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Abstract

Many real world systems need to operate on heterogeneous
information networks that consist of numerous interacting
components of different types. Examples include systems that
perform data analysis on biological information networks; so-
cial networks; and information extraction systems processing
unstructured data to convert raw text to knowledge graphs.
Many previous works describe specialized approaches to per-
form specific types of analysis, mining and learning on such
networks. In this work we propose a unified framework con-
sisting of a data model -a graph with a first order schema-
along with a declarative language for constructing, querying
and manipulating such networks in ways that facilitate rela-
tional and structured machine learning. In particular, we pro-
vide an initial prototype for a relational and graph traversal
query language where queries are directly used as relational
features for structured machine learning models. Feature ex-
traction is performed by making declarative graph traversal
queries. Learning and inference models can directly operate
on this relational representation and augment it with new data
and knowledge that, in turn, is integrated seamlessly into the
relational structure to support new predictions. We demon-
strate this system’s capabilities by showcasing tasks in natural
language processing and computational biology domains.

1 Introduction

Many real world systems need to operate on heterogeneous
information networks (Shi et al. 2015)) that consist of multi-
ple interacting components of various types. Examples in-
clude biological networks containing genes and proteins
along with experimental genomic and clinical data of the
patients; social networks, such as citation networks relating
authors and papers; or even more complex networks such
as knowledge graphs, which can contain a large variety of
types of entities and relationships (Nickel et al. 2015).
Although previous research extensively addresses the
challenges of working with such networks for various min-
ing tasks (see for example (Sun and Han 2013} |Kuck et
al. 2015))), a general solution for easily constructing such
networks or systematically manipulating them by various
analysis units has not yet been worked out. In other words,
mostly specialized approaches are proposed to perform spe-

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cific types of analysis over a network design and the imple-
mentations are mostly dependent on the type of tasks and the
type of analysis (for an overview, see (Shi et al. 2015))).

Data representation and flexible intelligent data analy-
sis, as well as the evolution of these networks based on
the analysis outcomes, need to be placed in a well-defined
framework. A complex version of such networks are in-
stantiations of knowledge graphs and as Nickel, et al. put
it: “Representing, learning, and reasoning with [knowledge
graphs] remains the next frontier for AI and machine learn-
ing.” (Nickel et al. 2015). In this work, we move closer to
this frontier by: 1) proposing a unified framework for inte-
grating data from heterogeneous resources in one relational
graph structure; 2) proposing a query language for construct-
ing, manipulating and evolving this graph; 3) providing the
capability of performing relational machine learning and
feature extraction on this graph using the same query lan-
guage. The novelty of our work, which is in progress, is in
the integration of the learning-based analysis with the above
components in one system, and allowing the proposed graph
query language to be used consistently for preparing learn-
ing examples, extracting relational features, and processing
the results of the learning models.

Our proposal is different from the conventional usage of
query languages in the context of information networks,
which are either standard retrieval queries (He and Singh
2008)) or designed for a specialized task (Kuck et al. 2015)).
Here, relational and structured machine learning models are
declared using a succinct definition language, and are di-
rectly applied on the graph. The resulting predictions can be
integrated into the same graph in a seamless manner. Our
model can be seen as an information extraction model that
can make declarative queries from unstructured data by ex-
pressing them in a relational graph structure. This combines
the aspirations of existing works that have tried to combine
information extraction modules with relational database sys-
tems and use standard querying languages for retrieving the
information (Krishnamurthy et al. 2009a)) with those of sys-
tems that are designed for processing textual data and which
provide a regular expression language to directly query from
text (Broda et al. 2013). Comparatively, our first order graph
query language provides the flexibility and expressivity to
extract relational and global patterns from unstructured data
for various kinds of data analysis, including feature extrac-
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Figure 1: Components’ interaction with the language.

tion as well as basic search and retrieval from the network.

