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Abstract

The theory of Knowledge Representation
has been one of the central focuses in Arti-
ficial Intelligence research over the past 60
years which has seen numerous propos-
als and debates ranging from very philo-
sophical and theoretical level to practical
issues. Although a lot of work has been
done in this area, we believe currently, it
does not receive enough attention from the
research community, except in very lim-
ited perspectives. The goal of this work
is to give a unified overview of a set of
select works on the foundations of knowl-
edge representation and exemplar practi-
cal advancements.

1 Introduction

Knowledge Representation (KR) is the subfield of
Artificial Intelligence (AI) devoted to formalizing
information about the world in a form that com-
puter systems can use in order to solve complex
tasks, such as a robot moving objects in an envi-
ronment or answering a question in the form of
natural language. The work in knowledge repre-
sentation goes beyond creating formalism for in-
formation, and includes issues like how to acquire,
encode and access it, which sometimes is called
knowledge engineering. Knowledge acquisition is
is the process of identifying and capturing the rel-
evant knowledge, according to the representation.

The discussion of knowledge representation has
a long history in AI and ranges very fundamental
problems like, whether knowledge representation
is necessary for an AI system? to relatively practi-
cal questions like whether classical logical repre-
sentation is complete? Many of the ideas in repre-
sentation stemmed from observations in psychol-

ogy about how humans solve problems. Having
multiple trends in interpreting the form of under-
standing, comprehension and reasoning in the hu-
man mind has created a diverse set of options for
knowledge representation.

In this work we give a relatively comprehensive
review on the long-standing works on knowledge
representation with emphasis on natural language
systems. The review will start from relatively fun-
damental issues on representation, and will con-
tinue to exemplary practical advancements. Due
to the close ties between representation and rea-
soning, various reasoning frameworks have ap-
peared; we briefly explore them in conjunction
with representation techniques.
Key terms: Before starting our main conversation
we define the terminology we will be using in this
summary. We start with proposition.
Proposition: Propositions are judgments or opin-
ions which can be true or false. A proposition
is not necessarily a sentence, although a sentence
can express a proposition. For example the sen-
tence that “Cats cannot fly” contains the proposi-
tion that cats are not able to fly. Similarly this sen-
tence “Cats are unable to fly” and this declarative
phrase with logic can-fly(cats)=false
convey the same proposition. A claim or a sen-
tence can contain multiple atomic propositions.
For example “Many think that cats can fly”.
Concept: Propositions can be about any physi-
cal object (like a tree, bicycle, etc) and any ab-
stract idea (like happiness, thought, betrayal, etc),
which all are (usually) called concepts.
Belief: Belief is an expression of faith and/or trust
in a proposition, although a belief might not nec-
essarily be true. For example “Homer believed
that the earth is flat” is an proposition which con-
tains the belief of “earth” being “flat”, which is
not true. “The weather forecast predicts a tornado



for tomorrow.” is another proposition which ex-
presses another belief which might turn out to be
true or false.
Cognition: Discussion of knowledge representa-
tion is closely related to the mental picture of the
objects and concepts around us. Cognition is the
mental action or process of acquiring knowledge
and understanding through thought, experience,
and the senses. Although cognition involves ab-
stract mental representations of concepts, it can
have an outer physical source (like observation,
hearing, touching, etc), or inner source (like think-
ing), or a combination of inner and outer sources.
Knowledge: Knowledge is information, facts, un-
derstanding, and skills acquired through experi-
ence or education; the theoretical or practical un-
derstanding of a subject. The philosophical nature
of knowledge has long been studied in Epistemol-
ogy (Steup, 2014), where it has been been classi-
fied into different categories based on its nature,
and its inherent connection to belief, truth, justifi-
cation, etc is analyzed.
Representation: To solve many problems there is
a need to use some form of information which
might be implicit in the problem definition or even
not mentioned; therefore this knowledge must be
provided to the solver (which can be a computer
or any other machine) in order to be used when
needed. In other words, representation is a surro-
gate for a concept, belief, knowledge or proposi-
tions. For example, the number 5 could be rep-
resented with the string “5”, or with bits 101,
or Roman numeral “V”, etc. As part of design-
ing a program to solve a problem, we must de-
fine how to represent the required knowledge. The
theory of Knowledge Representation is concerned
with the formalization of how to represent propo-
sitions, beliefs, etc. A representation scheme de-
fines the form of the knowledge saved in a knowl-
edge base. Any representation is an abstraction
of the world and its objects. The abstraction level
of a representation might be too detailed, or too
coarse with only high-level information.
Reasoning: Reasoning is the heart of AI, the de-
cision making system for solving a problem or the
action of thinking about something in a logical
and sensible way in order to form a conclusion.
Why Knowledge Representation?: It is not a
trivial question to answer whether having knowl-
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Figure 1: A conventional structure of an AI sys-
tem. The “intermediate” representation is the mid-
dleman between the reasoning engine and the ac-
tual input information. In addition to information
in the input, for many problems reasoning engine
demands knowledge beyond the problem defini-
tions itself, which is provided by a knowledge
base. Therefore the discussion of representation
can be about either the input information, or the
internal knowledge of the reasoning system.

