt. In particular, there are many

assumptions that may or may not stand the test of time (e.g., the generative construction of

symbol graph from the meaning graph or the connectivity reasoning as a proxy for the actual

reasoning in language). And there are some important reasoning phenomena missing from

this formalism: conditional reasoning, transitivity and directionality, inductive reasoning,

just to name a few. In general, our (the field’s) understanding of “reasoning” (and its

formalisms) is very limited. And the existing formalisms are not easily applicable, since

those who formalized reasoning were not intimately aware of the complexity of NLU; they

were philosophers and mathematicians. In practice, it’s really hard to make the existing

theories of reasoning work in the existence of many of the properties of language. In the

coming years, I would like to see more efforts on reconciling the issues in the interface of

“language” and “reasoning”.

137

APPENDIX

A.1. Supplementary Details for Chapter 3

A.1.1. The ILP Model for TableILP

Variables: We start with a brief overview of the basic variables and how they are combined

into high level variables.

Reference Description

i index over tables

j index over table rows

k index over table columns

l
index over lexical constituents of

question

m index over answer options

x (.) a unary variable

y (., .) a pairwise variable

Figure 30: Notation for the ILP formulation.

Table 30 summarizes our notation

to refer to various elements of the

problem, such as tijk for cell (j, k)

of table i, as defined in Section 3.

We define variables over each ele-

ment by overloading x (.) or y (., .)

notation which refer to a binary

variable on elements or their pair,

respectively. Table 4 contains the

complete list of basic variables in the model, all of which are binary. The pairwise vari-

ables are defined between pairs of elements; e.g., y (tijk, q`) takes value 1 if and only if the

corresponding edge is present in the support graph. Similarly, if a node corresponding to

an element of the problem is present in the support graph, we will refer to that element as

being active.

In practice we do not create pairwise variables for all possible pairs of elements; instead

we create pairwise variables for edges that have an entailment score exceeding a thresh-

old. For example we create the pairwise variables y
(
tijk, ti′j′k′

)
only if w(tijk, ti′j′k′) ≥

MinCellCellAlignment. An exhaustive list of the minimum alignment thresholds for

creating pairwise variables is in Table 28.

Table 4 also includes some high level unary variables, which help conveniently impose struc-

138

Pairwise Variables
y (tijk, ti′j′k′) 1 y (tijk, tij′k′) w(tijk, tij′k′)− 0.1 y (tijk, q`) w(q`, tijk) y (hik, q`) w(q`, hik)
y (tijk, am) w(tijk, am) y (hik, am) w(hik, am)

Unary Variables
x (Ti) 1.0 x (rij) -1.0 x (`ik) 1.0 x (hik) 0.3
x (tijk) 0.0 x (q`) 0.3

Table 27: The weights of the variables in our objective function. In each column, the weight
of the variable is mentioned on its right side. The variables that are not mentioned here
are set to have zero weight.

tural constraints on the support graph G we seek. An example is the active row variable

x (Ti) which should take value 1 if and only if at least a cell in row j of table i.

Objective function: Any of the binary variables defined in our problem are included in

the final weighted linear objective function. The weights of the variables in the objective

function (i.e. the vector w in Equation 2.1) are set according to Table 27. In addition to the

current set of variables, we introduce auxiliary variables for certain constraints. Defining

auxiliary variables is a common trick for linearizing more intricate constraints at the cost

of having more variables.

Constraints: Constraints are significant part of our model in imposing the desirable

behaviors for the support graph (cf. Section 3.1).

The complete list of the constraints is explained in Table 31. While groups of constraints are

defined for different purposes, it is hard to partition them into disjoint sets of constraints.

Here we give examples of some important constraint groups.

Active variable constraints: An important group of constraints relate variables to each

other. The unary variables are defined through constraints that relate them to the basic

pairwise variables. For example, active row variable x (Ti) should be active if and only if

any cell in row j is active. (constraint A.12, Table 31).

Correctness Constraints: A simple, but important set of constraints force the basic

correctness principles on the final answer. For example G should contain exactly one answer

option which is expressed by constraint A.24, Table 31. Another example is that, G should

contain at least a certain number of constituents in the question, which is modeled by

139

constraint A.27, Table 31.

Sparsity Constraints: Another group of constraint induce simplicity (sparsity) in the

output. For example G should use at most a certain number of knowledge base tables (con-

straint A.25, Table 31), since letting the inference use any table could lead to unreasonably

long, and likely error-prone, answer chains.

A.1.2. Features used in Solver Combination

To combine the predictions from all the solvers, we learn a Logistic Regression model (Clark

et al., 2016) that returns a probability for an answer option, ai, being correct based on the

following features.

Solver-independent features: Given the solver scores sj for all the answer options j, we

generate the following set of features for the answer option ai, for each of the solvers:

1. Score = si

2. Normalized score = si∑
j sj

3. Softmax score = exp(si)∑
j exp(sj)

4. Best Option, set to 1 if this is the top-scoring option = I(si = max sj)

TableILP-specific features: Given the proof graph returned for an option, we generate

the following 11 features apart from the solver-independent features:

1. Average alignment score for question constituents

2. Minimum alignment score for question constituents

3. Number of active question constituents

4. Fraction of active question constituents

140

MinCellCellAlignment 0.6 MinCellQConsAlignment 0.1 MinTitleQConsAlignment 0.1
MinTitleTitleAlignment 0.0 MinCellQChoiceAlignment 0.2 MinTitleQChoiceAlignment 0.2
MinCellQChoiceConsAlignment 0.4 MinCellQChoiceConsAlignment 0.4 MinTitleQChoiceConsAlignment 0.4
MinActiveCellAggrAlignment 0.1 MinActiveTitleAggrAlignment 0.1

Table 28: Minimum thresholds used in creating pairwise variables.

MaxTablesToChain 4 qConsCoalignMaxDist 4 WhichTermSpan 2
WhichTermMulBoost 1 MinAlignmentWhichTerm 0.6 TableUsagePenalty 3
RowUsagePenalty 1 InterTableAlignmentPenalty 0.1 MaxAlignmentsPerQCons 2
MaxAlignmentsPerCell 2 RelationMatchCoeff 0.2 RelationMatchCoeff 0.2
EmptyRelationMatchCoeff 0.0 NoRelationMatchCoeff -5 MaxRowsPerTable 4
MinActiveQCons 1 MaxActiveColumnChoiceAlignments 1 MaxActiveChoiceColumnVars 2
MinActiveCellsPerRow 2

Table 29: Some of the important constants and their values in our model.

5. Average alignment scores for question choice

6. Sum of alignment scores for question choice

7. Number of active table cells

8. Average alignment scores across all the edges

9. Minimum alignment scores across all the edges

10. Log of number of variables in the ILP

11. Log of number of constraints in the ILP

141

Collection of basic variables connected to header
column k of table i:

Hik = {(hik, q`);∀l} ∪ {(hik, am);∀m} (A.1)

Collection of basic variables connected to cell
j, k of table i:

Eijk = {(tijk, tij′k′);∀i′, j′, k′}∪{(tijk, am);∀m}∪{(tijk, q`);∀l}
(A.2)

Collection of basic variables connected to
column k of table i

Cik = Hik ∪

⋃
j

Eijk

 (A.3)

Collection of basic variables connected to row j
of table i:

Rij =
⋃
k

Eijk (A.4)

Collection of non-choice basic variables
connected to row j of table i:

Lij = {(tijk, tij′k′);∀k, i′, j′, k′} ∪ {(tijk, q`);∀k, l} (A.5)

Collection of non-question basic variables
connected to row j of table i:

Kij = {(tijk, tij′k′);∀k, i′, j′, k′} ∪ {(tijk, am);∀k,m} (A.6)

Collection of basic variables connected to table i:
Ti =

⋃
k

Cik (A.7)

Collection of non-choice basic variables
connected to table i:

Ni = {(hik, q`);∀l}∪{(tijk, tij′k′);∀j, k, i′, j′, k′}∪{(tijk, q`);∀j, k, l}
(A.8)

Collection of basic variables connected to
question constituent q`:

Ql = {(tijk, q`);∀i, j, k} ∪ {(hik, q`); ∀i, k} (A.9)

Collection of basic variables connected to option
m

Om = {(tijk, am); ∀i, j, k} ∪ {(hik, am);∀i, k} (A.10)

Collection of basic variables in column k of table
i connected to option m:

Mi,k,m = {(tijk, am);∀j} ∪ {(hik, am)} (A.11)

Table 30: All the sets useful in definitions of the constraints in Table 31.

If any cell in row j of table i is active, the row should be
active.

x (rij) ≥ y (tijk, e) ,∀(tijk, e) ∈ Rij ,∀i, j, k
(A.12)

If the row j of table i is active, at least one cell in that row
must be active as well.

∑
(tijk,e)∈Rij

y (tijk, e) ≥ x (rij) ,∀i, j (A.13)

Column j header should be active if any of the basic variables
with one end in this column header are active.

x (hik) ≥ y (hik, e) ,∀(hik, e) ∈ Hik,∀i, k (A.14)

If the header of column j variable is active, at least one basic
variable with one end in the end in the header

∑
(hik,e)∈Hik

y (hik, e) ≥ x (hik) ,∀i (A.15)

Column k is active if at least one of the basic variables with
one end in this column are active.

x (`ik) ≥ y (tijk, e) ,∀(tijk, e) ∈ Cik,∀i, k (A.16)

A.2. Supplementary Details for Chapter 4

Here we provide some details of our reasoning formulation and its implementation as an

ILP.

The support graph search for QA is modeled as an ILP optimization problem, i.e., as

maximizing a linear objective function over a finite set of variables, subject to a set of

linear inequality constraints. We note that the ILP objective and constraints aren’t tied to

the particular domain of evaluation; they represent general properties that capture what

142

If the column k is active, at least one of the basic variables with one
end in this column should be active.

∑
(tijk,e)∈Cik

y (tijk, e) ≥ x (hik) ,∀i, k (A.17)

If a basic variable with one end in table i is active, the table
variable is active.

y (tijk, e) ≥ x (Ti) ,∀(tijk, e) ∈ Ti,∀i (A.18)

If the table i is active, at least one of the basic variables with one
end in the table should be active.

∑
(t,e)∈Ti

y (t, e) ≥ x (Ti) ,∀i (A.19)

If any of the basic variables with one end in option am are on, the
option should be active as well.

x (am) ≥ y (x, am) ,∀(e, am) ∈ Om (A.20)

If the question option am is active, there is at least one active basic
element connected to it

∑
(e,a)∈Om

y (x, a) ≥ x (am) (A.21)

If any of the basic variables with one end in the constituent q`, the
constituent must be active.

x (q`) ≥ y (e, q`) ,∀(e, q`) ∈ Ql (A.22)

If the constituent q` is active, at least one basic variable connected
to it must be active.

∑
(e,q`)∈Ql

y (e, q`) ≥ x (q`) (A.23)

Choose only a single option.

∑
m

x (am) ≤ 1,
∑
m

x (am) ≥ 1 (A.24)

There is an upper-bound on the number of active tables; this is to
limit the solver and reduce the chance of using spurious tables.

∑
i

x (Ti) ≤MaxTablesToChain (A.25)

The number of active rows in each table is upper-bounded.

∑
j

x (rij) ≤MaxRowsPerTable,∀i (A.26)

The number of active constituents in each question is
lower-bounded. Clearly We need to use the question definition in
order to answer a question.

∑
l

x (q`) ≥MinActiveQCons (A.27)

A cell is active if and only if the sum of coefficients of all external
alignment to it is at least a minimum specified value

∑
(tijk,e)∈Ei,j,k

y (tijk, e) ≥ x (tijk)

×MinActiveCellAggrAlignment,∀i, j, k
(A.28)

A title is active if and only if the sum of coefficients of all external
alignment to it is at least a minimum specified value

∑
(e)∈Hi,k

y (tijk, e) ≥ x (tijk)

×MinActiveTitleAggrAlignment,∀i, k
(A.29)

If a column is active, at least one of its cells must be active as well.

∑
j

x (tijk) ≥ x (`ik) ,∀i, k (A.30)

At most a certain number of columns can be active for a single
option

∑
k

y (`ik, am) ≤MaxActiveChoiceColumn,

∀i,m (A.31)

If a column is active for a choice, the table is active too. x (`ik) ≤ x (Ti) ,∀i, k (A.32)

If a table is active for a choice, there must exist an active column
for choice.

x (Ti) ≤
∑
k

x (`ik) ,∀i (A.33)

If a table is active for a choice, there must be some non-choice
alignment.

y (Ti, am) ≤
∑

(e,e′)∈Ni

y (e, e′) ,∀i,m (A.34)

Answer should be present in at most a certain number of tables
y (Ti, am) ≤MaxActiveTableChoiceAlignmets,

∀i,m (A.35)

If a cell in a column, or its header is aligned with a question option,
the column is active for question option as well.

y (tijk, am) ≤ y (`ik, am) ,

∀i, k,m,∀(tijk, am) ∈Mi,k,m (A.36)

If a column is active for an option, there must exist an alignment to
header or cell in the column.

y (`ik, am) ≤
∑

(tijk,am)∈Oi,k,m

y (tijk, am) ,∀i,m

(A.37)

143

At most a certain number of columns may be active for question
option in a table.

∑
k

y (`ik, am) ≤

MaxActiveChoiceColumnVars,∀i,m (A.38)

If a column is active for a choice, the table is active for an option
as well.

y (`ik, am) ≤ y (Ti, am) ,∀i, k,m (A.39)

If the table is active for an option, at least one column is active
for a choice

y (Ti, am) ≤
∑
k

y (`ik, am) ,∀i,m (A.40)

Create an auxiliary variable x (whichTermIsActive) with
objective weight 1.5 and activate it, if there a “which” term in
the question.

∑
l

1 {q` = “which”} ≤ x (whichTermIsActive)

(A.41)

Create an auxiliary variable x (whichTermIsAligned) with
objective weight 1.5. Add a boost if at least one of the table
cells/title aligning to the choice happens to have a good
alignment ({w(., .) >MinAlignmentWhichTerm}) with the
“which” terms, i.e. WhichTermSpan constituents after
“which”.