This query language is designed as a part of SaulE] a
declarative learning based programming language (Kord-
jamshidi, Wu, and Roth 2015)). The queries are handled by
Scala’s underlying collection manipulation and query opti-
mization is out of the scope of this paper though it is an im-
portant issue for future consideration. Using Saul for struc-
tured learning in NLP domain has been investigated in (Ko-
rdjamshidi et al. 2016)). Here, focusing on the data modeling
aspect we show that our model facilitates working with data
coming from heterogeneous resources using NLP as well as
computational biology applications. We provide a detailed
application of our system for construction and manipulation
of biological networks (Bio 2015)), where the biologist needs
to assess patient gene influence on patient drug response,
using genomic data. Using our language, the biologist can
specify their problem in a few lines of code: making declar-
ative queries to perform various analysis.

2 System overview

Figure[I]shows the components of the system and their inter-
action with declarations in the language. Domain-specific
resources refer to data structures and available programs
that read data files into those data-structures along with any
available external functions that can process the data. Saul
internals are system components for learning algorithms,
inference solvers and internal graph representation for com-
puting the queries which are not exposed to the user. The
data-model specification is the user’s schematic specifica-
tion of the conceptual model of the data domain which is
then used to specify the inputs and outputs relevant to a
given problem. This is used as a template to generate prob-
lem instances. Problem instances are graph data-structures
populated with the actual input data. The user-specified Saul
model consists of three specification blocks of code: one for
the data model, one for the problem specification and do-
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main knowledge, and one for the application that loads the
data and applies the learning algorithms/solvers.

In a complete system, the data is read using programs
called data readers. The user declares the schema of the
data as a graph in which data items are collections of nodes,
edges and properties, which are defined using Sensors, suc-
cinct specifications in Saul’s definition language. The data
from the reader is mapped into the data-model and a popu-
lated graph containing all the data is generated. After pop-
ulation, all the operations such as example generation, fea-
ture selection, querying, and learning are defined using user-
specified graph queries expressed in terms of data-model
components. The predictions of the learning models can be
incorporated into the data-model and the outcomes are in-
tegrated into the generated data graph, allowing them to be
queried by the feature extraction and learning components.
Basically, these components are used to put the raw data into
the graph structure and capture domain-specific knowledge,
including learned representations of the data itself (e.g. a
collection of raw image data can be used to train to recog-
nize an object node).

3 Data Modeling

One main goal of our framework is to facilitate using het-
erogeneous information from various domains in a unified
framework. For example, raw data can be textual documents,
a collection of images or videos or spreadsheets describing
patients, drug responses. The basic notions that we use in-
cluding readers, baseTypes, sensors, etc and using these to
build an arbitrary graph structure provide an abstraction that
paves the way for achieving this goal.

The data-model is a graph schema that is used to explic-
itly represent the structure of the data and contains typed
nodes, edges and properties. The node types are domain’s
basic data-structures, called base-types. The base-types are
pre-established for each ap plication domain. The Saul base-
types for NLP domain are discussed in (Kordjamshidi et al.
2016) and include for example base-types for representing
documents, sentences, phrases, etc, referred to as linguistic
units. Our computational biology data-model is augmented
by necessary base-types to represent genes, patients, etc.E]

We use the notion of data readers which are programs
that can read the data into the base-types. Each domain is
equipped with a set of sensors that are black-box functions
applied on the base-types and can generate new nodes, con-
nect them by edges or generate properties of the nodes. The
graph schema is a first order graph that is based on types
of nodes instead of representing all individual objects. The
programmer declares the schema of the data, which later,
will be populated with the actual data instances in the pro-
gram and used for feature extraction and learning. A node of
type T is declared as in line 1 below and a property for node
nodeName is declared as in line 2:

Ival nodeName = node[T]
2>val propName = property (nodeName) {/+*body«*/}
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In the body of the property declaration we use a sen-
sor that operates on type T and returns a value of prop-
erty type. The property type can take any of Scala’s basic
data types or a standard collection. A property sensor asso-
ciates each object with a property type. An edge that con-
nects a source node nodel of type T to a destination node
node2 of type U is defined as edge (nodel, node2).
The edge declaration defines the type of edge; sensors will
populate the instances with actual edges. A sensor that de-
fines how a node is connected to another node is called
an edge sensor. We can easily add sensors to edges as
edgeName.addSensor (sensorName). Edge sensors can
be of two types, matching or generating.