edge representation is necessary or not. In a lot of
problems, since dealing with the raw input/output
complicates the reasoning stage, historically re-
searchers have preferred to devise intermediate in-
put/output to be middleman between the natural
information and the reasoning engine (Figure 1).
Therefore the need for intermediate level seems
to be essential. In addition, in many problems
there is a significant amount of knowledge which
either is not mentioned, or it is implicit. Somehow
the extra information needs to be provided to the
reasoning system, which is usually modeled as a
knowledge base. The issue of representations ap-
plies to both the input level information and the
internal knowledge of the reasoning system.

Such separation of knowledge from reasoning
system is inherited to us from the very early AI
projects and nowadays many accept it as the right
way of modeling problems. Whether this is def-
initely the right way or not, there are debates; at
least this is the popular way of doing it. We refer
to some of the relevant debates in the forthcoming
sections.
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2 A brief history of Knowledge
Representation

In the early history of AI, there was big series
of oppositions to the idea of “abstract represen-
tation of thought” among psychology researchers.
Perhaps one of the earliest works that created a
separate representation of the knowledge from the
solver engine was the General Problem Solver
(GPS) system of Newell and Simon (1961). This
system was intended to be a universal problem
solver which could be formalized in symbolic
form, like chess playing or theorem proving. The
idea of symbolic reasoning was developed cen-
turies earlier by Descartes, Pascal, Leibniz and
some other pioneers in philosophy of mind. The
use of symbols as the fundamental elements of
the representation, or the physical symbol system
hypothesis (Newell and Simon, 1961) is a debat-
able assumption which has continued its way until
now.

After the early scalablity issues of GPS, it soon
became clear that a system designed for solving
any formalized problem is impractical due to the
combinatorial explosion of intermediate states for
numerous problems. Also, it became apparent
early that one of the main problems was how to
represent the knowledge needed to solve a prob-
lem. Since then, the trend moved towards limiting
the scope and focusing on specific problems, and
their properties. As a result, the family of sym-
bolic and logical representations, such as propo-
sitional and 1st-order logic gained popularity and
interesting applications came out (McCarthy and
Hayes, 1968). Similarly increased focus on spe-
cific applications gave rise to the popularity of Ex-
pert Systems (i.e. systems which are good on a
specific set of problems, rather than everything)
(Hayes-Roth et al., 1984). For example, the STU-
DENT program of Bobrow (1964), written in LISP,
could read and solve high school algebra prob-
lems which were expressed in natural language;
the SHRDLU system of Winograd (1971) with a
restricted natural language world model, could
discuss and perform tasks in a simulated Blocks
World, a famous planning domain with a set of ob-
jects (e.g. cubes, etc) on a table where the goal is
to build stacks of blocks, given natural language
inputs. DENDRAL (Buchanan and Feigenbaum,

1978) was one of the first working expert sys-
tems for hypothesis formation and discovery of
unknown organic molecules, using its knowledge
of chemistry.