∑
i

∑
(e1,e2)∈Ti

y (e1, e2) ≥ x (whichTermIsAligned)

(A.42)

A question constituent may not align to more than a certain
number of cells

∑
(e,q`)∈Ql

y (e, q`) ≤MaxAlignmentsPerQCons

(A.43)

Disallow aligning a cell to two question constituents if they are
too far apart; in other words add the following constraint if the
two constituents q` and q`′ are more than
qConsCoalignMaxDist apart from each other:

y (tijk, q`) + y (tijk, q`′) ≤ 1,∀l, l′, i, j, k (A.44)

For any two two question constraints that are not more than
qConsCoalignMaxDist apart create an auxiliary binary
variable x (cellProximityBoost) and set its weight in the
objective function to be 1/(l − l′ + 1), where l and l′ are the
indices of the two question constituents. With this we boost
objective score if a cell aligns to two question constituents that
are within a few words of each other

x (cellProximityBoost) ≤ y (tijk, q`) ,

x (cellProximityBoost) ≤ y (tijk, q`′) ,∀i, j, k (A.45)

If a relation match is active, both the columns for the relation
must be active

r (`ik, `ik′ , q`, q`′) ≤ x (`ik) , r (`ik, `ik′ , q`, q`′) ≤ x (`ik′)
(A.46)

If a column is active, a relation match connecting to the column
must be active

x (`ik) ≤
∑
k′

(r (`ik, `ik′ , q`, q`′) + r (`ik′ , `ik, q`, q`′)),∀k

(A.47)

If a relation match is active, the column cannot align to the
question in an invalid position

r (`ik, `ik′ , q`, q`′) ≤ 1− y (tijk, q̂`) ,

where q̂` ≤ q` and tijk ∈ `ik (A.48)

If a row is active, at least a certain number of its cells must be
active

∑
k

x (tijk) ≥MinActiveCellsPerRow×x (rij) ,∀i, j

(A.49)

If row is active, it must have non-choice alignments.
x (rij) ≤

∑
(n,n′)∈Lij

y (n, n) (A.50)

If row is active, it must have non-question alignments
x (rij) ≤

∑
(n,n′)∈Kij

y (n, n) (A.51)

If two rows of a table are active, the corresponding active cell
variables across the two rows must match; in other words, the
two rows must have identical activity signature

x (rij) + x (rij′) + x (tijk)

− x (tij′k′) ≤ 2,∀i, j, j′, k, k′ (A.52)

If two rows are active, then at least one active column in which
they differ (in tokenized form) must also be active; otherwise the
two rows would be identical in the proof graph.

∑
tijk 6=tijk′

x (`ik)− x (rij)− x (rij′) ≥ −1 (A.53)

If a table is active and another table is also active, at least one
inter-table active variable must be active;

x (Ti) + x (Ti′) +
∑

j,k,j′,k′

y (tijk, ti′j′k′) ≥ 1,∀i, i′ (A.54)

set

Table 31: The set of all constraints used in our ILP formulation. The set of variables and
are defined in Table 4. More intuition about constraints is included in Section 3. The sets
used in the definition of the constraints are defined in Table 30.

144

constitutes a well-supported answer for a given question.

Our formulation consists of multiple kinds of reasoning, encapsulating our semantic under-

standing of the types of knowledge (e.g., verbs, corefs, etc.) extracted from the text, the

family to graphs used to represent them, and how they interact in order to provide support

for an answer candidate. Each kind of reasoning is added to a general body, defined in Ta-

ble 32, that is shared among different reasoning types. This general body encapsulates basic

requirements such as at most one answer candidate being chosen in the resulting support

graph.

In what follows we delineate various forms of reasoning, capturing different semantic ab-

stractions and valid interactions between them.

Comb-1 (Shallow Alignment)

This reasoning captures the least-constrained formulation for answering questions. We

create alignments between Tokens view of the question, and spans of Shallow-Parse view of

the paragraph. Alignments are scored with the entailment module; the closer the surface

strings are, the higher score their edge gets. There are variables to induce sparsity in the

output; for example, penalty variables for using too many sentences in the paragraph, or

using too many spans in the paragraph. To Add more structure to this, we use Coreference

and Dependency views of the paragraph; for example, alignments that are closer to each other

according the dependency parse, get a higher score. The Coreference links let the reasoning

to jump in between sentences. Figure 31 shows an example output of this type of reasoning.

As it can be seen, the alignment is using multiple terms in the questions and multiple spans

in the paragraph, and the spans belong to one single sentence in the paragraph.

145

Figure 31: Examples of system output for (1) top: Comb-1 (Shallow alignment) (2) middle:
Comb-2 (Verb-SRL alignment) (3) bottom: Comb-5 (Verb-SRL+ Prep-SRL alignment).

Comb-2 (Verb-SRL Alignment)

This reasoning is using Verb-SRL views in both question and paragraph. The core of

this alignment is creating connections between the predicate/arguments and the predi-

cate/arguments of the paragraph, respectively. The edges are scored with our entailment

system; hence the bigger the edge weight is, the higher chance of appearing in the output.

An example outputs are in Figure 31.

Comb-5 (Verb-SRL+Prep-SRL Alignment)

In this type of reasoning we observe the combination of Verb-SRL and Prep-SRL. This can be

considered as an extension of Comb-2 (Verb-SRL alignment), we the alignment is in between

Verb-SRL in question, Verb-SRL and Prep-SRL in the paragraph. The arguments of the Verb-

SRLin the question are aligned to the arguments of either Verb-SRL and Prep-SRL in the

146

Figure 32: Example output of a question SemanticILP answered incorrectly due to a mis-
take in annotations. “eating” in the paragraph is incorrectly recognized as a verb predicate,
with “breathing” as subject, resulting in this incorrect alignment.

paragraph. Predicates of the Verb-SRL are aligned to the predicates Verb-SRL. An example

output prediction is shown in Figure 31.

Similar to the combinations explained, one can identify different combinations, such as

Comb-3(Verb-SRL+Coreference Alignment), Comb-4(Verb-SRL+Comma-SRL Alignment) or Verb-

SRL+Nom-SRL Alignment.

* Variables:
Active answer option variable
Active answer option chunk variable

* Active variable constraints:
If any edge connected to any active variable that belongs to answer option, the answer should be active
If an answer is active, there must be at least one active edge connected to it.

* Consistency constraints:
Only one answer option should be active.

Table 32: Generic template used as part of each reasoning

A.3. Supplementary Details for Chapter 5

A.3.1. Features of the ET Classifier

Here we explain the structure of our classifier. In our design we give references to the

NLP/Machine Learning frameworks we used to build the system, as well as a short account

of our features.

In this work use the Saul framework (Kordjamshidi et al., 2015; Khashabi et al., 2017) 1

1Available at: https://github.com/CogComp/saul

147

* Basic variables:
Active question-terms
Active paragraph-spans
Active paragraph sentence
Question-term to paragraph-span alignment variable
Paragraph-span alignment to answer-option term alignment variable

* Active variable constraints:
Question-term should be active, if any edge connected to it is active.
If a question-term is active, at least one edge connected to it should be active.
Sentence should be active, if anything connected to it is active.
If a sentence is active, at least one incoming edge to one of its terms/spans should be active.

* Question sparsity-inducing variables:
More than k active question-term penalty. (for k = 1, 2, 3)
More than k active alignments to each question-term penalty. (for k = 1, 2, 3)

* Paragraph sparsity-inducing variables:
- Active sentence penalty variable.

* Proximity-inducing variables:
Active dependency-edge boost variable: if two variables are connected in dependency path, and are both
active, this variable can be active.
- Word-pair distance ≤ k words boost: variable between any two word-pair with distance less than k and
active if both ends are active. (for k = 1, 2, 3)

* Sparsity-inducing variables in answer options:
- More than k active chunks in the active answer-option. (for k = 1, 2, 3)
- More than k active edges connected to each chunk of the active answer option. (for k = 1, 2, 3)

Table 33: Comb-1 (Shallow Alignment)

to our problem. This framework gives ability for easy NLP feature definitions and integra-

tions with machine learning models. We use IllinoisPipline2 to annotated raw documents

with different views using such as Tokenizer (Tok), Lemmatizer (Lem), Part-of-Speech tag-

ging (POS), Named-Entity-Recognition (NER), Stanford Dependency Parsing (Dependency)

Marneffe et al. (2006), and Chunker (Chk).

We include the details of features we used in our classifier. A majority of features are

extracted via Edison (Sammons et al., 2016), a library of feature extractor and group of

hand-crafted features. Since Edisonalready covers many standard features, our work here

mostly has focused on selecting relevant ones, and creating their conjunction. These features

cover a wide range of syntactic, semantic features and their combinations. In Figure 33 we

show the frequency in which terms with certain POS tags labeled as essential or not. We

provide some interesting statistics from distribution in Section 2.1. As it can be seen, POS

labels alone are not good discriminants of the target labels, while their combinations with

2Available at: https://github.com/CogComp/cogcomp-nlp

148

* Variables:
Active Verb-SRL constituents in question (both predicates and arguments), 0.01.
Active Verb-SRL constituents in the paragraph (including predicates and arguments), with weight 0.01.
Edge between question-Verb-SRL-argument and paragraph-Verb-SRL-argument (if the entailment score
> 0.6).
Edge between question-Verb-SRL-predicate and paragraph-Verb-SRL-predicate (if the entailment score
> 0.6).
Edge between paragraph-Verb-SRL-argument and answer-options (if the entailment score > 0.6).
Edges between predicate and its arguments argument, inside each Verb-SRL frame in the paragraph, each
edge with weight 0.01.

* Consistency constraints:
Constraints to take care of active variables (e.g. edge variable is active iff its two nodes are active).
At least k = 2 constituents in the question should be active.
At least k = 1 predicates in the question should be active.
At most k = 1 predicates in the paragraph should be active.
For each Verb-SRL frame in the paragraph, if the predicate is inactive, its arguments should be inactive as
well.

Table 34: Comb-2 (Verb-SRL alignment)

Figure 33: Bar graph showing how often words with certain POS tag are labeled as essential
/ non-essential.

other labels (such as lemmas) would give more informative signal.

We have included the complete list of features in Table 37. For simplicity of notation,

denote the surface string feature with Surf, define Conj
{
.
}

to be a feature resulted from

the conjunction of the properties in its arguments. Also let Base
{
.
}

denote a simple

baseline (and feature) returns most-popular labels for its observations; for example Base

{
Lem

}
is a classifier/feature which returns the most-frequent label given the lemma of the

input constituent. Denote an arbitrary feature extractor with fi when extracting the i-th

terms; similarly fi−1/fi+1 is the same feature extractor when applied to the previous/next

term. With this definition we define a neighborhood of fi, Neighbor(fi) be the collection

149

* Variables:
Active Verb-SRL constituents in question (both predicates and arguments), with weight 0.001.
Active Verb-SRL constituents in the paragraph (including predicates and arguments), with weight 0.001.
Active Prep-SRL constituents in the paragraph (including predicates and arguments), with weight 0.001.
Edges between any pair of Prep-SRL arguments in the paragraph and Verb-SRL arguments, with weights
extracted from Paragram(if these scores are > 0.7).
Edges between predicates and arguments of the Prep-SRL frames, with weight 0.02.
Edges between predicates and arguments of the Verb-SRL frames, with weight 0.01.
Edge between question-Verb-SRL-argument and paragraph coref-constituents (if cell-cell entailment score
> 0.6)
Edge between question-Verb-SRL-predicate and paragraph Verb-SRL-predicate (if phrase-sim score > 0.5)
Edge between paragraph Verb-SRL-arguments and answer options (if cell-cell score is > 0.7)

* Consistency constraints:
Each Prep-SRL argument has to have at least an incoming edge (in addition to the edge from its
predicate)
Not possible to have a Verb-SRL argument (in the paragraph)
connected to two Prep-SRL arguments of the same frame (no loop)
Exactly one Prep-SRL predicate in the paragraph
At least one Verb-SRL predicate in the paragraph
At most one Verb-SRL predicate in the paragraph
Not more than one argument of a frame can be connected to the answer option
Each Verb-SRL argument in the paragraph should have at least two active edges connected to.

Table 35: Comb-5 (Verb-SRL+Prep-SRL alignment)

of feature of the same type, applied on neighboring terms of the i-th term:

Neighbor(fi) =
{
fi, fi−1,fi+1, fi−2, fi+2,

Conj
{
fi−1, fi+1

}
,

Conj
{
fi−2, fi−1

}
,

Conj
{
fi+1, fi+2

} }

All the Edisonfeatures come with prefix ed. The details of these features and their imple-

mentation can be directly looked up from Edison. Using such features is simply matter of

calling the feature extractor function, on top of question annotations, which makes them

easy to reproduce.

Some features are crafted specifically for the purpose of this problem. We collected a

set of science terms frequently used in elementary school level textbooks. The feature

150

* Variables:
Active Verb-SRL constituents in question (including predicates and arguments), with weight 0.001.
Active Verb-SRL constituents in the paragraph (including predicates and arguments), with weight 0.001.
Active Coreference constituents in the paragraph, with weight 0.001.
Active Coreference chains in the paragraph, with weight −0.0001.
Edges between any pair of Coreference-constituent in the paragraph that belong to the same Coreference
chain, with weight 0.02.
Edge between question-Verb-SRL-argument and paragraph Coreference-constituents (if entailment score
> 0.6)
Edge between question-Verb-SRL-predicate and paragraph Verb-SRL-predicate (if phrase-sim score > 0.4)
Edge between paragraph Verb-SRL arguments and answer options (if symmetric entailment score is
> 0.65)

* Consistency constraints:
Constraints to take care of active variables (e.g. edge variable is active iff its two nodes are active).
At most k = 1 Coreference chain in the paragraph.
At least k = 1 constituents in the question should be active.
At most k = 1 Verb-SRL predicates in the paragraph. (could relax this and have alignment between
multiple SRL frames in the paragraph)
The question constituents can be active, only if at least one of the edges connected to it is active.
Paragraph Verb-SRL-predicate should have at least two active edges.
If paragraph Verb-SRL-predicate is inactive, the whole frame should be inactive.

Table 36: Comb-3 (Verb-SRL+Coreference alignment)

isScienceTerm
{

.
}

checks whether the output of its input extractor is out science terms

set or not. The feature MaxPMI /SumPMI is the maximum/sum of the PMI value between

the target question term, and the question options.