Matching sensors are Boolean functions that establish an
edge between two existing nodes if certain conditions hold.
The matching edge sensors can be easily defined based on
specific properties that source and destination nodes possess.
Generating sensors, given a source node, create a number
of destination nodes and at the same time establish a con-
nection between the source and destination. For example, a
tokenization edge, generates tokenizated token nodes, upon
the population of the sentence nodes. The edges establish
connections in both directions automatically and provide the
flexibility of working with a relational model.

Algorithm 1 Declaring schema-graph M with base-types B

1: forallb € B do

2:  Define anode in M as val n; = node [b]

3:  Define properties of b based on the available property
Sensors sensep as
val p; = property(n;) { sensep}

4: for all n; and n; € B which you need to establish a

connection do

5:  Define an edge and add edge sensors to it:

val e;= edge(n;,n;) { sense,u,p,) }

Algorithm [T] shows the steps needed for declaring the data-
model. For example, a typical NLP data-model can have the
following nodes and edges,

val
val
val

sentences=node [Sentence]

phrases=node [Phrase]
relations=node[Relation]
phraseToRelations=edge (phrase, relations)

Seee

3.1 Populating the data model

Once a data-model is specified, we can populate it with the
actual data instances to get a propositionalized data graph.
For example, given a data reader that provide collections
of objects for all declared nodes, we can populate the node,
nodeName as: nodeName.populate (collectionName)

The edges between nodes are made automat-
ically using matching sensors. For  example
sentences.populate (sentenceList)  will popu-

late the sentence nodes with the list of sentences provided
by the data reader. When populating a node if the necessary
generating sensors are added to edges, then populating

sentences can generates tokes, phrases, etc.

4 Graph Queries

The Saul data-model helps to explore, query, and use the
data to design relational features for various learning mod-
els. Having a first order graph has the advantage of enabling
queries from both the schema of the graph (for searching
meta patterns like meta-path (Sun and Han 2012) features),
as well as from instances of the populated data graph.

The queries take advantage of both the object-oriented
and the functional programming paradigms in Scala. The
queries can be applied on individual nodes or on collections
of them and can return properties, nodes, or collections of
those. Accordingly, the return types of the queries will be
basic Scala types, base-types, or collections of those. A ma-
jor advantage of our approach is that we can chain differ-
ent commands together to form complex queries, which are
supported by Scala’s powerful and expressive syntax and its
ability to handle such compositions.

A basic query can be composed of a node name as
NodeName (), which returns a collection of all data in-
stances of that node; calling an edge as ~>EdgeNameE] to
follow the called edge; and calling a property by prop
PropertyName when it is applied on a collection, or by
PropertyName (x) when x is a single object.

4.1 Relational algebraic operations

By analogy to databases, each node can be seen as a rela-
tional table that describes a collection of objects or the rela-
tionships between objects. Given this perspective, perform-
ing relational algebra operations is equivalent to manipulat-
ing the collections in the nodes.

Graph traversal. The relational join operations that collect
information across nodes are performed with graph traver-
sal queries. To clarify this, assume that we need to get
all relations connected to a phrase x, we start from an in-
stance x of phrases node and follow an edge type named
phraseToRelations to get all relations connected to x,
that is, phrases (x) ~>phraseToRelations. In general,
we use ~>edgeName to retrieve objects connected to either
a single object x, or a collection c () . The c () ~>edgeName
is equivalent to applying edgeName to every single element
in c. Saul’s data model establishes a reverse edge automat-
ically given each edge declaration, e.g.,the reverse access is
made by the expression ~>-phraseToRelation. We can
extend the above query to get all phrases that are connected
to the source phrase x by means of some relations node
as follows:

1val connectedPhrases = phrase(x)~>
phraseToRelation~>-phraseToRelation

Explicit joins. Though the graph traversal operations pro-
vide the functionality that is expected from classic relational
join operations, the user can join nodes explicitly and add
complex relational nodes to the graph. This can be done as
follows:

3~0> is Saul’s traversal function



1val joinNode = join (nodel,node2) (/+bodyx*/)

where the body is a logical expression based on the prop-
erties of the nodes that indicates which node instances
should be joined together. For example, (_.posTag ==
. posTag)indicates that we need to join the nodes which
have the same posTag property values. The outcome node is
represented as a tuple of the two nodes and gives access to
all their properties, edges and instances.