There were parallel trend inspired by neurons
in the human (Rosenblatt, 1958). This movement
started by modeling mental or behavioral phenom-
ena, emergent from interconnected networks of
some units. It lost many of its fans after Min-
sky and Papert (1969) showed fundamental lim-
itations of low layer networks in approximating
some functions. However, a series of following
events gave another energy to neurally inspired
models; Rumelhart et al. (1988a) found a formal-
ized way to train networks with more than one
layer. Funahashi (1989) showed the universal ap-
proximation property for feedforward networks,
i.e. any continuous function on the real num-
bers can be uniformly approximated by neural net-
works; Rumelhart et al. (1988b) emphasized on
the parallel and distributed nature of processing,
which gave rise to the name “connectionism”.

Much progress has been made, but still many
problems are unsolved to a large extent. Some is-
sues are far more foundational in AI, like authors
who have claimed that human-level reasoning is
not achievable via purely computational means;
e.g. (Dreyfus, 1992; Searle, 1980; Boden, 1996).
Similarly on the representation level, there are
many issues that still are subject to debate. For ex-
ample, the frame problem (McCarthy and Hayes,
1968) in logical representation, which is the need
for a compact way of expressing states which
do not change in an environment as a result of
some actions. For example, coloring a table, def-
initely does not change its position but when us-
ing classical logical reasoning, the independence
between ‘color’ property and ‘location’ property
needs to be explicitly encoded. Rather than en-
coding exceptions in the knowledge base, there
has been proposals in the form of non-monotonic
reasoning for the frame problem. In nonmono-
tonic reasoning it is possible to jump to a con-
clusion and retract some of the conclusions previ-
ously made, as further information becomes avail-
able (which is the reason for being called non-
monotonic). Despite the initial promise of the
nonmonotonic reasoning methods, many of such
reasoning frameworks suffered from the issue of
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consistency, i.e. ensuring that conclusions drawn
are consistent with one another and with the as-
sumptions. Some other works group properties
into independent categories to encode causal in-
dependence of actions on properties; for exam-
ple grouping properties with temporal and spatial
boundaries (Hayes, 1995).

Minsky and Fillmore were among the first to
propose the frame-based representation (Minsky,
1974; Fillmore, 1977), resulted in resources like
FrameNet (Baker et al., 1998), or systems like
KRL (Bobrow and Winograd, 1977). Frames can
be seen as a restricted form of 1st-order knowl-
edge (Fikes and Kehler, 1985). A frame consists
of a group of slots and fillers to define a stereotypi-
cal object or activity. A slot can contain value such
as rules, facts, images, video, procedures or even
another frame (Fikes and Kehler, 1985). Frames
can be organized hierarchically, where the default
values can be inherited the value directly from par-
ent frames.

Frames later on evolved to other representati-
nal forms many of which are strict subsets of 1st-
order logic and some are decidable and closely
related to other formalisms such as modal log-
ics (Schild, 1991; Schmidt-Schauß and Smolka,
1991). One of such extensions is Description
Logics (also called concept languages or attribu-
tive description languages (Schmidt-Schauß and
Smolka, 1991)) that model the declarative part
of frames using a logic-based semantics. One of
the reasons for such extension was adding more
mathematical rigor in hierarchical definition of
knowledge. Description Logics (Borgida et al.,
1989) guarantee polynomial-time decision algo-
rithms by using operators on concept descriptions
(in contrast to the use of quantifiers in 1st-order
logic).

What does a good knowledge representation
look like? Many researchers have given some-
what different answers. In the following sections
we will discuss some of the fundamental issues
and research questions regarding representation
and related problems. Each section contains a dif-
ferent issue, although there might be overlaps be-
tween the issues.

3 Is knowledge representation necessary
for AI systems?

The use of a representation layer is a common
trend among AI researchers. However, (Agre and
Chapman, 1987; Brooks, 1990; Brooks, 1991) is
among the few works which oppose the common
trend. Rather than modeling intelligence via sym-
bol representation, this approach aims to use real-
time interaction with the environment to generate
viable responses. The big motivation for the de-
sign of such situated behavior in robots is that
most human activity is concept-free, simply re-
actions to changes in their environment (Such-
man, 1987; Maes, 1990); for example running,
avoiding collisions, etc. Brooks argues that rather
than defining knowledge for the robot, it should
be able to obtain the behavior via interaction with
its environment, since “the world is its own best
model”. Brooks also argues that human-like in-
telligence should be evolved via interaction with
the environment, rather than defining it directly
with representation. In other words, unlike the
common top-down approach, “intelligence is de-
termined by the dynamics of interaction with the
world”. Brook’s subsumption architecture became
successful in applications that needed real-time
interaction with a dynamic environment.