A.3.2. Humans as reasoning engines

Here we include the results MTurk experiments we discussed in Section 2.2 (Figure 17). Here

we include the whole table for completeness. In particular for each row we have included

the precision. In addition the first row of this table is an experiment without dropping

any terms, just to have a sense of how precision and recall would look like if no term was

dropped. As it can be seen the precisions values are mostly close to each other, which shows

that humans tend to keep their retain their precision across settings, by abstaining from

answering questions they are not sure.

151

Feature Description

Surf

Basic features, which are directly
extracted from the annotations of the
question, i.e. surface string, NER, etc,
and their conjunctions.

Lem
Conj

{
POS, NER

}
Conj

{
Surf, NER

}
Conj

{
Surf, POS

}
Conj

{
Surf, NER, POS

}
Conj

{
Lem, POS

}
Chk

Conj
{
ed.conflatedPos, Lem

}

The features extracted by direct calls
to Edisonfeature-extraction library,
on top of the basic annotations of the
question. For example
ed.brownClusterFeatures extracts
the Brown representation for a given
word, using its internal pre-extracted
Brown representation. Another
example is
ed.wordnetSynsetsAllSenses, which
given a term, returns all the synsets of
that word.

Conj
{
ed.conflatedPos, Surf

}
ed.deVerbalSuffix

ed.gerundMarker

ed.knownPrefixes

ed.nominalizationMarker

ed.numberNormalizer

ed.deVerbalSuffix

ed.prefixSuffixes

ed.parsePath

ed.brownClusterFeatures

ed.dependencyPathUnigram

ed.dependencyPathBigram

ed.isItCapitalized

ed.isItLastSentence

ed.wordnetSynsetsFirstSense

ed.wordnetSynsetsAllSenses

ed.wordnetLexicographerFileNamesAllSenses

ed.wordnetLexicographerFileNamesFirstSense

ed.wordnetHypernymFirstSenseLexicographerFileNames

ed.wordnetHypernymAllSensesLexicographerFileNames

ed.wordnetPointersFirstSense

ed.wordnetPointersAllSenses

ed.wordnetSynonymsFirstSense

ed.wordnetSynonymsAllSense

Conj
{
ed.wordnetExists, ed.wordnetSynsetsFirstSense,

ed.wordnetLexicographerFileNamesFirstSense
}

isScienceTerm
{
Surf

}
We hand-craft these features based on
previous features. For example
isScienceTerm

{
Lem

}
checkes

whether lemma of a given word is in
our collected science terms or not.

isScienceTerm
{
Lem

}
SumPMI
MaxPMI
Neighbor

(
Base

{
Surf

})
Neighbor

(
Base

{
Lem

})
Neighbor

(
Base

{
Pair

(
Surf

) })
Neighbor

(
Base

{
Pair

(
Lem

) })
Neighbor

(
Base

{
Conj

{
POS, NER

} })
Neighbor

(
Base

{
Conj

{
POS, Lem

} })
Neighbor

(
Base

{
Conj

{
Surf, POS, Lem

} })
Table 37: List of important feature categories in our system.

152

Setting Threshold Precision Recall Term-drop ratio Test score (%)
Nothing is dropped – 0.868 0.970 0 0.85.02

(A
)

G
o
ld

A
n
n
o
ta

ti
o
n
s Drop terms with

essentialityscore
above certain
threshold

0.2 0.689 0.08 0.35 28.51
0.4 0.693 0.168 0.299 32.44
0.6 0.804 0.3287 0.183 43.20
0.8 0.812 0.328 0.17 43.43
1.0 0.823 0.49 0.12 53.07

Keep terms with
essentialityscore
above some
threshold

0.0 0.813 0.854 0.604 73.08
0.2 0.7857 0.805 0.676 68.125
0.4 0.824 0.654 0.7543 62.53
0.6 0.77 0.66 0.8 59.32
0.8 – – – –

(B
)
E
T

C
la

ss
ifi

er

Drop terms with
essentialityscore
above some
threshold

0.0 0.7 0.017 0.873 25.76
0.2 0.771 0.03 0.4342 26.56
0.4 0.9066 0.0646 0.3331 29.24
0.6 0.9024 0.255 0.176 41.63
0.8 0.91 0.9364 0.0812 86.802
1.0 0.9 0.98 0 88.7

Keep terms with
essentialityscore
above some
threshold

0.0 0.932 0.746 0.5166 75.87
0.2 0.937 0.803 0.5166 80.16
0.4 0.923 0.779 0.581 77.42
0.6 0.91 0.686 0.68 70.27
0.8 0.538 0.02 0.87 25.57
1.0 0.57 0.04 0.88 26.28

Table 38: This table contains the exact numbers when using essentiality scores for dropping
most important/least important terms in the question (Section 2.2). The setting (A) is
when the gold annotations are used and setting (B) is when real-valued scores of the trained
classifier are used. Precision is ratio of the questions answered correctly, if they answered
at all. Recall is the ratio of the times a question is answered. Term-drop ratio is ratio
of the terms dropped in the question sentence (compared to the the overall length of the
question).

Question Key

Which item causes objects to roll downhill? (A) gravity(B) friction(C) erosion(D) magnetism A
Which sense is used to determine a sweet object’s texture? (A) hearing(B) smell(C) taste(D) touch D
An animal grows thicker hair as a season changes. This adaptation helps to (A) find food(B) keep
warmer(C) grow stronger(D) escape from predators

B

What is the main energy for the water cycle? (A) electricity(B) erosion(C) gravity(D) sunlight D
Which human activity is most damaging to the environment? (A) swimming in a lake(B) riding a
bicycle(C) cutting down a rain forest(D) using solar energy

C

Which force washes away coastal soil? (A) gravity(B) friction(C) erosion(D) magnetism C
Which unit of measurement describes an object’s size? (A) meter(B) kilogram(C) liter(D) degree A
Which form of energy is found in food? (A) chemical(B) electrical(C) sound(D) mechanical B
Which object is nonliving? (A) bear(B) bicycle(C) bird(D) butterfly B
Which sense is used to determine a colorful object’s texture? (A) sight (B) smell(C) taste(D) touch D
A mamal grows thicker hair as a season changes. This adaptation helps to (A) find food(B) keep
warmer(C) grow stronger(D) escape from predators

B

A mammal shivers when it’s cold. This adaptation is to (A) find food (B) get warmer body (C) grow
stronger(D) escape from predators

B

Table 39: List of the synthesized question for Section 4.3. These question are hand-made
and perturbed versions of the existing question to trick the vanilla TableILP. The design
of these questions is done completely independent of the essentiality scores.

153

A.3.3. Synthetic questions

Here we have included the synthetic dataset with discussed in Section 4.2. As mentioned

these question are hand-made and perturbed versions of the existing question to trick the

vanilla TableILP. Note that their design is done completely independent of the essential-

ityscores. The complete list of the questions are included in Table 39.

In the following two examples we take questions which TableILP answers correct for the

right reason (hence we are sure that the solver has the right knowledge to answer it, as well

as almost correct fuzzy matching scores). We change two words, while retaining the general

meaning of the questions, but tricking the solver into answering it incorrectly.

Original question: A fox grows thicker fur as a season changes. This adaptation helps the

fox to (A) find food(B) keep warmer(C) grow stronger(D) escape from predators

Generated question: An animal grows thicker hair as a season changes. This adaptation

helps to (A) find food(B) keep warmer(C) grow stronger(D) escape from predators

Original question: Which force causes rocks to roll downhill? (A) gravity(B) friction(C)

erosion(D) magnetism

Generated question: Which item causes objects to roll downhill? (A) gravity(B) friction(C)

erosion(D) magnetism

A.3.4. Example predictions: before and after adding ET

Here in Table 41 we show two sample questions for the analysis done in Section 4.3 and in

Table 40. In the first row we have a question which is correct been answered by TableILP ,

but for an incorrect reason (since it’s using only “plan” to answer a question about “gasses

used in photosynthesis”). Augmenting the solver with ET, the prediction turns into an

incorrect one, mostly probably due to an inaccurate alignment scores. One can also blame

low ET score of “use” which is about 0.4.

154

Correctly
answered by
TableILP;

turned incorrect
in Cascades

Inocorrect
answered by
TableILP;

turned correct in
Cascades

Correct
reason-
ing

5 4

Partially
correct

7 7

Got
lucky

11 2

Sum 23 13

Table 40: Breakdown of the predictions changed from adding TableILP to Cascades,
classified according to their reasons, annotated manually by inspecting the reasoning graph
of each question.

In the second row we have an incorrect answer by TableILPwhich is turned into a correct

prediction by adding ET, and the reasoning chain is mostly correct except a few noisy edges

(e.g. “flag”-“lift objects” edge).

A.3.5. Error Analysis for TableILP+ET

We manually analyzed the predictions of TableILP vs. Cascades(0.4, 0.6, 0.8, 1.0) on the

training set of AI2Public (the test questions remain hidden). Out of 432 questions in

total, the two systems differ on 57 questions. Out of these, 23 correct ones are turned

into incorrect, and 13 incorrect predictions are turned correct, as a result of adding ET to

TableILP. Hence, the overall performance drops.

One annotator went through the reasoning graphs of these questions and classified them

into multiple groups base on how convincing the reasoning used by the solver was. Table 40

shows breakdown of these questions and their classes. The row “correct alignment” is when

the required knowledge is there and it’s used correctly in the reasoning graph. The row

“partially correct” is when there are some noisy alignments as well as the correct alignment.

The row “got lucky” are correct predictions, but for wrong reasons: not having the necessary

knowledge, not performing the natural reasoning, etc.

155

	
	

	 Q:	 Which	 of	 the	 following	 gases	 do	 plants	 use	 in	 photosynthesis?	 	

	

	

	

	

	

	

	

	

	

	 Q:	 Which	 of	 the	 following	 gases	 do	 plants	 use	 in	 photosynthesis?	 	

	

	

	

	

	

	

	

(A)	 	 hydrogen	

(B)	 	 oxygen	

(C)	 	 carbon	 dioxide	 	

(D)	 	 carbon	 monoxide	

LHS	 Relation	 RHS	

photosynthesis	 hyponym	
a	 process	 &	 (plants	 make	 their	 own	 food	 a	
process)	 &	 (plants	 give	 off	 oxygen	 &	 (they	

not	 using	 oxygen)	 &	 water	 a	 process)	
plants	 make	

food	 condition	 they	 give	 off	 oxygen	 &	 water	

….	 ….	 …	

LHS	 typeOf	 RHS	

oxygen	 hyponym	 a gas & (many animals need a gas)	
…. ….	 …

(A)	 	 hydrogen	

(B)	 	 oxygen	

(C)	 	 carbon	 dioxide	

(D)	 	 carbon	 monoxide	

LHS	 Relation	 RHS	

plants	 take	 in carbon dioxide	

plants	 take	 in carbon dioxide also from the environment and return
oxygen to the air for animals to use	

….	 ….	 …	

	

	

	

Semi-‐structured	 Knowledge	 	

	

	

	

	

	

	

Semi-‐structured	 Knowledge	 	

0

0.2

0.4

0.6

0.8

1

W
hi
ch of th
e

fo
llo
w
in
g

ga
se
s do

pl
an
ts

us
e in

ph
ot
os
yn
th
es
is ?

Chart	 Title

	
	

	 Q:	 Which	 of	 the	 following	 gases	 do	 plants	 use	 in	 photosynthesis?	 	

	

	

	

	

	

	

	

	

	

	 Q:	 Which	 of	 the	 following	 gases	 do	 plants	 use	 in	 photosynthesis?	 	

	

	

	

	

	

	

	

(A)	 	 hydrogen	

(B)	 	 oxygen	

(C)	 	 carbon	 dioxide	 	

(D)	 	 carbon	 monoxide	

LHS	 Relation	 RHS	

photosynthesis	 hyponym	
a	 process	 &	 (plants	 make	 their	 own	 food	 a	
process)	 &	 (plants	 give	 off	 oxygen	 &	 (they	

not	 using	 oxygen)	 &	 water	 a	 process)	
plants	 make	

food	 condition	 they	 give	 off	 oxygen	 &	 water	

….	 ….	 …	

LHS	 typeOf	 RHS	

oxygen	 hyponym	 a gas & (many animals need a gas)	
…. ….	 …

(A)	 	 hydrogen	

(B)	 	 oxygen	

(C)	 	 carbon	 dioxide	

(D)	 	 carbon	 monoxide	

LHS	 Relation	 RHS	

plants	 take	 in carbon dioxide	

plants	 take	 in carbon dioxide also from the environment and return
oxygen to the air for animals to use	

….	 ….	 …	

	

	

	

Semi-‐structured	 Knowledge	 	

	

	

	

	

	

	

Semi-‐structured	 Knowledge	 	

Q:	 A	 simple	 machine	 that	 helps	 move	 a	 flag	 up	 a	 flagpole	 is	 	

 	

	

	

	

	

Q:	 A	 simple	 machine	 that	 helps	 move	 a	 flag	 up	 a	 flagpole	 is	 	

	

(A)	 	 a	 bar	 magnet	
(B)	 	 an	 inclined	 plane	
(C)	 	 a	 pulley	
(D)	 	 a	 lever	

simple
machine purpose example

lever move a heavy object
with little force seesaw

… … …

mechanical device function target subject
pulley moving straight up or down objects

… … … …

(A)	 	 a	 bar	 magnet	
(B)	 	 an	 inclined	 plane	
(C)	 	 a	 pulley	
(D)	 	 a	 lever	

LHS Relation RHS
pulleys purpose lift objects

… … …

	

	

	

Semi-‐structured	 Knowledge	 	

	

	

	

	

Semi-‐structured	 Knowledge	 	

0

0.2

0.4

0.6

0.8

A

si
m
pl
e

m
ac
hi
ne

th
at
	

he
lp
s

m
ov
e	 a	

fla
g	

up
	 a	

fla
gp
ol
e	 is
	

Chart	 Title

Q:	 A	 simple	 machine	 that	 helps	 move	 a	 flag	 up	 a	 flagpole	 is	 	

 	

	

	

	

	

Q:	 A	 simple	 machine	 that	 helps	 move	 a	 flag	 up	 a	 flagpole	 is	 	

	

(A)	 	 a	 bar	 magnet	
(B)	 	 an	 inclined	 plane	
(C)	 	 a	 pulley	
(D)	 	 a	 lever	

simple
machine purpose example

lever move a heavy object
with little force seesaw

… … …

mechanical device function target subject
pulley moving straight up or down objects

… … … …

(A)	 	 a	 bar	 magnet	
(B)	 	 an	 inclined	 plane	
(C)	 	 a	 pulley	
(D)	 	 a	 lever	

LHS Relation RHS
pulleys purpose lift objects

… … …

	

	

	

Semi-‐structured	 Knowledge	 	

	

	

	

	

Semi-‐structured	 Knowledge	 	

Table 41: Comparison of the reasoning graphs, for TableILP and Cas-
cades(TableILP+ET). In the first row, adding ET changes the correct prediction to
incorrect, but in the second row, it corrects the incorrect prediction.