Filtering. The Scala’s filter is used to Select a set
of nodes that meet a specified condition. For example,
words () .filter (x=>pos-tag(x) .equals ("NN"))
selects a set of words nodes whose pos—-tag is NN.

4.2 Pattern-matching and graph-isomorphisms

The data-model provides the advantage of finding patterns
of data instances as well as meta patterns according to the
type of nodes and edges in the data graph or its schema i.e.
data-model. These kinds of queries are not easy to formulate
in standard relational data models.

Contextual queries. We provide functions that help explore
the context of a node and its neighborhoods for more flex-
ible pattern matching and accessing global patterns. The
edges provide only one step access from one node to an-
other node that is directly connected to it. The command
node (x) .neighborAt (n) gives the collection of nodes
that are exactly n edges away from node instance x. We also
provide a neighborWithin (n) variant that provides the
collections of nodes that are at least n edges away, and for
both these functions the users can include an optional set of
edges to restrict the neighborhood by. Like the rest of the
queries, neighborhood queries allow composition via chain-
ing: it can be applied to a result of another query, and other
operations such as filtering, aggregation, or traversal can be
applied on its result.

Path queries. In order to identify the shortest path be-
tween two data instances, we provide the path function
that can be applied to node queries, node (x) .path (y).
In particular, this function searches for an instance y that
is reachable from a path of edges starting from instance x,
and returns the sequence of edges that connect these two
nodes (which is empty if a path does not exist). Option-
ally, the query can contain a maximum length n of the path
(node (x) .path (y, n)),i.e. an empty path is returned if a
path of size <n is not found.

These neighborhood and path queries can be used
to define features that capture the local graph context
in the data. For example the size of the neighbor-
hood (neighborsWithin(n).size) or its diversity
(neighborsWithin(n) .groupBy (_.tag) .size) may
be used to represent an instance, while the length of the
path between two instances (path(y).size) captures
the similarity. It should be noted that such queries can get
computationally very complex in large graphs. In order for
such queries to be efficient, this function is implemented
using breadth-first search over the nodes in the graph. More

“In Scala, the _ acts as a placeholder for parameters in the
anonymous function.

sophisticated optimization techniques are to be investigated
in the future.
4.3 Aggregation functions

We can apply various aggregation functions on a collection
of properties:

propertyName.aggregationFun ()

Since the property values have Scala’s basic types, a large
number of aggregation functions are available to Saul via
built-in Scala functionality. Hence, depending on the type
of the collection, various functions may be applied. In case
of numeric property types, for example, we can apply ag-
gregations such sum, product, and max. A number of ag-
gregation functions are available for any type of instances,
such as size and mkString for customized concatenation,
and further, users can also implement their own aggregation
functions by using £ilter, map, reduce, and groupBy. In
Saul, such native Scala aggregation functions can be applied
on the nodes and properties of the graph.

5 Querying for learning models

One main goal of basing Saul around a graph based data
modeling language is to provide the facility and flexibility
for relational learning models to extract complex features.
Formally, in supervised learning, given a set of examples
i.e. pairs of input and output, £ = {(x®,y)) e X x Y :
i =1...N}, learning is defined as a mapping h : X' — ).
In general both inputs (X’) and outputs () can be arbitrary
complex structures. In Saul both x and y are sub-graphs of
the data-model. Each input « is a set of nodes {1, ..., 2k}
and each node has a type p. Each x;, € x is described by a set
of properties relevant to its type; this set of properties will be
converted to a feature vector ¢,,. For instance, an input type
can be a word (atomic node) or a pair of words (composed
node), and each type is described by its own features (e.g. a
single word by its part of speech, the pair by the distance of
the two words). The output space y is represented by a set
of labels I = {ly,...,lp} each of which is another prop-
erty of a node in the graph. The labels can have semantic
relationships to each other, so that they can represent com-
plex output concepts for any arbitrary task. The main com-
ponents that must be declared for the learning models are
learning examples  and y and the features. In structured
output prediction tasks the background knowledge about the
output space should also be declared. Here, we describe how
our graph data modeling and various graph queries are used
in defining the components of the learning models.