Brooks (1991) realizes his ideas with the
Mobots, which are constructed by linking small
state Finite State Machines (FSM). There is an
underlying assumption that the Mobot structure
can scale up to gain robustness in performance
by overlaying more and more specialized mech-
anisms. Clearly with such a design, the intermedi-
ate representations (as the states of FSM’s) are in-
evitable. However Brooks avoids using any direct
declarative representation. Although this idea
found successes in some applications, it did not
gain much attention in the majority of AI tasks.
Kirsh (1991) and Etzioni (1993) are among the
opposing works to Brooks’ idea that most human
activity is concept-free and AI tasks could be re-
solved independent of having a direct declarative
representation.

First, from a practical perspective, each FSM
needs to be tuned to the right stimuli so as to al-
low the world senses to work properly. This, com-
bined with implicit representation (the state mem-
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ory of FSM’s), can be considered as playing the
role of declarative knowledge. In addition, the de-
sign of FSM’s for tasks that demand intricate rea-
soning about the future is very hard and limited.
Therefore one obstacle is the lack of large mem-
ory for representation, which seems to be essential
for tasks like natural language understanding.

In addition, there are many tasks which cannot
be performed based on immediate sensory infor-
mation alone, but instead require a combination of
perception, reasoning, recalling, etc. The decision
that a chicken is not a dangerous animal, while an
eagle might be, rests in part on the knowledge that
chickens are domesticated while eagles are wild.
This is despite the fact that there are many sim-
ilarities between the two birds in terms of sen-
sory input: wings, feathers, beaks, claws. Other
tasks may require reasoning or making predictions
about the actions of other agents, such as when at-
tempting to dribble past a defender in soccer.

4 Representing Degrees of Beliefs

Is uncertainty with respect to propositions im-
portant? Or can we create a complete AI sys-
tem without taking uncertainty into account? It
seems that in the real world, almost any informa-
tion is subject to uncertainty. Therefore all reason-
ing problems are pervaded with uncertainty and
doubt, which incessantly change along with inter-
actions with the environment. There seem to be
many reasons for using probabilistic models for
reasoning, although it still has its opponents. Un-
certainty may be a result of the uncertain nature
of events, disagreement between different facts,
or inaccurate or incomplete information. Linguis-
tic imprecision is a very common reason for the
occurrence of uncertainty in problems, and unfor-
tunately there is not much direct literature on it,
unlike other sources of uncertainty.

How should beliefs with respect to propositions
be represented? Is uncertainty deterministically
quantifiable, or does it need to be modeled as an-
other level of uncertainty? The very nature of
uncertainty has been the subject of epistemolog-
ical studies for centuries. There are various forms
of quantitative uncertainty, i.e. assigning numer-
ical values that express the degree to which we
are uncertain about pieces of knowledge. During
the eighties there was a big movement to bring

in models which support uncertainty for reason-
ing; for example (Pearl, 1986; Cheeseman, 1985;
Zedeh, 1989; Nilsson, 1986; Darwiche and Gold-
szmidt, 1994; Spohn, 1988). For each of these
methods, there are debates over the assumptions,
appropriateness and efficiency when used in the
reasoning procedure.

Probability Theory is undeniably the most well-
known way of representing uncertainty. There is
a plethora of works that use probability functions
either inside the logical models (Nilsson, 1986),
Graphical Models (Pearl, 1986; Lauritzen, 1996),
etc. Probability can be viewed as a generaliza-
tion of classical propositional logic from a binary
domain to a bounded continuous domain. There
are rigorous studies on agreement between logical
representation and probability theory (Cox, 1961;
Jaynes, 2003). Despite the popularity of Proba-
bility Theory, there are significant limitations and
difficulties in applying probabilities, which has re-
sulted in the development of other variations and
heuristic techniques for approximating it. There
is extensive experimental research in behavioral
decision science which verifies that mental judg-
ments often align with probabilistic rules or show
an approximation of it. However, there are re-
sults which show systematic bias in decision mak-
ing and strict deviations from norms of probabil-
ity theory (Tversky and Kahneman, 1974), which
is another obstacle in using probability theoretic
models. There is much disagreement on the inter-
pretation of probability functions as “degree of be-
lief” (subjective), versus the “long run frequency”
(frequentist or objective) interpretation, etc (Hjek,
2012). Bayesianism which currently plays a big
role in probability theory, uses the subjective in-
terpretation by using priors as an amount of belief
in a proposition combined with the new evidence,
which results into a posterior probability.