156

As can be seen, among the prediction changes, size of the resulted correct predictions are

more reliable than the questions that were correct but turned incorrect after adding ET.

In other words, the drop we see in performance of TableILP after adding ET is due to

existence of other inaccurate solver ingredients. In Appendix IV, we provide a visualization

of two questions for each of these categories to give more intuition to the reader.

A.4. Supplementary Details for Chapter 6

A.5. Supplementary Details for Chapter 7

A.5.1. Perturbing Candidate Answers

Here we provide a few missing details from Step 3 of our annotations (Section 3). In

particular, we create collections of common temporal expressions (see Table 42) to detect

whether the given candidate answer contains a temporal expression or not. If a match

is found within this list, we use the mappings to create perturbations of the temporal

expression.

Adjectives Frequency Period Typical time Units

early:late always:sometimes:never night:day now:later second:hour:week:year
late:early occasionally:always:never day:night today:yesterday seconds:hours:weeks:years

morning:late night often:rarely tomorrow:yesterday minute:day:month:century
night:early morning usually:rarely tonight:last night minutes:days:months:centuries

evening:morning rarely:always yesterday:tomorrow hour:second:week:year
everlasting:periodic constantly:sometimes am:pm hours:seconds:weeks:years

initial:last never:sometimes:always pm:am day:minute:month:century
first:last regularly:occasionally:never a.m.:p.m. days:minutes:months:centuries
last:first p.m.:a.m. week:second:hour:year

overdue:on time afternoon:morning weeks:seconds:hours:years
belated:punctual morning:evening month:minute:day:century

long-term:short-term night:morning months:minutes:days:centuries
delayed:early after:before year:second:hour:week

punctual:belated before:after years:seconds:hours:weeks
century:minute:day:month

centuries:minutes:days:months

Table 42: Collections of temporal expressions used in creating perturbation of the candidate
answers. Each mention is grouped with its variations (e.g., “first” and “last” are in the same
set).

157

A.5.2. Performance as a function of training size

An intuition that we stated is that, the task at hand requires a successful model to bring in

external world knowledge beyond what is observed in the dataset; since for a task like this,

it is unlikely to compile an dataset which covers all the possible events and their attributes.

In other words, the “traditional” supervised learning alone (with no pre-training or external

training) is unlikely to succeed. A corollary to this observation is that, tuning a pre-training

system (such as BERT Devlin et al. (2018)) likely requires very little supervision.

We plot the performance change, as a function of number of instances observed in the train-

ing time (Figure 34). Each point in the figure share the same parameters and averages of

5 distinct trials over different random sub-samples of the dataset. As it can be observed,

the performance plateaus after about 2.5k question-answer pairs (about 20% of the whole

datasets). This verifies the intuition that systems can rely on a relatively small amount of

supervision to tune to task, if it models the world knowledge through pre-training. More-

over, it shows that trying to make improvement through getting more labeled data is costly

and impractical.

A.5.3. Metrics

We use two question level metrics to compare performances of the systems. For a given

candidate answer a that belongs to a question q, let f(a; q) ∈ {0, 1} denote the correctness

of the prediction made by a fixed system (1 for correct; 0 otherwise). Additionally, let D

denote the collection of questions in our evaluation set.

• Exact Match (EM):

EM ,

∑
q∈D

∏
a∈q f(a; q)

| {q ∈ D} |

158

Figure 34: Performance of supervised algorithm (BERT; Section 4) as function of various
sizes of observed training data. When no training data provided to the systems (left-most
side of the figure), the performance measures amount to random guessing.

• Define F1(q) with precision-recalls of the predictions for a fixed question.

P (q) =

∑
a∈q [f(a; q) = 1] ∧ [a is correct]

| {a is correct ∧ a ∈ q} |

Similarly R(q) and F1(q) are defined. And the aggregate F1 on a dataset D is an

average of question-level F1s:

F1 ,

∑
q∈D F1(q)

| {q ∈ D} |

EM is a stricter metric since it assigns credit only if all the candidate answers are predicted

correctly. In our opinion, this is more appropriate metric, since it directly measures question

understanding: only if a system completely understands a question, it should get all it

candidates correctly. F1 is a more relaxed version of EM , but it could be misleading to

solely rely on this metric since the gaps are smaller.

159

A.6. Supplementary Details for Chapter 8

We here provide detailed proofs of the formal results, followed by additional experiments.

The following observation allows a simplification of the proofs, without loss of any generality.

Remark 1. Since our procedure doesn’t treat similarity edges and meaning-to-symbol noise

edges differently, we can ‘fold’ ε− into p− and p+ (by increasing edge probabilities). More

generally, the results are identical whether one uses p+, p−, ε− or p′+, p
′
−, ε

′
−, as long as:

p+ ⊕ ε− = p′+ ⊕ ε′−

p− ⊕ ε− = p′− ⊕ ε′−

For any p+ and ε−, we can find a p+ such that ε− = 0. Thus, w.l.o.g., in the following

analysis we derive results only using p+ and p− (i.e. assume ε− = 0). Note that we expand

these terms to p+ ⊕ ε− and p− ⊕ ε− respectively in the final results.

A.6.1. Proofs: Possibility of Accurate Connectivity Reasoning

In this section we provide the proofs of the additional lemmas necessary for proving the

intermediate results. First we introduce a few useful lemmas, and then move on to the proof

of Theorem 1.

We introduce the following lemmas which will be used in connectivity analysis of the clusters

of the nodes O(m).

Lemma 3 (Connectivity of a random graph (Gilbert, 1959)). Let Pn denote the probability

of the event that a random undirected graph G(n, p) (p > 0.5) is connected. This probability

can be lower-bounded as following:

Pn ≥ 1−
[
qn−1

{
(1 + q(n−2)/2)n−1 − q(n−2)(n−1)/2

}
+ qn/2

{
(1 + q(n−2)/2)n−1 − 1

}]
,

where q = 1− p.

160

See Gilbert (1959) for a proof of this lemma. Since q ∈ (0, 1), this implies that Pn → 1 as

n increases. The following lemma provides a simpler version of the above probability:

Corollary 2 (Connectivity of a random graph (Gilbert, 1959)). The random-graph con-

nectivity probability Pn (Lemma 3) can be lower-bounded as following:

Pn ≥ 1− 2e3qn/2

Proof. We use the following inequality:

(1 +
3

n
)n ≤ e3

Given that q ≤ 0.5, n ≥ 1, one can verify that q(n−2)/2 ≤ 3/n. Combining this with the

above inequality gives us, (1 + qn−2/2)n−1 ≤ e3.

With this, we bound the two terms within the two terms of the target inequality:

(1 + q(n−2)/2)n−1 − q(n−2)(n−1)/2 ≤ e3

(1 + q(n−2)/2)n−1 − 1 ≤ e3

[
qn−1

{
(1 + q(n−2)/2)n−1 − q(n−2)(n−1)/2

}
+ qn/2

{
(1 + q(n−2)/2)n−1 − 1

}]
≤ e3qn−1+e3qn/2 ≤ 2e3qn/2

which concludes the proof.

We show a lower-bound on the probability of s and s′ being connected given the connectivity

of their counterpart nodes in the meaning graph. This lemma will be used in the proof of

Theorem 1:

161

Lemma 4 (Lower bound). P
[
s

d̃
! s′|m d

! m′
]
≥
(

1− 2e3ε
λ/2
+

)d+1
·
(

1− (1− p+)λ
2
)d

.

Proof. We know thatm andm′ are connected through some intermediate nodesm1,m2, · · · ,m`

(` < d). We show a lower-bound on having a path in the symbol-graph between s and s′,

through clusters of nodes O(m1),O(m2), · · · ,O(m`). We decompose this into two events:

e1[v] For a given meaning node v its cluster in the symbol-graph, O(v) is connected.

e2[v, u] For any two connected nodes (u, v) in the meaning graph, there is at least an edge

connecting their clusters O(u),O(v) in the symbol-graph.

The desired probability can then be refactored as:

P
[
s

d̃
! s′|m d

! m′
]
≥ P

 ⋂
v∈{s,m1,...,m`,s′}

e1[v]

 ∩
 ⋂

(v,u)∈{(s,m1),...,(m`,s′)}

e2[v, u]

≥ P [e1]d+1 · P [e2]d .

We split the two probabilities and identify lower bounds for each. Based on Corollary 2,

P [e1] ≥ 1 − 2e3ε
λ/2
+ , and as a result P [e1]d+1 ≥

(
1− 2e3ε

λ/2
+

)d+1
. The probability of

connectivity between pair of clusters is P [e2] = 1 − (1 − p+)λ
2
. Thus, similarly, P [e2]d ≥(

1− (1− p+)λ
2
)d

. Combining these two, we obtain:

P
[
s

d̃
! s′|m d

! m′
]
≥
(

1− 2e3ε
λ/2
+

)d+1
·
(

1− (1− p+)λ
2
)d

(A.55)

The connectivity analysis of GS can be challenging since the graph is a non-homogeneous

combination of positive and negative edges. For the sake of simplifying the probabilistic

arguments, given symbol graph GS , we introduce a non-unique simple graph G̃S as follows.

Definition 11. Consider a special partitioning of VG such that the d-neighbourhoods of s

162

and s′ form two of the partitions and the rest of the nodes are arbitrarily partitioned in a

way that the diameter of each component does not exceed d̃.

• The set of nodes VG̃S
of G̃S corresponds to the aforementioned partitions.

• There is an edge (u, v) ∈ EG̃S
if and only if at least one node-pair from the partitions

of VG corresponding to u and v, respectively, is connected in EGS
.

In the following lemma we give an upper-bound on the connectivity of neighboring nodes

in G̃S :

Lemma 5. When GS is drawn at random, the probability that an edge connects two

arbitrary nodes in G̃S is at most (λB(d))2p−.

Proof. Recall that a pair of nodes from G̃S , say (u, v), are connected when at least one

pair of nodes from corresponding partitions in GS are connected. Each d-neighbourhood

in the meaning graph has at most B(d) nodes. It implies that each partition in G̃S has at

most λB(d) nodes. Therefore, between each pair of partitions, there are at most (λB(d))2

possible edges. By union bound, the probability of at least one edge being present between

two partitions is at most (λB(d))2p−.

Let vs, vs′ ∈ VG̃S
be the nodes corresponding to the components containing s and s′ respec-

tively. The following lemma establishes a relation between connectivity of s, s′ ∈ VGS
and

the connectivity of vs, vs′ ∈ VG̃S
:

Lemma 6. P
[
s

d̃
! s′|m��!m′

]
≤ P

[
There is a path from vs to vs′ in G̃S with length d̃

]
.

Proof. Let L and R be the events in the left hand side and right hand side respectively.

Also for a permutation of nodes in GS , say p, let Fp denote the event that all the edges of p

are present, i.e., L = ∪Fp. Similarly, for a permutation of nodes in G̃S , say q, let Hq denote

the event that all the edges of q are present. Notice that Fp ⊆ Hq for q ⊆ p, because if all

163

the edges of p are present the edges of q will be present. Thus,

L =
⋃
p

Fp ⊆
⋃
p

Hp∩EG̃S
=
⋃
q

Hq = R.

This implies that P [L] ≤ P [R].

Lemma 7 (Upper bound). If (λB(d))2p− ≤ 1
2en , then P

[
s
≤d̃
! s′ | m��!m′

]
≤ 2en(λB(d))2p−.

Proof. To identify the upper bound on P
[
s
≤d̃
! s′|m��!m′

]
, recall the definition of G̃S ,

given an instance of GS (as outlined in Lemmas 5 and 6, for p̃ = (λB(d))2p−). Lemma 6 re-

lates the connectivity of s and s′ to a connectivity event in G̃S , i.e., P
[
s
≤d̃
! s′ | m��!m′

]
≤

P
[
there is a path from vs to vs′ in G̃S with length d̃

]
, where vs, vs′ ∈ VG̃S

are the nodes

corresponding to the components containing s and s′ respectively. Equivalently, in the

following, we prove that the event dist(vs, vs′) ≤ d̃ happens with a small probability:

P
[
s
≤d̃
! s′

]
= P

 ∨
`=1,··· ,d̃

s
`

! s′

 ≤∑
`≤d̃

(
n

`

)
p̃` ≤

∑
`≤d̃

(
en

`
)`p̃`

≤
∑
`≤d̃

(en)`p̃` ≤ enp̃(enp̃)d̃ − 1

enp̃− 1
≤ enp̃

1− enp̃
≤ 2enp̃.

where the final inequality uses the assumption that p̃ ≤ 1
2en .

Armed with the bounds in Lemmas 4 and 7, we are ready to provide the main proof:

Proof of Theorem 1. Recall that the algorithm checks for connectivity between two given

nodes s and s′, i.e., s
≤d̃
! s′. With this observation, we aim to infer whether the two nodes

in the meaning graph are connected (m
≤d
! m′) or not (m��!m′). We prove the theorem

164

by using lower and upper bound for these two probabilities, respectively:

γ = P
[
s
≤d̃
! s′|m d

! m′
]
− P

[
s
≤d̃
! s′|m��!m′

]
≥ LB

(
P
[
s
≤d̃
! s′|m d

! m′
])
− UB

(
P
[
s
≤d̃
! s′|m��!m′

])
≥
(

1− 2e3ε
λ/2
+

)d+1
·
(

1− (1− p+)λ
2
)d
− 2en(λB(d))2p−.

where the last two terms of the above inequality are based on the results of Lemmas 4

and 7, with the assumption for the latter that (λB(d))2p− ≤ 1
2en . To write this result in

its general form we have to replace p+ and p−, with p+ ⊕ ε− and p− ⊕ ε−, respective (see

Remark 1).