5.1 Learning examples

Classically, each machine learning example has an input
which has a feature vector representation and an output label
which is a single variable. A label can be a binary or a multi-
valued variable in the classification setting, and a real valued
variable in the regression setting. Classic learning models
are the basic building blocks for composing Saul’s complex
learning model configurations.



>def feature =

Example representation. In our integrated feature extrac-
tion and learning environment, each learning example is a
rooted sub-graph. Each learning model is applied on a spe-
cific root node. The input feature types and the label type
of the learning examples are a set of graph queries return-
ing direct or contextual properties of the root node. In other
words, the root node is the pivot of all the queries that are
used for extracting features for a learning example. Conse-
quently, we can define a learning example with a node and
a set of pivoted queries, one of which is the label query and
the rest of which are feature queries. All these queries return
a property or a collection of properties.

The signature for defining a learning model, called
mode1Name, is as follows:

object modelName extends

Learnable (rootNodeName) {/+ body */}

where rootNodeName is the name of the root node (in the
typed graph) of the examples that the learning model takes.
Different kinds of properties related to the root node or its
connected nodes can be used to define features in the form
of queries. These queries define the feature types and the la-
bel type of this learning model. As described in Section [4]
queries can be declared and named as properties in the data-
model and used in the body of the learners or they can be
declared directly when defining the learning model. The fol-
lowing snippet shows how the feature information can be
provided in the body of the learning model:

def label =

queryLabel
using (queryl, query2, ...)

In this snippet we assume all queries are declared and the
learner refers to a list of query names to be used as features.

Example selection. The examples used by a learner are
instances of a single node in the graph and can be retrieved
from the graph. It is often the case that the programmer
needs to filter the data items and use only a subset of ex-
amples for training. A common use case is filtering the neg-
ative examples in an unbalanced data set. This can be de-
clared as a part of the learning model. Alternatively, it can
be defined elsewhere and set as the example selection fil-
ter for the learning model when populating the training data
into the data graph. The default filter uses all instances of the
learner’s type that exist in the instantiated graph.

Constraints. Constraints may be used in structured learn-
ing models to incorporate domain knowledge by explic-
itly linking some output predictions. Constraints are imple-
mented using queries to specify the relevant properties in the
data graph and using a logical expression to impose restric-
tions on the sets of values they can take. For example,

(sentences (s) ~>sentenceToPhrase) ._forall{x=>
isPredicate on x is "True" ==>
isArgument on x isNot "True"

indicates that all phrases in a sentence can be labeled as a
predicate or as an argument not both.

The constraints are defined in terms of the outputs of the
classifiers and their primary usage is to impose structural re-

SN

strictions on the output values of classifiers while making
joint predictions. The constraints can be used for structured
learning models for joint training too. The details about the
underlying computational model for using global constraints
in learning and prediction in Saul is provided in (Kord-
jamshidi, Wu, and Roth 2015). A constrained classifier can
always be used in the body of the properties to generate the
property values of the nodes in the data-model and called
via graph traversal queries. This implies, the answer to such
queries is found by performing global inference and finding
the best assignments under the user specified constraints.

6 Biological networks Application

In this section, we show the value in integrating heteroge-
neous data coming from various resources in a unified data
model for the computational biology domain and the way
it facilitates performing various kinds of analysis by query-
ing, learning and inference. Figure [2] shows the conceptual
model of the employed data in terms of entities and relation-
ships. In Saul all the entities and relationships are declared
as nodes in a graph and there is no distinction between them.

6.1 Data description

Our experimental dateﬂ includes various spreadsheets. One
spreadsheet is about patients, including an identifier for each
patient and some clinical properties of the patients such as
age, race and type of cancer. This data is shown in the dia-
gram with the patient box and the type of properties of the
patients are connected to this box. There is another spread-
sheet that contains the response of each patient to different
drugs. This is shown in the patient-drug diamond (relation
symbol in relational data models) in the figure. The drug
response is a real-valued property of this relation. The ge-
nomic information of the patients shown with the patient-
gene diamond. This is a spreadsheet that shows the gene
expression levels in each patient. The actual data contains
the expression values of ~ 20k genes, typically for a few
thousands of patients. The left part of the diagram shows the
schema of our biological knowledge graph, which contains
the information about genes and their relationships. This is
used as background knowledge when performing analysis
on patients’ data. The Gene box shows the individual prop-
erties of each gene, such as the pathways that it belongs to,
biological processes (from Gene Ontology) it is active in,
etc. The Gene-Gene diamond shows relationships between
genes, e.g., their sequence similarity, their protein-protein
interactions, etc.