Dempster-Shafer theory (DS) (Shafer, 1976)
can be seen as a generalization of the Bayesian
theory. It represents uncertainty with belief func-
tions, which are a way of representing epistemic
plausibilities, and are not necessarily the same
as probability functions. DS also provides a
way of combining beliefs. From a computational
point of view, higher-order representations such as
Dempster-Shafer are harder than the probabilistic
models.
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Fuzzy Logic (Zadeh, 1973) can be thought of as
the generalization of traditional logic to contain a
truth value that ranges in degree between 0 and
1. Fuzzy logic deals with cases where something
could be partially true; we can think of it as deal-
ing with “shades of grey” rather than the “black or
white” of classical logic.

5 Dealing with commonsense

Commonsense is usually defined as “knowledge
about the everyday world that is possessed by all
people” (Liu and Singh, 2004). It is usually the set
of information which is possessed by most people
in a society; e.g. objects fall on the ground; chick-
ens do not fly; friends support each other; Barack
Obama is the US president 1.

Commonsense knowledge is gained, mostly,
during human experience and interaction through
our sensory signals about spatial, physical, social,
temporal, and psychological aspects of everyday
life. Since the acquisition of such knowledge is
done automatically during our daily life, it is as-
sumed that every person possesses commonsense,
and therefore typically it is never specified in any
sort of communication and text.

In many problems in natural language under-
standing, there is a need for a surprising amount
of commonsense (for example, question answer-
ing on elementary-school stories (Richardson et
al., 2013), or Textual Entailment (Dagan et al.,
2010)). Commonsense can play an important role,
even in mature NLP problems; for example take
the task of parsing the phrase “animals other than
dogs such as cats”, which is relatively easy for hu-
man. For a computer parser it can be ambiguous
whether “cats are animals” or “cats are dogs” is
more plausible, although it is clear to humans that
cats cannot be dogs, based on our commonsense
(Wu et al., 2012).

Early AI, during the sixties and onward, experi-
enced a lot of interest in modeling commonsense
knowledge. McCarthy, one of the founders of AI,
believed in formal logic as a solution to common
sense reasoning (McCarthy and Lifschitz, 1990).
Marvin Minsky, in his famous book, estimated
that “... commonsense is knowing maybe 30 or 60
million things about the world and having them

1This is commonsense for American people, but not nec-
essarily in another country.

represented so that when something happens, you
can make analogies with others” (Minsky, 1988).
There are works focusing on elementary-school
level story comprehension, which is full of com-
monsense facts (for example, Charniak (1972) and
Dejong (1979)). Unfortunately many of such ef-
forts were tested on very limited problems, like
the Block World problem. There have been fa-
mous decade-long efforts to create knowledge
bases which contain commonsense, such as Cyc
(Lenat, 1995) and ConceptNet (Liu and Singh,
2004) (explained in the last section), but none of
these have been shown to be a good solution to
NLP problems, at least to a reasonable extent.

Starting in the nineties, most of the excitement
about commonsense disappeared and the focus
shifted towards side problems which seemed to be
easier and approximations to bigger challenges.
Unfortunately there are not many success stories
in literature on this issue.

Recently there have been multiple initiatives
to attack problems which need deeper semantic
reasoning (such as commonsense reasoning), e.g.
MCTest QA challenge (Richardson et al., 2013),
Winograd Challenge (Levesque et al., 2011),
Facebook’s QA dataset (Weston et al., 2015), high
school science test challenge (Clark, 2015); al-
though no reasonable solution yet exists for any
of the aforementioned challenges. One com-
mon property of these challenges is that all of
them need extensive knowledge which is not di-
rectly mentioned in the problem or is at most im-
plicitly mentioned, which makes it essential to
have a knowledge layer along with reasoning, and
stresses the importance of the representation prob-
lem.

