
EDISON: Feature Extraction for NLP
Mark Sammons1, Christos Christodoulopoulos1, Parisa Kordjamshidi1, Daniel Khashabi1, Vivek Srikumar2,

Paul Vijayakumar, Mazin Bokhari1, Xinbo Wu1, and Dan Roth1
1Cognitive Computation Group, University of Illinois 2School of Computing, University of Utah

This work is supported by the Army Research Laboratory (ARL) under agreement W911NF-09-2-0053, by the

Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior National Business Center

contract number D11PC20155, and by DARPA under agreement number FA8750-13-2-0008.

Project Goals

• Speed up development by centralizing

feature extraction and making it easy for

developers to find existing implementations

for feature extractors they need.

• Clarify individual project code and reduce

maintenance overhead by using the same

reference implementation of features where

appropriate.

• Share reference implementation of feature

extraction for specific applications/

publications to support duplication of

results by other researchers.

• Initiate an open source project that can be

improved and used by other researchers.

Example Task: Named Entity Recognition
Named Entity Recognition (NER) is a basic NLP task that identifies proper nouns

and their types in English text. It is a useful component for other applications.

Features represent information used to support decisions about what to label

target elements of the text – in this case, targets are words. Some features that we

can use to predict the NER label for a word include the NER labels predicted for

previous words, and part-of-speech labels of neighboring words. Figure 3

illustrates these features for a given sentence. The information shown here is

simple, as are the feature extractors.

Figure 3: Feature extraction for Named Entity Recognition

What is Feature Extraction?

Natural Language Processing systems such as

Part of Speech taggers, Shallow Parsers, and

Named Entity Recognizers are typically built

around Machine Learning algorithms

(“learners”). These algorithms build statistical

models that take some representation of text as

input, and predicts labels for elements of that

text (“examples”) as output. To work well, this

representation must express useful

abstractions over the text. The process of

mapping from raw text to learner inputs is

known as Feature Extraction.

Using the Edison

Feature Extraction

Library

Feature Extraction Challenges
• Implementation is time consuming.

• Replicating other people’s research is hard –

their published descriptions of feature

extractors may lack important details.

• There is much duplication of effort: many

different versions of the same tools; and

across different NLP applications, many

similar/identical feature extractors.

• Even given existing feature extraction code,

it may be hard to find the extractor you need.

CCG Software

Cognitive Computation Group has

numerous existing NLP

applications implemented using a

mixture of LBJava, Edison, and

illinois-core-utilities (data

structure library). As we work to

build on these tools and use them

in new, more complex NLP tasks

we want to standardize them to

improve ease-of-use and reliability

in new environments. We also

want to expose reusable elements

within each package and share

them across applications.

We decided to unify our NLP tool

suite with a single API based on

illinois-core-utilities, and expand

Edison’s feature extraction

libraries with the goal of making it

easier for other researchers to

work with our software.

Figure 1: illinois-core-utilities data structures

Illinois-core-utilities and Edison

LBJava and Saul

Edison’s feature extractor classes can be

directly incorporated in Java applications

using the CCG data structures, and in

programmatic learning environments.

LBJava is a self-contained extension to Java

that supports machine learning. It provides a

specification language that allows users to

rapidly develop prototype machine learning

algorithms.

Saul is a new Learning-Based Programming

framework in Scala that supports rapid

development of machine learning

applications that use Structured Prediction

methodologies. It generalizes the capabilities

of LBJava.

illinois-core-utilities specifies a range of

generic data structures and algorithms to

support Natural Language Processing (NLP),

plus utilities such as corpus readers for a

number of NLP tasks. Edison specifies

feature extraction code using these data

structures.

Feature
Output

Files

Reader
Data

Structures

Feature
Search

Interface

Feature
Extraction

Code

Learning
Framework
Application

Corpus

Use Feature Extractors Programmatically Use Feature File Outputs

For more complex

tasks, features

may themselves

represent struct-

ures that span

multiple const-

ituents in multiple

views (to use

illinois-core-utilities’

termin-ology), or

which use

knowledge

resources such as

gazetteers.

Edison Feature Extractor Search Interface

Edison users need to know what feature extractors are available, and what they

do. Every feature extractor is named according to a standard to give some idea

what Views they use and what features they generate. Each is documented with a

clear description of its behavior, and each has a unit test that illustrates its use

and specifies a representative output for that extractor.

The search interface allows users to search for NLP terms, keywords, and View

names and retrieve matching Feature Extractors, displaying the unit test code for

each selected extractor.

Figure 2: Screenshot of feature extractor search interface

SVMLight format

Edison provides support for the use of popular

machine learning packages such as Weka, Mallet,

and SVMLight by providing classes to write out

feature extractor outputs in the SVMLight data

format. Edison generates a lexicon mapping

feature types to integer values, and SVMLight

input files that use these integer values.

Figure 3: Edison feature extractor output as

SVMLight format and lexicon

Figure 4: Using Edison feature extractors in LBJava

Figure 5: Using Edison feature extractors in Saul

discrete NERLabel(Constituent word) <- { return word.getLabel(); }

discrete NERClassifier(Constituent word) <-
 learn NERLabel using Capitalization, WordContextBigrams,
 POSContextBigrams, ChunkContextBigrams
 with SparseNetworkLearner {
 SparseAveragedPerceptron.Parameters p =
 new SparseAveragedPerceptron.Parameters();
 p.learningRate = .1; p.thickness = 2;
 baseLTU = new SparseAveragedPerceptron(p);
}

object NERClassifier extends Learnable[Constituent](word) {
 def label = NERLabel
 override def feature = using(Capitalization, WordContextBigrams,
 POSContextBigrams, ChunkContextBigrams)
 override lazy val classifier = new SparseNetworkLBP
}
object NERDataModel extends DataModel {
 val word = node[Constituent]
 val NERLabel = property(word) { x: Constituent => x.getLabel }
 val surface = property(word) { x: Constituent => x.getSurfaceForm }
}

#svmlight format
1 0:1 5:1 7:1 9:1 11:1 12:1 14:1 15:1 16:1 18:1 19:1
5 8:1 9:1 10:1 11:1 12:1 14:1 15:1 16:1 22:1 24:1
2 2:1 3:1 10:1 14:1 15:1 19:1 22:1 25:1 29:1 34:1
...

#edison lexicon
1 B-PER
2 I-PER
…
12 NNP#&#John
13 prefix-10:0101011100

Find the source code at:

https://github.com/IllinoisCogComp/
illinois-cogcomp-nlp/tree/master/edison

https://github.com/IllinoisCogComp/
illinois-cogcomp-nlp/tree/master/core-utilities http://bilbo.cs.illinois.edu:5900/

LBJava: https://github.com/IllinoisCogComp/lbjava

Saul: https://github.com/IllinoisCogComp/saul