6.2 Data model declaration

Given the conceptual model of the data, we can declare the
data-model at the same conceptual level using Algorithm 1:

val
val
val
val
val

patients = node[Patient]
genes = node[Gene]
patientGene = node[PatientGene]
patientDrug = node[PatientDrug]
geneGene = node[GeneGene]

Ssee  KnowEng  project
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Figure 2: This graph represents the type of entities and rela-
tionships that are involved in our biological network.
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6 val geneGenes = edge (geneGene, genes)

The properties are assigned to nodes, e.g., the response of a
patient to a drug given base-types and sensors, is defined as,

1val drugResponse = property(patientDrug) {
x: PatientDrug => x.response }

Similarly the KEGG property is defined as the set of path-
ways (catalogued in the public KEGG database) that are
known to contain that gene,

1val KEGG=property (gene) {x:Gene=>x.pathways}

6.3 Querying the biological network

Given the properties, genes can be grouped by the pathways.
This results in lists of genes per pathway.

1val geneGroupedPerPathways =
genes.SGroupBy (KEGG, GeneName)

The geneGroupedPerPathways is a mapping between
pathway names and lists of gene names. Using this mapping
we can get a set of genes using a pathway name as a key.

1val myPathwayGenes =
geneGroupedPerPathWays.get ("hsa01040")

This would return all the genes in our genomic data that be-
long to pathway “hsa01040”. Biologists might need to re-
trieve the subsets of genes that belong to a specific pathway
as described above and seek all the genes connected to this
subset by a specific type of edge. For example, one edge
in our experimental knowledge graph is PPIBioGrid edge
(protein-protein interaction edge catalogued in the BioGrid
database). To obtain all genes connected by such an edge
type to any gene in a specific pathway, the following query
can be made:

1val pathwayNeighbors =
myPathwayGenes.map (gen =>(genes (gen)~>
—geneGenes) .filter (rel=>
PPIBioGrid(rel) .equals(1l)))

This query maps each gene in myPathwayGenes to all the
genes that are connected to it via geneGenes relation in-
verse edge, then filters these pairwise gene relations to be
limited to a specific class of relations, viz., all relations
whose PPIBioGrid property is equal to one. The goal of
this query and the previous one is to obtain a specific subset
of genes to be used, for example, in learning or in comput-
ing the correlation between the gene expression values and

drug responses across all patients. Towards this goal, one
may obtain the expression values of a given subset of genes
after usage of a specific drug, by defining a property based
on joining patient-drug and patient-gene information, as fol-
lows,

1val PWgeneExpression=property (patientDrug) {
> pd: PatientDrug =>

3 patientGene() .filter(_.pid ==_.pid).

4 filter (myPathWayGenes.contains (GeneName (_))) .
5 map(_.gExpression) }

This definition, given a patient identifier, it retrieves its gene
expression measurements and filters them using the subset
of genes selected in the previous query above.

6.4 Learning and regression

A user can define a machine learning model that uses the
just-obtained subset of gene expression values for each pa-
tient and measures its correlation with the drug response,
using a multi-regressor. The multi-regressor is a learner that
is defined as described in Section 5.1k

I object DrugResponseRegressor extends
Learnable (patientDrug) {

>def label = drugResponse override

3def feature = using(PWgeneExpression)

1def classifier = new
StochasticGradientDescent () }

This learner defines the expression of the above-
mentioned subset of genes as the input features
and the drug response as the target label. The user
can upload the data into the knowledge graph as:
KnowEngDataModel .populateWithKnowengdata ().
This will read the data from files to nodes and edges in the
graph. Then the data for each patient will serve as training
examples and the regressor can be trained and then tested
easily with a few lines of code as follows:

I DrugResponseRegressor.learn (

2 patientDrugTrainingInstances)
3DrugResponseRegressor.testContinuous (
4 patientDrugTestingInstances)

The testContinuous method reports the regressor’s eval-
uation using various metrics including sum-square of resid-
uals, Pearson correlations, etc.