6 Explicit representation vs. distributed
representation

In this section we provide a couple of major ar-
guments for and against connectionsm and clas-
sifical formalisim (such as logical modeling). Be-
fore jumping into the arguments, we find it im-
portant to mention that making a seamless com-
parison between connectionism and classicism is
almost impossible, since they are based on differ-
ent assumptions about the availability of resources
(such as data and computation) or the task being
solved. Thus one needs to be very careful in ac-
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cepting arguments for or against these modeling
frameworks.

How is knowledge encoded in human mind?
Even after decades of study of the human mind,
there is still debate on to what extent knowledge
is localized in mind. Some argue that all knowl-
edge is spread across the entire cortex and pat-
terns of neural firing responsible for representing
some external event. On the other hand, some be-
lieve that certain kinds of information are stored
in tightly circumscribed regions. Since the struc-
ture of brain has been a source of inspiration for
AI researchers, this issue has found mathematical
elaboration, giving rise to models and philosophi-
cal issues. Connectionism is based on the assump-
tion that cognition takes place via interactions be-
tween large numbers of simple processing units,
linked via weighted connections. Each concept
is represented by many neurons, the weights of
the connections and the topology of the network
(Touretzky and Hinton, 1985). Similarly, each
neuron participates in the representation of many
concepts. This is in contrast to ‘localist’ represen-
tation which uses one symbol per concept. Local-
ist designs are easy to comprehend and design, but
inefficient when data has big componential struc-
ture.

The first few decades of AI were dominated by
symbolic representation. Symbolic logic provides
well-understood declarative knowledge represen-
tation and reasoning paradigms. One big problem
with these models is the need for a huge number
of knowledge definitions. Otherwise, there will
be a sparsity issue and a lack of robustness as a
result of missing information in knowledge. Dis-
tributed representations tend to be more robust2,
since their models are based on vector represen-
tation of input information (say, words). How-
ever, unlike logical representations, they lack rea-
soning like induction, deduction, etc. Instead
they just learn a mapping from input to output
space. Learning such a mapping usually needs a
large number of training examples in order to ex-
hibit enough generalization. Conversely, classical
models are capable of learning immediately upon

2This phrase is a little inaccurate. A connectionist model
needs to see many learning instances in order to generalize
enough, just like the need for many rules in the classical
frameworks.

observing the input in formal form, without ex-
tra repetitions.3 Another issue is the degradation
of previously learned information in connection-
ist models, upon learning new facts (also known
as known as catastrophic interference). While in
logical models, when adding more axioms to the
system, with the use of a sensible reasoning sys-
tem, there is no loss of previous information.

In many AI designs, a considerable amount of
initial knowledge is given to a learning agent.
There has been a lot of debate about whether hu-
mans are born with knowledge or not. Pinker
and Bloom (1990) and Chomsky (1988) argue
that children are born with innate domain-specific
knowledge of the principles of grammar, which
is, perhaps a support for classical AI systems, in
which the system is given expert knowledge while
modeling. However, Elman (1996) argues against
the innateness hypothesis, which is a support for
models learning from scratch, similar to learning
statistical models with random initialization (in-
cluding many connectionist models).

One of the arguments against the connectionism
models was proposed by (Fodor and Pylyshyn,
1988), where they questioned the ability of con-
nectionist networks to embody systematicity and
compositionality. Fodor and Pylyshyn argue that
any reasonable model of representation needs to
have these properties; “Compositionality” is the
property of natural language whereby one can cre-
ate novel meaningful elements from smaller con-
stituents. “Systematicity” is the latent connections
created in language to link certain roles and con-
stituents of sentences to create meaningful sen-
tences. For example, for any English-speaker the
sentence “Jack loves Kate” makes sense, although
it might not make much sense if we randomly
scramble the words. But we understand that “Kate
loves Jack” is probably implied from the previ-
ous sentence. Such observations are the basis for
the sub-symbolic hypothesis that the brain must
contain symbolic representations similar to the
constituents of language (although independent of
the language being spoken, hence called the “lan-
guage of thought”). How can such linguistic phe-
nomena which seems to have a discrete symbolic