A.6.2. Proofs: Limitations of Connectivity Reasoning

We provide the necessary lemmas and intuitions before proving the main theorem.

A random graph is an instance sampled from a distribution over graphs. In the G(n, p)

Erdős-Renyi model, a graph is constructed in the following way: Each edge is included in

the graph with probability p, independent of other edges. In such graphs, on average, the

length of the path connecting any node-pair is short (logarithmic in the number of nodes).

Lemma 8 (Diameter of a random graph, Corollary 1 of (Chung and Lu, 2002)). If n · p =

c > 1 for some constant c, then almost-surely the diameter of G(n, p) is Θ(log n).

We use the above lemma to prove Theorem 2. Note that the overall noise probably (i.e., p

in Lemma 8) in our framework is p− ⊕ ε−.

Proof of Theorem 2. Note that the |VGS
| = λ · n. By Lemma 8, the symbol graph has

diameter Θ(log λn). This means that for any pair of nodes s, s′ ∈ VGS
, we have s

Θ(log λn)
! s′.

Since d̃ ≥ λd ∈ Ω(log λn), the multi-hop reasoning algorithm finds a path between s and s′

165

in symbol graph and returns connected regardless of the connectivity of m and m′.

A.6.3. Proofs: Limitations of General Reasoning

The proof of the theorem follows after introducing necessary lemmas.

In the following lemma, we show that the spectral differences between the two symbol graphs

in the locality of the target nodes are small. For ease of exposition, we define an intermediate

notation, for a normalized version of the Laplacians: L̃ = L/‖L‖2 and L̃′ = L′/‖L′‖2.

Lemma 9. The norm-2 of the Laplacian matrix corresponding to the nodes participating

in a cut, can be upper-bounded by the number of the edges participating in the cut (with

a constant factor).

Proof of Lemma 9. Using the definition of the Laplacian:

‖LC‖2 ≤ ‖A−D‖2 ≤ ‖A‖2 + ‖D‖2

where A is the adjacency matrix and D is a diagonal matrix with degrees on the diagonal.

We bound the norms of the matrices based on size of the cut (i.e., number of the edges in

the cut). For the adjacency matrix we use the Frobenius norm:

‖A‖2 ≤ ‖A‖F =

√∑
ij

aij = 2 · |C|

where |C| denotes the number of edges in C. To bound the matrix of degrees, we use

the fact that norm-2 is equivalent to the biggest eigenvalue, which is the biggest diagonal

element in a diagonal matrix:

‖D‖2 = σmax(D) = max
i
deg(i) ≤ |C|

With this we have shown that: ‖LC‖2 ≤ 3|C|.

166

For sufficiently large values of p, G(n, p) is a connected graph, with a high probability. More

formally:

Lemma 10 (Connectivity of random graphs). In a random graph G(n, p), for any p bigger

than (1+ε) lnn
n , the graph will almost surely be connected.

The proof can be found in (Erdos and Rényi, 1960).

Lemma 11 (Norm of the adjacency matrix in a random graph). For a random graph

G(n, p), let L be the adjacency matrix of the graph. For any ε > 0:

lim
n→+∞

P
(∣∣∣‖L‖2 −√2n log n

∣∣∣ > ε
)
→ 0

Proof of Lemma 11. From Theorem 1 of (Ding et al., 2010) we know that:

σmax(L)√
n log n

P→
√

2

where
P→ denote convergence in probability. And also notice that norm-2 of a matrix is

basically the size of its biggest eigenvalue, which concludes our proof.

Lemma 12. For any pair of meaning-graphsG andG′ constructed according to Definition 9,

and,

• d > log n,

• p− ⊕ ε− ≥ c log n
/
n for some constant c,

• d̃ ≥ λd,

with L and L′ being the Laplacian matrices corresponding to the d̃-neighborhoods of the

corresponding nodes in the surface-graph; we have:

‖L− L′‖2
‖L‖2

≤
√
λB(1)√

2n log(nλ)
,

167

with a high-probability.

Proof of Lemma 12. In order to simplify the exposition, w.l.o.g. assume that ε− = 0 (see

Remark 1). Our goal is to find an upper-bound to the fraction ‖L−L′‖2
‖L‖2 . Note that the

Laplacians contain only the local information, i.e., d̃−neighborhood. First we prove an

upper bound on the nominator. By eliminating an edge in a meaning-graph, the probability

of edge appearance in the symbol graph changes from p+ to p−. The effective result of

removing edges in C would appear as i.i.d. Bern(p+ − p−). Since by definition, B(1) is

an upper bound on the degree of meaning nodes, the size of minimum cut should also be

upper bounded by B(1). Therefore, the maximum size of the min-cut C separating two

nodes m
d
! m′ is at most B(1). To account for vertex replication in symbol-graph, the

effect of cut would appear on at most λB(1) edges in the symbol graph. Therefore, we

have‖L− L′‖2 ≤ λB(1) using Lemma 9.

As for the denominator, the size of the matrix L is the same as the size of d̃-neighborhood

in the symbol graph. We show that if d̃ > log(λn) the neighborhood almost-surely covers

the whole graph. While the growth in the size of the d̃-neighborhood is a function of

both p+ and p−, to keep the analysis simple, we underestimate the neighborhood size by

replacing p+ with p−, i.e., the size of the d̃-neighborhood is lower-bounded by the size of a

d̃-neighborhood in G(λ · n, p−).

By Lemma 10 the diameters of the symbol-graphs GS and G′S are both Θ(log(λn)). Since

d̃ ∈ Ω(log(λn)), d̃-neighborhood covers the whole graph for both GS and G′S .

Next, we use Lemma 11 to state that ‖L‖2 converges to
√

2λn log(λn), in probability.

Combining numerator and denominator, we conclude that the fraction, for sufficiently large

n, is upper-bounded by: λB(1)√
2λn log(λn)

, which can get arbitrarily small, for a big-enough

choice of n.

168

Proof of Lemma 1. We start by proving an upper bound on L̃ − L̃′ in matrix inequality

notation. Similar upper-bound holds for L̃′ − L̃ which concludes the theorem.

L̃− L̃′ = L

‖L‖
− L′

‖L′‖

� L

‖L‖
− L′

‖L− L′‖+ ‖L‖

=
L · ‖L− L′‖
‖L‖2

+
L− L′

‖L‖

�
√
λB(1)√

2n log(nλ)
I +

√
λB(1)√

2n log(nλ)
I.

The last inequality is due to Lemma 12. By symmetry the same upper-bound holds for

L̃′ − L̃ � 2
√
λB(1)√

2n log(nλ)
I. This means that ‖L̃− L̃′‖ ≤ 2

√
λB(1)√

2n log(nλ)
.

Lemma 13. Suppose f is an indicator function on an open set3, it is always possible to

write it as composition of two functions:

• A continuous and Lipschitz function: g : Rd → (0, 1),

• A thresholding function: H(x) = 1{x > 0.5}.

such that: ∀x ∈ Rd : f(x) = h(g(x)).

Proof of Lemma 13. Without loss of generality, we assume that the threshold function is

defined as H(x) = 1{x > 0.5}. One can verify that a similar proof follows for H(x) =

1{x ≥ 0.5}. We use notation f−1(A) the set of pre-images of a function f , for the set of

outputs A.

First let’s study the collection of inputs that result in output of 1 in f function. Since

f = h ◦ g, then f−1({1}) = g−1(h−1({1})) = g−1((0.5, 1)) and f−1({0}) = g−1(h−1({0})) =

g−1((0, 0.5)). Define C0 and C1, such that Ci , f−1({i}); note that since g is continuous

3https://en.wikipedia.org/wiki/Indicator_function

169

and (0.5, 1) is open C1 is an open set (hence C1 is closed). Let d : Rn → R be defined by,

d(x) , dist(x,C0) = inf
c∈C0

‖x− c‖.

Since C0 is closed, it follows d(x) = 0 if and only if x ∈ C0. Therefore, letting

g(x) =
1

2
+

1

2
· d(x)

1 + d(x)
,

then g(x) = 1
2 when x ∈ C0, while g(x) > 1

2 when x 6∈ C0. This means that letting h(x) = 1

when x > 1
2 and h(x) = 0 when x ≤ 1

2 , then f = h ◦ g. One can also verify that this

construction is 1/2-Lipschitz; this follows because d(x) is 1-Lipschitz, which can be proved

using the triangle inequality

Hence the necessary condition to have such decomposition is f−1({1}) and f−1({0}) be

open or closed.

Proof of Lemma 2. Note that f maps a high dimensional continuous space to a discrete

space. To simplify the argument about f , we decompose it to two functions: a continuous

function g mapping matrices to (0, 1) and a threshold function H (e.g. 0.5 + 0.5sgn(.))

which maps to one if g is higher than a threshold and to zero otherwise. Without loss of

generality we also normalize g such that the gradient is less than one. Formally,

f = H ◦ g, where g : R|U|×|U| → (0, 1), ‖∇g
∣∣∣
L̃
‖ ≤ 1.

Lemma 13 gives a proof of existence for such decompositon, which depends on having open

or closed pre-images.

One can find a differentiable and Lipschitz function g such that it intersects with the

threshold specified by H, in the borders where f changes values.

170

Figure 35: With varied values for p− a heat map representation of the distribution of the av-
erage distances of node-pairs in symbol graph based on the distances of their corresponding
meaning nodes is presented.

With g being Lipschitz, one can upper-bound the variations on the continuous function:

‖g(L̃)− g(L̃′)‖ ≤M‖L̃− L̃′‖.

According to Lemma 1, ‖L̃− L̃′‖ is upper-bounded by a decreasing function in n.

For uniform choices (G,G′,m,m′) ∼ G the Laplacian pairs (L̃, L̃′) are randomly distributed

in a high-dimensional space, and for big enough n, there are enough portion of the (L̃, L̃′)

(to satisfy 1−β probability) that appear in the same side of the hyper-plane corresponding

to the threshold function (i.e. f(L̃) = f(L̃′)).

A.6.4. Further experiments

To evaluate the impact of the other noise parameters in the sampling process, we compare

the average distances between nodes in the symbol graph for a given distance between the

171

meaning graph nodes. In the Figure 35, we plot these graphs for decreasing values of p−

(from top left to bottom right). With high p− (top left subplot), nodes in the symbol graph

at distances lower than two, regardless of the distance of their corresponding node-pair in

the meaning graph. As a result, any reasoning algorithm that relies on connectivity can

not distinguish symbolic nodes that are connected in the meaning space from those that

are not. As the p− is set to lower values (i.e. noise reduces), the distribution of distances

get wider, and correlation of distance between the two graphs increases. In the bottom

middle subplot, when p− has a very low value, we observe a significant correlation that can

be reliably utilized by a reasoning algorithm.

172

BIBLIOGRAPHY

T. Achterberg. SCIP: solving constraint integer programs. Math. Prog. Computation, 1(1):
1–41, 2009.

G. Angeli and C. D. Manning. NaturalLI: Natural Logic Inference for Common Sense Rea-
soning. In Proc. of the Conference on Empirical Methods for Natural Language Processing
(EMNLP), 2014.

N. Arivazhagan, C. Christodoulopoulos, and D. Roth. Labeling the semantic roles of com-
mas. In AAAI, 2016.

C. F. Baker, C. J. Fillmore, and J. B. Lowe. The berkeley framenet project. In Proc. of
the Annual Meeting of the Association of Computational Linguistics (ACL), pages 86–90,
1998.

D. Bamman, B. O’Connor, and N. A. Smith. Learning Latent Personas of Film Char-
acters. In Proceedings of the 51st Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2013, Volume 1: Long Papers, pages 352–361, 2013. URL
http://aclweb.org/anthology/P/P13/P13-1035.pdf.

L. Banarescu, C. Bonial, S. Cai, M. Georgescu, K. Griffitt, U. Hermjakob, K. Knight,
M. Palmer, and N. Schneider. Abstract meaning representation for sembanking. In
Linguistic Annotation Workshop and Interoperability with Discourse, 2013.

M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni. Open Information
Extraction from the Web. In Proc. of the International Joint Conference on Artificial
Intelligence (IJCAI), 2007.

R. Bar-Haim, I. Dagan, and J. Berant. Knowledge-Based Textual Inference via Parse-Tree
Transformations. J. Artif. Intell. Res.(JAIR), 54:1–57, 2015.

L. Bauer, Y. Wang, and M. Bansal. Commonsense for Generative Multi-Hop Question
Answering Tasks. In Proc. of the Conference on Empirical Methods for Natural Language
Processing (EMNLP), pages 4220–4230, 2018.

L. Bentivogli, P. Clark, I. Dagan, and D. Giampiccolo. The Sixth PASCAL Recognizing
Textual Entailment Challenge. In TAC, 2008.

J. Berant, I. Dagan, and J. Goldberger. Global learning of focused entailment graphs.
In Proc. of the Annual Meeting of the Association of Computational Linguistics (ACL),
pages 1220–1229, 2010.

J. Berant, V. Srikumar, P.-C. Chen, A. V. Linden, B. Harding, B. Huang, P. Clark, and
C. D. Manning. Modeling Biological Processes for Reading Comprehension. In Proc. of
the Conference on Empirical Methods for Natural Language Processing (EMNLP), 2014.

173

V. W. Berninger, W. Nagy, and S. Beers. Child writers construction and reconstruction of
single sentences and construction of multi-sentence texts: Contributions of syntax and
transcription to translation. Reading and writing, 24(2):151–182, 2011.

A. M. Bisantz and K. J. Vicente. Making the abstraction hierarchy concrete. International
Journal of human-computer studies, 40(1):83–117, 1994.

D. G. Bobrow. Natural language input for a computer problem solving system. Technical
report, MIT, 1964.

K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: A collaboratively
created graph database for structuring human knowledge. In ICMD, pages 1247–1250.
ACM, 2008.