6.5 Meta analysis based on learning results

Saul facilitates meta analysis of the results of various learn-
ing models. In the previous problem, the user can easily de-
fine a set of learners by parameterization of the input proper-
ties. For example, a property (called PWigeneExpression)
can receive the name of a pathway as an input parameter and
return the expression of the genes of that specific pathway
for a specific patient.

1val pathWayGExpression= (pathway: String) =>
> property(patientDrug, ordered = true) {
pd: PatientDrug =>
4 val myPathwayGenes =
genesGroupedPerPathway.get (pathway)
5 patientGene () .filter (_.pid == _.pid).



6 filter (myPathwayGenes.contains (GeneName)) .

7 map (_.gExpression) }

Assume that we have 100 pathways in our data graph and the
biologist wants to define a separate regressor each of which
uses the genes of each pathway as input features. This can
be done by defining a class of learners, parameterized with
the pathway property:

I class DrugResponseRegressor (pathway:
String) extends Learnable (patientDrug) {
def label = drugResponse

3 def feature =

using (PWgeneExpression (pathway)) }

Given this class of models, we can create as many regressors
as the number of distinct pathways in our data,

1val myLearners=(genes () prop gene_KEGG) .
flatten.distinct.map (new
DrugResponseRegressor (_))

myLearners is a collection of regressors, each of which is
created based on a set of gene expression values correspond-
ing to a specific pathway. Now we can apply train, test, etc
on all learners on this collection at once:

imyLearners.map(_.train())

2val testRslts = myLearners.map(_.test())
3val sortedRgrs = testRslts.SortWithAccuracy
4+val bestRegressor = testRslts.maxAccuracy

The first line in the above snippet trains all the regressors.
The second line shows how to test the regressors according
to a specific evaluation metric, for example accuracy. For
a different task on the same data, the user can seamlessly
define new nodes, properties and classifiers and reuse the
existing data model.

7 Related Work and Discussion

Our proposed model is related to many existing systems
from various perspectives. We highlight the differences and
similarities and the new advantages of our data-model in the
context of Saul (Kordjamshidi, Wu, and Roth 2015)).
Comparison to machine learning tools. Most of the com-
monly used ML tools such as WEKA (Witten et al. 1999)
or Mallet (McCallum 2002) provide easy access to learn-
ing algorithms. However, a common characteristic of these
tools is that a flat data structure in a specific file format
should be provided. This is a major disadvantage for rela-
tional learning when a) the data domain is structured and
features should be extracted from parts of the structure b)
there are several learning models involved that interact with
each other and use multiple feature generation tools (poten-
tially from different sources) c) the user needs to do ex-
perimentation and feature engineering, which is often the
case when designing machine learning models. One goal of
Saul’s data modeling language is to address these issues on
top of machine learning models.

Comparison to feature extraction languages. Feature ex-
traction is very challenging in relational data domains such
as computational biology, or when the data is raw with
a complex and implicit structure such as natural language

or computer vision. There are some tools available in the
latter two domains which facilitate feature extraction by
providing generic data structures appropriate for those do-
mains and set of tools applicable on those data structures
(i.e. readers and sensors). A recent example in NLP do-
main is Fextor (Broda et al. 2013)). This tool provides an
internal representation for textual data and provides a li-
brary to make queries, relying on its fixed internal rep-
resentation. Prior to Fextor, Fex (Cumby and Roth 2003}
Cumby and Roth 2000) views feature extraction from a first
order knowledge representation perspective, and it is closer
to our view here. However, their formalization is based on
Description Logic (Baader 2003)) where each feature extrac-
tion query is answered by logical reasoning. While having
similar perspective, we solve queries using graph traver-
sal over the propositionalized graph instead of logical rea-
soning. We are able to run the same type of queries given
our graph-based formulation (Shastri 1991)). Unlike Fex, our
data model declaration provides the flexibility of working
with arbitrary types of objects—e.g. we are not limited to
having sentence level features, or tokens level features, etc.
Saul’s data modeling language enables the user to declare
the graph and plugging in any arbitrary data structures and
arbitrary external sensors.