3For human mind, this is subject of some debate. Some
believe that ‘rehearsal’ is a necessity before saving memories
into long-term memory (cf. Goldstein (2014)).
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nature be analyzed with a network of functions?
The criticism of Fodor and Pylyshyn (1988) was
followed by a series of responses arguing that sys-
tematicity and compositionality can be simulated
by means of complex networks (e.g. work by
Smolensky (1988)). Elman (1991) proposed a so-
lution by introducing recursive neural networks
which repeatedly uses it’s previous output and a
part of the context to model the recursive behavior
of the language.

There have been many studies on the structural
behaviors inside learned networks following em-
pirical behavior observations in human. For ex-
ample “U-shaped” development of cognition has
been observed in human when learning various
tasks. Usually when we are learning an action (say
the past form of verbs), the performance degrades
as a result of over-generalization of exceptions.
This is followed by an increase in performance by
learning the right level of generalization of rules.
Rumelhart and McClelland (1985) observed such
behavior in their network when learning past tense
for English verbs.

Another issue is the “binding” of variables,
which has a close connection to the “systematic-
ity” issue raised by Fodor and Pylyshyn. Binding
is the act of representing conjunctions of proper-
ties. A property can be anything being sensed,
for example: color, shape, orientation, etc. To
visually detect a red circle, among a blue circle
and a blue rectangle, one must visually bind each
object’s color to its shape (Treisman and Gelade,
1980). Similarly, one can imagine thematic roles
for groups of words in sentences which binds them
together (Fodor, 1983). For example, in order to
understand the statement, “Jack feels Kate is an-
gry” one must bind “Jack” to the agent role of
“feels”. Binding is the backbone of symbolic rep-
resentation. The real world is full of concepts with
complex combinations of properties which require
efficient dynamic binding mechanisms in order
to generate representations of perceptual objects
and movements. However it is not obvious how
to do dynamic binding in a mathematical frame-
work. One of the popular trends following neuro-
scientists’ observations of the human body (Gray
and Singer, 1989), is the binding base on tempo-
ral synchrony of the connected units: if two units
are bound, then they fire synchronously; otherwise

they fire asynchronously.

One big practical limitation of many proposed
ideas for dynamic binding is that they are ineffi-
cient when it comes to modeling facts and long-
term memory. Smolensky (1990) proposed ten-
sor product for simulating the process of variable
binding, where symbolic information is stored
at and retrieved from known locations. One
of the frameworks for natural language process-
ing created based upon temporal synchrony was
SHRUTI (Shastri and Ajjanagadde, 1993), in
which dynamic bindings are modeled by syn-
chronous firing of appropriate role and entity
cells. The first-oreder logic type knowledge is
modeled as directed connections. Inference in
SHRUTI corresponds to a transient propagation
of rhythmic signals over the network. In practice
creating such a network might require a gigantic
space of nodes and links which is able to process
the information at each node in parallel. The au-
thors at the time were motivated by the empirical
results suggesting the possibility of synthesizing
such structures.

The debate about systenaticity instigated a se-
ries of works on neural-symbolic models which
aim at the integration of neural networks and sym-
bolic knowledge. There might seem to be a ri-
valry between connectionism and symbolic rep-
resentation, however some believe that the way
the mind works is a combination of both. Al-
though the mind implements a neural net, it is also
a symbolic processor at a higher level. When we
do many daily routine skills, such as opening a
door or riding a bicycle, it seems like we do not
think about details of the actions; we never rea-
son about how to move our weight so that we
keep our balance. Instead we do the actions un-
consciously and without much reasoning; over-
thinking the details of our actions might actually
confuse us. This perhaps might be an evidence for
implicit knowledge in mind. On the other hand,
the first time we want to drive a manual car, we
might need to get instructions from someone, fol-
low instructions of a book, or observe someone
who knows how to do it (each of which being dif-
ferent approximations to what actually needs to be
done). This part of our learning is more similar to
a classical form of learning (e.g. learning from
declarative/procedural definitions). When learn-
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ing, while repeating the actions we need to care-
fully think about them and the order in which they
must be done. By repetition of actions, they be-
come part of our skill, i.e. we do not need much
thinking/reasoning while doing it. This can per-
haps be seen as transfer of knowledge/skills from
explicit form to implicit representation.