R. Brachman, D. Gunning, S. Bringsjord, M. Genesereth, L. Hirschman, and L. Ferro.
Selected Grand Challenges in Cognitive Science. Technical report, MITRE Technical
Report 05-1218, 2005.

E. Brill, S. Dumais, and M. Banko. An analysis of the AskMSR question-answering system.
In Proceedings of EMNLP, pages 257–264, 2002.

P. F. Brown, P. V. Desouza, R. L. Mercer, V. J. D. Pietra, and J. C. Lai. Class-based
n-gram models of natural language. Computational linguistics, 18(4):467–479, 1992.

J. G. Carbonell and R. D. Brown. Anaphora resolution: a multi-strategy approach. In
Proceedings of the 12th conference on Computational linguistics-Volume 1, pages 96–101.
Association for Computational Linguistics, 1988.

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr., and T. M. Mitchell. Toward
an Architecture for Never-Ending Language Learning. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), 2010.

K.-W. Chang, S. Upadhyay, M.-W. Chang, V. Srikumar, and D. Roth. Illinois-SL: A JAVA
library for structured prediction. arXiv preprint arXiv:1509.07179, 2015.

M.-W. Chang, L. Ratinov, N. Rizzolo, and D. Roth. Learning and inference with constraints.
In Proc. of the Conference on Artificial Intelligence (AAAI), 7 2008. URL http://

cogcomp.org/papers/CRRR08.pdf.

M.-W. Chang, D. Goldwasser, D. Roth, and V. Srikumar. Discriminative Learning over
Constrained Latent Representations. Proceedings of Human Language Technologies: The
2010 Annual Conference of the North American Chapter of the Association for Compu-
tational Linguistics (HLT 2010), (June):429–437, 2010.

M.-W. Chang, L. Ratinov, and D. Roth. Structured learning with constrained conditional
models. Machine Learning, 88(3):399–431, 6 2012. URL http://cogcomp.org/papers/

ChangRaRo12.pdf.

174

D. Chen, J. Bolton, and C. D. Manning. A Thorough Examination of the CNN/Daily
Mail Reading Comprehension Task. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, ACL 2016, Volume 1: Long Papers, 2016.
URL http://aclweb.org/anthology/P/P16/P16-1223.pdf.

Q. Chen, X. Zhu, Z. Ling, S. Wei, H. Jiang, and D. Inkpen. Enhanced LSTM for Natural
Language Inference. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (ACL 2017), Vancouver, July 2017. ACL.

T. Chklovski and P. Pantel. VerbOcean: Mining the Web for Fine-Grained Semantic Verb
Relations. In EMNLP, 2004.

F. Chung and L. Lu. The average distances in random graphs with given expected degrees.
Proceedings of the National Academy of Sciences, 99(25):15879–15882, 2002.

K. W. Church and P. Hanks. Word Association Norms, Mutual Information and Lexicog-
raphy. In 27thACL, pages 76–83, 1989.

P. Clark. Elementary School Science and Math Tests as a Driver for AI: Take the Aristo
Challenge! In 29th AAAI/IAAI, pages 4019–4021, Austin, TX, 2015.

P. Clark and O. Etzioni. My Computer is an Honor Student but how Intelligent is it?
Standardized Tests as a Measure of AI. AI Magazine, 2016. (To appear).

P. Clark, N. Balasubramanian, S. Bhakthavatsalam, K. Humphreys, J. Kinkead, A. Sabhar-
wal, and O. Tafjord. Automatic Construction of Inference-Supporting Knowledge Bases.
In 4thAKBC Workshop, Montreal, Canada, 2014.

P. Clark, O. Etzioni, T. Khot, A. Sabharwal, O. Tafjord, P. Turney, and D. Khashabi.
Combining Retrieval, Statistics, and Inference to Answer Elementary Science Questions.
In Proceedings of the National Conference on Artificial Intelligence (AAAI), 2016.

P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord.
Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge.
CoRR, abs/1803.05457, 2018.

J. Clarke and M. Lapata. Global inference for sentence compression: An integer linear
programming approach. Journal of Artificial Intelligence Research, 31:399–429, 2008.

J. Clarke, D. Goldwasser, M.-W. Chang, and D. Roth. Driving semantic parsing from
the world’s response. In Proc. of the Conference on Computational Natural Language
Learning (CoNLL), 7 2010. URL http://cogcomp.org/papers/CGCR10.pdf.

A. Cocos, V. Wharton, E. Pavlick, M. Apidianaki, and C. Callison-Burch. Learning Scalar
Adjective Intensity from Paraphrases. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 1752–1762, 2018.

175

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT
press, 2009.

I. Dagan, D. Roth, M. Sammons, and F. M. Zanzoto. Recognizing textual entailment:
Models and applications. 7 2013.

B. Dalvi, S. Bhakthavatsalam, and P. Clark. IKE - An Interactive Tool for Knowledge
Extraction. In 5thAKBC Workshop, 2016.

H. T. Dang and M. Palmer. The role of semantic roles in disambiguating verb senses. In
Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics,
pages 42–49. Association for Computational Linguistics, 2005.

H. A. Davidson. Alfarabi, Avicenna, and Averroes on intellect: their cosmologies, theories
of the active intellect, and theories of human intellect. Oxford University Press, 1992.

E. Davis. The Limitations of Standardized Science Tests as Benchmarks for Artificial
Intelligence Research: Position Paper. CoRR, abs/1411.1629, 2014. URL http://arxiv.

org/abs/1411.1629.

R. Dechter. Reasoning with Probabilistic and Deterministic Graphical Models: Exact Al-
gorithms. In Reasoning with Probabilistic and Deterministic Graphical Models: Exact
Algorithms, 2013.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

X. Ding, T. Jiang, et al. Spectral distributions of adjacency and Laplacian matrices of
random graphs. The annals of applied probability, 20(6):2086–2117, 2010.

A. N. P. DivyeKhilnani and S. B. D. Jurafsky. Using Query Patterns to Learn the Duration
of Events. Computational Semantics IWCS 2011, page 145, 2011.

Q. Do, Y. S. Chan, and D. Roth. Minimally supervised event causality identification. In
Proc. of the Conference on Empirical Methods in Natural Language Processing (EMNLP),
Edinburgh, Scotland, 7 2011. URL http://cogcomp.org/papers/DoChaRo11.pdf.

Q. Do, W. Lu, and D. Roth. Joint inference for event timeline construction. In Proc. of
the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2012.
URL http://cogcomp.org/papers/DoLuRo12.pdf.

L. Dong, F. Wei, M. Zhou, and K. Xu. Question Answering over Freebase with Multi-
Column Convolutional Neural Networks. In Proc. of the Annual Meeting of the Associa-
tion of Computational Linguistics (ACL), 2015.

P. Erdos and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.
Sci, 5(1):17–60, 1960.

176

O. Etzioni, M. Banko, S. Soderland, and D. Weld. Open information extraction from the
web. Communications of the ACM, 51(12):68–74, 2008.

J. S. B. Evans, S. E. Newstead, and R. M. Byrne. Human reasoning: The psychology of
deduction. Psychology Press, 1993.

A. Fader, L. Zettlemoyer, and O. Etzioni. Open question answering over curated and
extracted knowledge bases. In Proceedings of SIGKDD, pages 1156–1165, 2014.

D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A. Kalyanpur, A. Lally, J. W.
Murdock, E. Nyberg, J. Prager, et al. Building Watson: An overview of the DeepQA
project. AI Magazine, 31(3):59–79, 2010.

R. Fikes and T. Kehler. The role of frame-based representation in reasoning. Communica-
tions of the ACM, 28(9):904–920, 1985.

C. J. Fillmore. Scenes-and-frames semantics. Linguistic structures processing, 59:55–88,
1977.

J. L. Fleiss. Measuring nominal scale agreement among many raters. Psychological bulletin,
76(5):378, 1971.

M. Forbes and Y. Choi. Verb Physics: Relative Physical Knowledge of Actions and Ob-
jects. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1, pages 266–276, 2017.

R. M. French. The Turing Test: the first 50 years. Trends in cognitive sciences, 4(3):
115–122, 2000.

D. Fried, P. Jansen, G. Hahn-Powell, M. Surdeanu, and P. Clark. Higher-order lexical
semantic models for non-factoid answer reranking. Transactions of the Association for
Computational Linguistics, 3:197–210, 2015.

K.-I. Funahashi. On the approximate realization of continuous mappings by neural networks.
Neural networks, 2(3):183–192, 1989.

E. Gabrilovich and S. Markovitch. Computing semantic relatedness using wikipedia-based
explicit semantic analysis. In IJcAI, volume 7, pages 1606–1611, 2007.

M. Gardner, P. Talukdar, and T. Mitchell. Combining vector space embeddings with sym-
bolic logical inference over open-domain text. In AAAI spring symposium, 2015.

M. Gardner, J. Grus, M. Neumann, O. Tafjord, P. Dasigi, N. Liu, M. Peters, M. Schmitz,
and L. Zettlemoyer. AllenNLP: A Deep Semantic Natural Language Processing Platform.
2018.

E. N. Gilbert. Random graphs. The Annals of Mathematical Statistics, 30(4):1141–1144,
1959.

177

D. Gildea and D. Jurafsky. Automatic labeling of semantic roles. Computational linguistics,
28(3):245–288, 2002.

D. Goldwasser and D. Roth. Learning from natural instructions. Machine Learning, 94(2):
205–232, 2 2014. URL http://cogcomp.org/papers/GoldwasserRo14.pdf.

M. Granroth-Wilding and S. Clark. What happens next? event prediction using a com-
positional neural network model. In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, pages 2727–2733. AAAI Press, 2016.

D. Gunning, V. Chaudhri, P. Clark, K. Barker, J. Chaw, and M. Greaves. Project Halo
Update - Progress Toward Digital Aristotle. AI Magazine, 31(3), 2010.

S. Gururangan, S. Swayamdipta, O. Levy, R. Schwartz, S. Bowman, and N. A. Smith. An-
notation Artifacts in Natural Language Inference Data. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers), volume 2, pages 107–112, 2018.

S. Harnad. The symbol grounding problem. Physica D: Nonlinear Phenomena, 42(1-3):
335–346, 1990.

S. Harnad. The Turing Test is not a trick: Turing indistinguishability is a scientific criterion.
ACM SIGART Bulletin, 3(4):9–10, 1992.

K. M. Hermann, T. Kociský, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, and
P. Blunsom. Teaching Machines to Read and Comprehend. In Advances in Neural In-
formation Processing Systems 28: Annual Conference on Neural Information Processing
Systems 2015, pages 1693–1701, 2015.

J. Hernandez-Orallo. Beyond the Turing test. Journal of Logic, Language and Information,
9(4):447–466, 2000.

L. Hirschman, M. Light, E. Breck, and J. D. Burger. Deep Read: A Reading Comprehension
System. In 27th Annual Meeting of the Association for Computational Linguistics, ACL
1999, 1999. URL http://www.aclweb.org/anthology/P99-1042.

J. R. Hobbs, M. E. Stickel, P. A. Martin, and D. Edwards. Interpretation as Abduction.
Artif. Intell., 63:69–142, 1988.

J. R. Hobbs, M. E. Stickel, D. E. Appelt, and P. Martin. Interpretation as abduction.
Artificial intelligence, 63(1-2):69–142, 1993.

J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. R. Thagard. Induction: Processes of
inference, learning, and discovery. MIT press, 1989.

C. Hori and F. Sadaoki. Speech summarization: an approach through word extraction and
a method for evaluation. IEICE TRANSACTIONS on Information and Systems, 87(1):
15–25, 2004.

178

M. J. Hosseini, H. Hajishirzi, O. Etzioni, and N. Kushman. Learning to Solve Arithmetic
Word Problems with Verb Categorization. In 2014EMNLP, pages 523–533, 2014.

D. Howell. Statistical methods for psychology. Cengage Learning, 2012.

M. Hu, Y. Peng, Z. Huang, X. Qiu, F. Wei, and M. Zhou. Reinforced mnemonic reader for
machine reading comprehension. In Proceedings of the 27th International Joint Confer-
ence on Artificial Intelligence, pages 4099–4106. AAAI Press, 2018.

N. Ide and K. Suderman. Integrating Linguistic Resources: The American National Cor-
pus Model. In Proceedings of the Fifth International Conference on Language Resources
and Evaluation, LREC 2006, pages 621–624, 2006. URL http://www.lrec-conf.org/

proceedings/lrec2006/pdf/560_pdf.pdf.

N. Ide, C. F. Baker, C. Fellbaum, C. J. Fillmore, and R. J. Passonneau. MASC: the
Manually Annotated Sub-Corpus of American English. In Proceedings of the International
Conference on Language Resources and Evaluation, LREC 2008, 2008. URL http://www.

lrec-conf.org/proceedings/lrec2008/summaries/617.html.

P. Jansen, N. Balasubramanian, M. Surdeanu, and P. Clark. What’s in an Explanation?
Characterizing Knowledge and Inference Requirements for Elementary Science Exams.
In Proc. the International Conference on Computational Linguistics (COLING), pages
2956–2965, 2016.

P. Jansen, R. Sharp, M. Surdeanu, and P. Clark. Framing QA as Building and Ranking
Intersentence Answer Justifications. Computational Linguistics, 2017.

P. A. Jansen. A Study of Automatically Acquiring Explanatory Inference Patterns from
Corpora of Explanations: Lessons from Elementary Science Exams. In AKBC, 2016.

P. A. Jansen, E. Wainwright, S. Marmorstein, and C. T. Morrison. WorldTree: A Corpus of
Explanation Graphs for Elementary Science Questions supporting Multi-Hop Inference.
CoRR, abs/1802.03052, 2018.

M. E. Janzen and K. J. Vicente. Attention allocation within the abstraction hierarchy. In
Proceedings of the Human Factors and Ergonomics Society Annual Meeting, volume 41,
pages 274–278. SAGE Publications, 1997.

P. Jia and P. Liang. Adversarial Examples for Evaluating Reading Comprehension Sys-
tems. Proc. of the Conference on Empirical Methods for Natural Language Processing
(EMNLP), 2017.

T. Joachims. Text categorization with support vector machines: Learning with many rele-
vant features. Machine learning: ECML-98, pages 137–142, 1998.