Information extraction tools. With the ability to work on
unstructured data, our system has many common features
with the information extraction tools. To facilitate working
on unstructured data, there has been efforts in designing uni-
fied data structures for processing textual data and prepar-
ing tools (i.e. sensors) that can operate on those data struc-
tures (Sammons et al. 2016). A well-known example of such
universal data structure is UIMA (Ferrucci and Lally 2004)
that can be augmented with NLP tools. Similarly, there are
some well-known software that focus on providing NLP sen-
sors, such as NLTK (Loper and Bird 2002), GATE (Cun-
ningham et al. 2011)). These frameworks, focus on providing
a specific internal representation and do not allow for a dec-
laration of a model based on arbitrary structures and using
arbitrary external sensors easily in one data model. Though
some of these information extraction systems are equipped
with very well designed and efficient query languages such
as SystemT (Krishnamurthy et al. 2009b), we argue for a
generic framework for information extraction in the con-
text of heterogeneous information networks while address-
ing learning and inference in a same framework.

Relational and graph based query languages. The con-
cept of graph queries and using first order logical languages
for querying from structured data is well-established for re-
lational and graph database technologies El Along the same
line, our data modeling language facilitates querying form
structured data. Graph traversal approaches are known to
be more efficient for performing join operations and there
are scalable implementations available for working on graph
structures (Gonzalez et al. 2014). Our goal is integrating
such capabilities with learning based programming.

In the context of Saul. Our proposed feature language cur-
rently implemented as a part of Saul (Kordjamshidi, Wu,

®http://tinkerpop.incubator.apache.org/



and Roth 2015)), that does structured-learning based on Con-
straint Conditional Models (Chang, Ratinov, and Roth 2012)
but can be integrated with any JVM-based languages which
are designed for advanced machine learning models such
as probabilistic graphical models e.g. WOLFE (Riedel et
al. 2014) and FACTORIE (McCallum, Schultz, and Singh
2009). Using such a data modeling language, structured out-
put prediction models can exploit the expressive power of re-
lational feature representation to easily handle the issues of
representation of the structured inputs and outputs, and de-
fine relational features over them. In contrast to our proposed
data-model, the aspect of data modeling and feature extrac-
tion is less elaborated in other relational learning frame-
works. For example, in Alchemy for programming Markov
Logic Networks (MLNs) (Richardson and Domingos 2006),
raw data should be processed offline and stored in a DB file
in predicate-argument form. It is flexible only in the way
that first-order logical expressions can be written to operate
on the predefined predicates retrieved from the DB. The re-
lational learning language kLog (Frasconi et al. 2014) has
the same input structure and format. However, kLog is more
flexible from the feature extraction point of view, because it
uses Prolog and provides the possibility of logical reasoning
for feature extraction. These systems are not designed to be
integrated with various sources of information and building
an information network is not their concern. The feature ex-
traction is treated as an external prepossessing component in
such frameworks.

8 Conclusion

In this work we propose an initial prototype for a new in-
tegrated graph-based data-modeling and feature extraction
language as a part of declarative learning language, Saul, to
facilitate building end-to-end learning based systems for real
world applications. We address the issue of building a het-
erogeneous information network based on both structured
and unstructured data from various resources. Our language
combines the power of relational, graph-based feature ex-
traction, with the flexibility to exploit previously established
resources such as data readers, annotators, sensors, and data
structures in a given domain. We describe examples in NLP
and computational biology domains. In summary our proto-
type, similar to the existing data modeling languages, pro-
vides the capability of declarative querying from data using
relational operations; in contrast to existing systems, a) pro-
vides the possibility of seamless integration of unstructured
and heterogeneous data from various domains into a unified
data model; b) connects the relational graph directly to the
analysis units which are relational machine learning mod-
els; c) facilitates on-the-fly integration of the output of the
analysis units into an evolving graph.
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