A. Johnson and R. W. Proctor. Attention: Theory and practice. Sage Publications, 2004.

179

P. N. Johnson-Laird. Mental models in cognitive science. Cognitive science, 4(1):71–115,
1980.

M. Joshi, E. Choi, D. S. Weld, and L. Zettlemoyer. TriviaQA: A Large Scale Distantly
Supervised Challenge Dataset for Reading Comprehension. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics, ACL 2017, Volume
1: Long Papers, pages 1601–1611, 2017. doi: 10.18653/v1/P17-1147. URL https:

//doi.org/10.18653/v1/P17-1147.

M. Kaisser and B. Webber. Question answering based on semantic roles. In Proceedings of
the workshop on deep linguistic processing, pages 41–48, 2007.

R. M. Kaplan, J. Bresnan, et al. Lexical-functional grammar: A formal system for gram-
matical representation. In The Mental Representation of Grammatical Relations. The
MIT Press, 1982.

R. J. Kate and R. J. Mooney. Probabilistic Abduction using Markov Logic Networks. In
In: IJCAI-09 Workshop on Plan, Activity, and Intent Recognition, 2009.

D. Kaushik and Z. C. Lipton. How Much Reading Does Reading Comprehension Require?
A Critical Investigation of Popular Benchmarks. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pages 5010–5015, 2018.

A. Kembhavi, M. Seo, D. Schwenk, J. Choi, A. Farhadi, and H. Hajishirzi. Are You
Smarter Than A Sixth Grader? Textbook Question Answering for Multimodal Machine
Comprehension. The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

D. Khashabi, T. Khot, A. Sabharwal, P. Clark, O. Etzioni, and D. Roth. Question answering
via integer programming over semi-structured knowledge. In Proc. of the International
Joint Conference on Artificial Intelligence (IJCAI), 2016. URL http://cogcomp.org/

papers/KKSCER16.pdf.

D. Khashabi, T. Khot, A. Sabharwal, and D. Roth. Learning what is essential in questions.
In The Conference on Computational Natural Language Learning (Proc. of the Conference
on Computational Natural Language Learning (CoNLL)), 2017. URL http://cogcomp.

org/papers/2017_conll_essential_terms.pdf.

D. Khashabi, S. Chaturvedi, M. Roth, S. Upadhyay, and D. Roth. Looking beyond the sur-
face: A challenge set for reading comprehension over multiple sentences. In Proceedings
of the Annual Conference of the North American Chapter of the Association for Com-
putational Linguistics (NAACL), 2018a. URL http://www.aclweb.org/anthology/

N18-1023.

D. Khashabi, T. Khot, A. Sabharwal, and D. Roth. Question answering as global rea-
soning over semantic abstractions. In Proceedings of The Conference on Artificial In-

180

telligence (Proc. of the Conference on Artificial Intelligence (AAAI)), 2018b. URL
http://cogcomp.org/papers/2018_aaai_semanticilp.pdf.

D. Khashabi, M. Sammons, B. Zhou, T. Redman, C. Christodoulopoulos, V. Srikumar,
N. Rizzolo, L. Ratinov, G. Luo, Q. Do, C.-T. Tsai, S. Roy, S. Mayhew, Z. Feng, J. Wieting,
X. Yu, Y. Song, S. Gupta, S. Upadhyay, N. Arivazhagan, Q. Ning, S. Ling, and D. Roth.
Cogcompnlp: Your swiss army knife for nlp. In 11th Language Resources and Evaluation
Conference, 2018c. URL http://cogcomp.org/papers/2018_lrec_cogcompnlp.pdf.

D. Khashabi, E. S. Azer, T. Khot, A. Sabharwal, and D. Roth. On the capabilities and
limitations of reasoning for natural language understanding, 2019. under review.

T. Khot, N. Balasubramanian, E. Gribkoff, A. Sabharwal, P. Clark, and O. Etzioni. Explor-
ing Markov Logic Networks for Question Answering. In 2015EMNLP, Lisbon, Portugal,
2015.

T. Khot, A. Sabharwal, and P. Clark. Answering Complex Questions Using Open Infor-
mation Extraction. Proc. of the Annual Meeting of the Association of Computational
Linguistics (ACL), 2017.

P. Kingsbury and M. Palmer. From TreeBank to PropBank. In LREC, pages 1989–1993,
2002.

G. S. Kirk, J. E. Raven, and M. Schofield. The presocratic philosophers: A critical history
with a selcetion of texts. Cambridge University Press, 1983.

K. Knight and D. Marcu. Summarization beyond sentence extraction: A probabilistic
approach to sentence compression. Artificial Intelligence, 139(1):91–107, 2002.

J. Ko, E. Nyberg, and L. Si. A probabilistic graphical model for joint answer ranking in
question answering. In Proceedings of SIGIR, pages 343–350, 2007.

P. Kordjamshidi, D. Roth, and H. Wu. Saul: Towards Declarative Learning Based Pro-
gramming. In Proc. 24th Int. Joint Conf. on Artificial Intelligence IJCAI, 7 2015.

Z. Kozareva and E. Hovy. Learning temporal information for states and events. In Fifth
International Conference on Semantic Computing, pages 424–429. IEEE, 2011.

J. Krishnamurthy, O. Tafjord, and A. Kembhavi. Semantic parsing to probabilistic programs
for situated question answering. Proc. of the Conference on Empirical Methods for Natural
Language Processing (EMNLP), 2016.

C. C. T. Kwok, O. Etzioni, and D. S. Weld. Scaling question answering to the Web. In The
International World Wide Web Conference, 2001.

G. Lai, Q. Xie, H. Liu, Y. Yang, and E. H. Hovy. RACE: Large-scale ReAding Comprehen-
sion Dataset From Examinations. In Proceedings of the 2017 Conference on Empirical

181

Methods in Natural Language Processing, EMNLP 2017, pages 785–794, 2017. URL
https://aclanthology.info/papers/D17-1082/d17-1082.

H. Lee, Y. Peirsman, A. Chang, N. Chambers, M. Surdeanu, and D. Jurafsky. Stanford’s
multi-pass sieve coreference resolution system at the CoNLL-2011 shared task. In CONLL
Shared Task, pages 28–34, 2011.

H. Lee, A. Chang, Y. Peirsman, N. Chambers, M. Surdeanu, and D. Jurafsky. Determinis-
tic coreference resolution based on entity-centric, precision-ranked rules. Computational
Linguistics, 39(4):885–916, 2013.

K. Lee, Y. Artzi, J. Dodge, and L. Zettlemoyer. Context-dependent semantic parsing for
time expressions. In ACL (1), pages 1437–1447, 2014.

A. Leeuwenberg and M.-F. Moens. Temporal Information Extraction by Predicting Rel-
ative Time-lines. Proc. of the Conference on Empirical Methods for Natural Language
Processing (EMNLP), 2018.

W. G. Lehnert. The Process of Question Answering. PhD thesis, Yale University, 1977.

D. B. Lenat. CYC: A large-scale investment in knowledge infrastructure. Communications
of the ACM, 38(11):33–38, 1995.

O. Levy and Y. Goldberg. Linguistic regularities in sparse and explicit word representations.
In Proceedings of the eighteenth conference on computational natural language learning,
pages 171–180, 2014.

F. Li, X. Zhang, J. Yuan, and X. Zhu. Classifying What-Type Questions by Head Noun
Tagging. In Proceedings 22nd International Conference on Computational Linguistics
(COLING), 2007.

X. Li and D. Roth. Learning Question Classifiers. In Proceedings of the 19th Interna-
tional Conference on Computational Linguistics - Volume 1, COLING ’02, pages 1–7,
Stroudsburg, PA, USA, 2002. Association for Computational Linguistics.

Y. Li, L. Xu, F. Tian, L. Jiang, X. Zhong, and E. Chen. Word Embedding Revisited: A
New Representation Learning and Explicit Matrix Factorization Perspective. In Proc. of
the International Joint Conference on Artificial Intelligence (IJCAI), pages 3650–3656,
2015.

Z. Li, X. Ding, and T. Liu. Constructing Narrative Event Evolutionary Graph for Script
Event Prediction. Proc. of the International Joint Conference on Artificial Intelligence
(IJCAI), 2018.

X. V. Lin, R. Socher, and C. Xiong. Multi-Hop Knowledge Graph Reasoning with Re-
ward Shaping. In Proc. of the Conference on Empirical Methods for Natural Language
Processing (EMNLP), 2018.

182

H. Liu and P. Singh. ConceptNeta practical commonsense reasoning tool-kit. BT technology
journal, 22(4):211–226, 2004.

X. Liu, Y. Shen, K. Duh, and J. Gao. Stochastic answer networks for machine reading
comprehension. In Proceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 1694–1704, 2018.

A. A. Mahabal, D. Roth, and S. Mittal. Robust handling of polysemy via sparse represen-
tations. In *SEM, 2018. URL http://cogcomp.org/papers/MahabalRoMi18.pdf.

M.-C. D. Marneffe, B. MacCartney, C. D. Manning, et al. Generating typed dependency
parses from phrase structure parses. In Proceedings of LREC, volume 6, pages 449–454.
Genoa, 2006.

A. McCallum, A. Neelakantan, R. Das, and D. Belanger. Chains of Reasoning over Entities,
Relations, and Text using Recurrent Neural Networks. In EACL, pages 132–141, 2017.

J. McCarthy. Programs with common sense. Defense Technical Information Center, 1963.

J. McCarthy. An example for natural language understanding and the AI problems it raises.
Formalizing Common Sense: Papers by John McCarthy, 355, 1976.

J. McCarthy and M. I. Levin. LISP 1.5 programmer’s manual. MIT press, 1965.

J. McCarthy and V. Lifschitz. Formalizing common sense: papers, volume 5. Intellect
Books, 1990.

J. F. McCarthy. Using decision trees for coreference resolution. In Proc. 14th International
Joint Conf. on Artificial Intelligence (IJCAI), Quebec, Canada, Aug. 1995, 1995.

E. Merkhofer, J. Henderson, D. Bloom, L. Strickhart, and G. Zarrella. MITRE at SemEval-
2018 Task 11: Commonsense Reasoning without Commonsense Knowledge. In Pro-
ceedings of the International Workshop on Semantic Evaluation (SemEval-2018), New
Orleans, LA, USA, 2018.

A. Meyers, R. Reeves, C. Macleod, R. Szekely, V. Zielinska, B. Young, and R. Grishman.
The NomBank project: An interim report. In HLT-NAACL 2004 workshop: Frontiers in
corpus annotation, volume 24, page 31, 2004.

R. Mihalcea and A. Csomai. Wikify!: linking documents to encyclopedic knowledge. In
CIKM, pages 233–242, 2007.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781, 2013.

S. Milgram. Six degrees of separation. Psychology Today, 2:60–64, 1967.

183

G. Miller. WordNet: a lexical database for English. Communications of the ACM, 38(11):
39–41, 1995.

S. Min, M. J. Seo, and H. Hajishirzi. Question Answering through Transfer Learning from
Large Fine-grained Supervision Data. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics, ACL 2017, Volume 2: Short Papers, pages
510–517, 2017. URL https://doi.org/10.18653/v1/P17-2081.

M. Minsky. A Framework for Representing Knowledge. Technical report, Massachusetts
Institute of Technology, Cambridge, MA, USA, 1974.

M. Minsky. Society of mind. Simon and Schuster, 1988.

M. Minsky and S. Papert. Perceptron: an introduction to computational geometry. The
MIT Press, Cambridge, expanded edition, 19:88, 1969.

T. M. Mitchell, J. Betteridge, A. Carlson, E. Hruschka, and R. Wang. Populating the
semantic web by macro-reading internet text. In International Semantic Web Conference,
pages 998–1002. Springer, 2009.

D. Moldovan, M. Paşca, S. Harabagiu, and M. Surdeanu. Performance issues and error anal-
ysis in an open-domain question answering system. ACM Transactions on Information
Systems (TOIS), 21(2):133–154, 2003.

P. Moreda, H. Llorens, E. S. Boró, and M. Palomar. Combining semantic information in
question answering systems. Inf. Process. Manage., 47:870–885, 2011.

K. Narasimhan and R. Barzilay. Machine Comprehension with Discourse Relations. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing of the Asian
Federation of Natural Language Processing, ACL 2015, Volume 1: Long Papers, pages
1253–1262, 2015. URL http://aclweb.org/anthology/P/P15/P15-1121.pdf.

B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM journal on com-
puting, 24(2):227–234, 1995.

T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, and L. Deng.
MS MARCO: A Human Generated MAchine Reading COmprehension Dataset. CoRR,
abs/1611.09268, 2016. URL http://arxiv.org/abs/1611.09268.

J. Ni, C. Zhu, W. Chen, and J. McAuley. Learning to attend on essential terms:
An enhanced retriever-reader model for scientific question answering. arXiv preprint
arXiv:1808.09492, 2018.

Q. Ning, H. Wu, H. Peng, and D. Roth. Improving Temporal Relation Extraction
with a Globally Acquired Statistical Resource. In Proc. of the Annual Meeting of the
North American Association of Computational Linguistics (NAACL), pages 841–851,

184

New Orleans, Louisiana, 6 2018a. Association for Computational Linguistics. URL
http://cogcomp.org/papers/NingWuPeRo18.pdf.

Q. Ning, B. Zhou, Z. Feng, H. Peng, and D. Roth. CogCompTime: A Tool for Under-
standing Time in Natural Language. In EMNLP (Demo Track), Brussels, Belgium, 11
2018b. Association for Computational Linguistics. URL http://cogcomp.org/papers/

NZFPR18.pdf.

G. Novak. Representations of Knowledge in a Program for Solving Physics Problems. In
IJCAI-77, 1977.

S. Ostermann, M. Roth, A. Modi, S. Thater, and M. Pinkal. SemEval-2018 Task 11:
Machine Comprehension using Commonsense Knowledge. In Proceedings of The 12th
International Workshop on Semantic Evaluation, pages 747–757, 2018.

M. Palmer, D. Gildea, and P. Kingsbury. The proposition bank: An annotated corpus of
semantic roles. Computational linguistics, 31(1):71–106, 2005.

A. P. Parikh, O. Täckström, D. Das, and J. Uszkoreit. A Decomposable Attention Model
for Natural Language Inference. In Proc. of the Conference on Empirical Methods for
Natural Language Processing (EMNLP), 2016.

J. H. Park and W. B. Croft. Using key concepts in a translation model for retrieval. In Pro-
ceedings of the 38th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 927–930. ACM, 2015.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988. ISBN 1558604790.

C. S. Peirce. A Theory of Probable Inference. In Studies in Logic by Members of the Johns
Hopkins University, pages 126–181. Little, Brown, and Company, 1883.

J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word representation.
In Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP), pages 1532–1543, 2014.

M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer.
Deep Contextualized Word Representations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), volume 1, pages 2227–2237, 2018.

L. A. Pizzato and D. Mollá. Indexing on semantic roles for question answering. In 2nd
workshop on Information Retrieval for Question Answering, pages 74–81, 2008.

A. Poliak, J. Naradowsky, A. Haldar, R. Rudinger, and B. V. Durme. Hypothesis Only
Baselines in Natural Language Inference. In Proceedings of the Seventh Joint Conference
on Lexical and Computational Semantics, pages 180–191, 2018.

185

D. Poole. A methodology for using a default and abductive reasoning system. Int. J. Intell.
Syst., 5:521–548, 1990.

V. Punyakanok and D. Roth. The use of classifiers in sequential inference. In Proc. of
the Conference on Neural Information Processing Systems (NIPS), pages 995–1001. MIT
Press, 2001. URL http://cogcomp.org/papers/nips01.pdf.

V. Punyakanok, D. Roth, and W. Yih. Mapping Dependencies Trees: An Applica-
tion to Question Answering. AIM, 1 2004. URL http://cogcomp.org/papers/

PunyakanokRoYi04a.pdf.

V. Punyakanok, D. Roth, and W. tau Yih. The importance of syntactic parsing and inference
in semantic role labeling. Computational Linguistics, 2008.

M. R. Quillan. Semantic memory. Technical report, BOLT BERANEK AND NEWMAN
INC CAMBRIDGE MA, 1966.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. SQuAD: 100,000+ Questions for Machine
Comprehension of Text. In Proc. of the Conference on Empirical Methods for Natural
Language Processing (EMNLP), 2016.

P. Rajpurkar, R. Jia, and P. Liang. Know What You Don’t Know: Unanswerable Ques-
tions for SQuAD. In Proc. of the Annual Meeting of the Association of Computational
Linguistics (ACL), 2018.

H. Rashkin, M. Sap, E. Allaway, N. A. Smith, and Y. Choi. Event2Mind: Commonsense
Inference on Events, Intents, and Reactions. In Proc. of the Annual Meeting of the
Association of Computational Linguistics (ACL), pages 463–473, 2018.

J. Rasmussen. The role of hierarchical knowledge representation in decisionmaking and
system management. Systems, Man and Cybernetics, IEEE Transactions on, pages 234–
243, 1985.

L. Ratinov and D. Roth. Design challenges and misconceptions in named entity recognition.
In Proc. of the Conference on Computational Natural Language Learning (CoNLL), 6
2009. URL http://cogcomp.org/papers/RatinovRo09.pdf.

L. Ratinov, D. Roth, D. Downey, and M. Anderson. Local and global algorithms for dis-
ambiguation to wikipedia. In Proc. of the Annual Meeting of the Association for Com-
putational Linguistics (ACL), 2011. URL http://cogcomp.org/papers/RRDA11.pdf.

S. Reddy, O. Täckström, S. Petrov, M. Steedman, and M. Lapata. Universal Semantic Pars-
ing. In Proc. of the Conference on Empirical Methods for Natural Language Processing
(EMNLP), pages 89–101, 2017.

T. Redman, M. Sammons, and D. Roth. Illinois Named Entity Recognizer: Addendum
to Ratinov and Roth ’09 reporting improved results, 2016. URL http://cogcomp.org/

papers/ner-addendum.pdf. Tech Report.

186

M. Richardson and P. Domingos. Markov Logic Networks. Machine learning, 62(1–2):
107–136, 2006.

M. Richardson, C. J. C. Burges, and E. Renshaw. MCTest: A Challenge Dataset for the
Open-Domain Machine Comprehension of Text. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2013, pages 193–203,
2013. URL http://aclweb.org/anthology/D/D13/D13-1020.pdf.

F. Rosenblatt. The perceptron: a probabilistic model for information storage and organi-
zation in the brain. Psychological review, 65(6):386, 1958.

D. Roth and W. Yih. A linear programming formulation for global inference in natural
language tasks. In H. T. Ng and E. Riloff, editors, Proc. of the Conference on Compu-
tational Natural Language Learning (CoNLL), pages 1–8. Association for Computational
Linguistics, 2004. URL http://cogcomp.org/papers/RothYi04.pdf.

D. Roth and D. Zelenko. Part of speech tagging using a network of linear separators. In
ACL-COLING, 1998.

M. Roth and M. Lapata. Neural semantic role labeling with dependency path embeddings.
Proc. of the Annual Meeting of the Association of Computational Linguistics (ACL),
2016.

S. Roy, T. Vieira, and D. Roth. Reasoning about quantities in natural language. Trans-
actions of the Association for Computational Linguistics (TACL), 3, 2015. URL http:

//cogcomp.org/papers/RoyViRo15.pdf.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-
propagating errors. Cognitive modeling, 5, 1988.

M. Sammons, C. Christodoulopoulos, P. Kordjamshidi, D. Khashabi, V. Srikumar, P. Vi-
jayakumar, M. Bokhari, X. Wu, and D. Roth. Edison: Feature extraction for nlp, simpli-
fied. In N. C. C. Chair), K. Choukri, T. Declerck, M. Grobelnik, B. Maegaard, J. Mariani,
A. Moreno, J. Odijk, and S. Piperidis, editors, Proc. of the International Conference on
Language Resources and Evaluation (LREC). European Language Resources Association
(ELRA), 2016. URL http://cogcomp.org/papers/SCKKSVBWR16.pdf.

R. C. Schank. Conceptual dependency: A theory of natural language understanding. Cog-
nitive psychology, 3(4):552–631, 1972.

R. C. Schank and R. P. Abelson. Scripts, plans, and knowledge. In Proc. of the International
Joint Conference on Artificial Intelligence (IJCAI), pages 151–157, 1975.

B. Selman and H. J. Levesque. Abductive and Default Reasoning: A Computational Core.
In Proceedings of the National Conference on Artificial Intelligence (AAAI), 1990.

M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi. Bidirectional attention flow for machine
comprehension. ICLR, 2016.

187

D. Shen and M. Lapata. Using Semantic Roles to Improve Question Answering. In EMNLP-
CoNLL, pages 12–21, 2007.

R. Socher, D. Chen, C. D. Manning, and A. Y. Ng. Reasoning With Neural Tensor Networks
for Knowledge Base Completion. In The Conference on Advances in Neural Information
Processing Systems (NIPS), 2013.

V. Srikumar and D. Roth. A Joint Model for Extended Semantic Role Labeling. In Proc.
of the Conference on Empirical Methods for Natural Language Processing (EMNLP),
Edinburgh, Scotland, 2011. URL http://cogcomp.org/papers/SrikumarRo11.pdf.

V. Srikumar and D. Roth. Modeling semantic relations expressed by prepositions. 1:231–
242, 2013. URL http://cogcomp.org/papers/SrikumarRo13.pdf.

M. Steedman and J. Baldridge. Combinatory categorial grammar. Non-Transformational
Syntax: Formal and explicit models of grammar, pages 181–224, 2011.

A. Stern, R. Stern, I. Dagan, and A. Felner. Efficient search for transformation-based
inference. In Proc. of the Annual Meeting of the Association of Computational Linguistics
(ACL), pages 283–291, 2012.

M. Steup. Epistemology. In E. N. Zalta, editor, The Stanford Ency-
clopedia of Philosophy. http://plato.stanford.edu/archives/spr2014/entries/

epistemology/, spring 2014 edition, 2014.

K. Sun, D. Yu, D. Yu, and C. Cardie. Improving machine reading comprehension with gen-
eral reading strategies. In Proc. of the Annual Meeting of the North American Association
of Computational Linguistics (NAACL), 2019.

W. t. Yih, X. He, and C. Meek. Semantic Parsing for Single-Relation Question Answering.
In 52ndACL, pages 643–648. Citeseer, 2014.

M. Taddeo and L. Floridi. Solving the symbol grounding problem: a critical review of
fifteen years of research. Journal of Experimental & Theoretical Artificial Intelligence, 17
(4):419–445, 2005.

P. P. Talukdar, M. Jacob, M. S. Mehmood, K. Crammer, Z. G. Ives, F. Pereira, and S. Guha.
Learning to create data-integrating queries. Proceedings of the VLDB Endowment, 1(1):
785–796, 2008.

P. P. Talukdar, Z. G. Ives, and F. Pereira. Automatically incorporating new sources in
keyword search-based data integration. In Proceedings of the 2010 ACM SIGMOD Inter-
national Conference on Management of data, pages 387–398. ACM, 2010.

N. Tandon, B. Dalvi, J. Grus, W. tau Yih, A. Bosselut, and P. Clark. Reasoning about
Actions and State Changes by Injecting Commonsense Knowledge. In Proc. of the Con-
ference on Empirical Methods for Natural Language Processing (EMNLP), pages 57–66,
2018.

188

K. Toutanova and D. Chen. Observed versus latent features for knowledge base and text
inference. In CVSC workshop, 2015.

H. Trivedi, H. Kwon, T. Khot, A. Sabharwal, and N. Balasubramanian. Entailment-based
Question Answering over Multiple Sentences. In Proc. of the Annual Meeting of the North
American Association of Computational Linguistics (NAACL), 2019.

A. M. Turing. Computing machinery and intelligence. Mind, 59(236):433, 1950.

P. D. Turney. Distributional semantics beyond words: Supervised learning of analogy and
paraphrase. TACL, 1:353–366, 2013.

P. D. Turney and P. Pantel. From frequency to meaning: Vector space models of semantics.
Journal of artificial intelligence research, 37:141–188, 2010.

K. Tymoshenko, D. Bonadiman, and A. Moschitti. Convolutional Neural Networks vs.
Convolution Kernels: Feature Engineering for Answer Sentence Reranking. In HLT-
NAACL, 2016.

C. Unger, L. Bühmann, J. Lehmann, A.-C. N. Ngomo, D. Gerber, and P. Cimiano.
Template-based question answering over RDF data. In Proceedings of the 21st inter-
national conference on World Wide Web, pages 639–648. ACM, 2012.

A. Vempala, E. Blanco, and A. Palmer. Determining Event Durations: Models and Error
Analysis. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 2
(Short Papers), volume 2, pages 164–168, 2018.

B. Wang, K. Liu, and J. Zhao. Inner Attention based Recurrent Neural Networks for Answer
Selection. In Proc. of the Annual Meeting of the Association of Computational Linguistics
(ACL), 2016.

C. Wang, N. Xue, S. Pradhan, and S. Pradhan. A Transition-based Algorithm for AMR
Parsing. In HLT-NAACL, pages 366–375, 2015.

H. Wang, D. Yu, K. Sun, J. Chen, D. Yu, D. Roth, and D. McAllester. Evidence Sentence
Extraction for Machine Reading Comprehension. arXiv preprint arXiv:1902.08852, 2019.

W. Wang, M. Yan, and C. Wu. Multi-granularity hierarchical attention fusion networks
for reading comprehension and question answering. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1705–1714, 2018.

D. J. Watts and S. H. Strogatz. Collective dynamics of small-worldnetworks. nature, 393
(6684):440, 1998.

J. Wieting, M. Bansal, K. Gimpel, K. Livescu, and D. Roth. From Paraphrase Database
to Compositional Paraphrase Model and Back. TACL, 3:345–358, 2015.

189

J. Williams. Extracting fine-grained durations for verbs from Twitter. In Proceedings
of ACL 2012 Student Research Workshop, pages 49–54. Association for Computational
Linguistics, 2012.

T. Winograd. Understanding natural language. Cognitive psychology, 3(1):1–191, 1972.

W. A. Woods. Progress in natural language understanding: an application to lunar geology.
In Proceedings of the June 4-8, 1973, national computer conference and exposition, pages
441–450. ACM, 1973.

S. Yang, L. Zou, Z. Wang, J. Yan, and J.-R. Wen. Efficiently Answering Technical Questions-
A Knowledge Graph Approach. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), pages 3111–3118, 2017.

Y. Yang, W. Yih, and C. Meek. WikiQA: A Challenge Dataset for Open-Domain Question
Answering. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, pages 2013–2018, 2015. URL http://aclweb.org/

anthology/D/D15/D15-1237.pdf.

Y. Yang, L. Birnbaum, J.-P. Wang, and D. Downey. Extracting Commonsense Properties
from Embeddings with Limited Human Guidance. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
volume 2, pages 644–649, 2018.

X. Yao and B. V. Durme. Information extraction over structured data: Question answering
with Freebase. In 52ndACL, 2014.

W. Yin, S. Ebert, and H. Schütze. Attention-based convolutional neural network for machine
comprehension. In NAACL HCQA Workshop, 2016.

L. A. Zadeh. The concept of a linguistic variable and its application to approximate rea-
soningI. Information sciences, 8(3):199–249, 1975.

L. A. Zadeh. PRUFa meaning representation language for natural languages. International
Journal of man-machine studies, 10(4):395–460, 1978.

R. Zellers, Y. Bisk, R. Schwartz, and Y. Choi. SWAG: A Large-Scale Adversarial Dataset for
Grounded Commonsense Inference. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 93–104, 2018.

L. S. Zettlemoyer and M. Collins. Learning to map sentences to logical form: Structured
classification with probabilistic categorial grammars. UAI, 2005.

S. Zhang, R. Rudinger, K. Duh, and B. V. Durme. Ordinal Common-sense Inference.
Transactions of the Association of Computational Linguistics, 5(1):379–395, 2017.

B. Zhou, D. Khashabi, Q. Ning, and D. Roth. “going on a vacation” takes longer than

190

“going for a walk”: A study of temporal commonsense understanding. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2019.

L. Zou, R. Huang, H. Wang, J. X. Yu, W. He, and D. Zhao. Natural language question
answering over RDF: a graph data driven approach. In SIGMOD, pages 313–324, 2014.

191