Following similar intuitions, a series of works
appeared under “Hybrid Networks” or “Neural-
Symbolic Networks”. For example Towell and
Shavlik (1993) proposed KBANN (Knowledge-
Based Artificial Neural Network), a system for in-
sertion and refinement of a neural network with
backpropagation, which also has the ability to ex-
tract rules from the resulting network. A pure con-
nectionist model can be viewed as learning a set of
propositional rules. Minimizing the energy func-
tion of a symmetric network corresponds to find-
ing a model compatible with a set of propositonal
rules (Pinkas, 1991). But there is hope to gain
capabilities beyond propositional logic in connec-
tionist models. Ballard and Hayes (1986) for-
mulated resolution on a restricted family of 1st-
order rules as an energy minimization problem on
a network. Hölldobler et al. (1991) developed
a method for encoding propositionl logic inside
a multi-layer feed-forward network. It has been
claimed that they can create a loop between the
continuous network and the symbolic logic by ex-
tracting the logical rules from the network and
feeding them into the network.

7 The issue of abstraction level

One of the issues which is arises as a result
of explicit representation of facts and rules is
the “abstraction” issue, which unfortunately does
not have much direct literature. Making rules
more coarser sometimes makes processing and
representation easier. For example suppose in a
database of people the final task involves whether
people are engineers or not. Consider these two
scenarios: having a database of people with (1)
with more abstracted form of job title, i.e. “en-
gineer” or “non-engineer”, or (2) full job names,
such as “psychologist”, “mathematician”, “chem-
ical engineer”, etc. In case (1) the decision is
relatively easier that case (2), in which the deci-
sion needs further collapsing of the job-names into
“engineer” and “non-engineer”. Therefore, usu-

ally the more detailed the information is, the more
computationally difficult it is to reason with. In
general there is a trade-off between the expressive
level of the representation and the deductive com-
plexity.

What if in the previous example, the goal is a
decision dependent on the exact job name? Then
case (2) would be the right abstraction level and
case (1) a bad approximation to the information
needed. This shows that the right level of ab-
straction depends on what is needed. The abstrac-
tion level should be in a way that it is “expressive
enough” to find the answer, without further addi-
tional complications.

Since many levels of abstraction might be nec-
essary for reasoning, it might be a good idea to
model an environment at multiple levels of ab-
straction (Rasmussen, 1985; Bisantz and Vicente,
1994). Such hierarchical abstract can be modeled
in various ways, 1st-order logic, frames, semantic
graphs, etc, and the properties are inherited from
parent nodes to more refined nodes (for example
work with frames (Bobrow and Winograd, 1977)).
One issue with the default pass of properties to
children is how model exceptions. For example, if
any “bird” can “fly”, any entity of type “bird” will
inherit the “fly” property. What is the right way
handle the exception that “chicken” does not fly?

Another issue is during accessing the knowl-
edge. Suppose a problem is given to the system,
and internally it needs to choose which level of
abstraction to use. What is the right way of deter-
mining what is the right level of abstraction? For
example, two different inputs to a questions an-
swering system might be (1) “Is there any person
with degree in psychology?”, or (2) “Is there any
person with degree in a non-engineering major?”.
The attention structure in human mind (Johnson
and Proctor, 2004; Janzen and Vicente, 1997)
is very strong in finding out what are the right
abstraction for answering each question, but for
computers, it might need a further pre-processing
on the question to decide where to look for infor-
mation. The issue of accessing knowledge goes
beyond abstraction levels; in general it can be
about accessing multiple knowledge bases, pos-
sibly with contradictions, etc. Unfortunately there
is not much formalism on these issues.
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8 Exemplar Practical Systems

Here we give a summary of the main efforts in
creating knowledge bases. Many of the following
KBs claim to to capture general-purpose world-
semantic knowledge; however the small differ-
ences in their knowledge representations make
them suitable for very different purposes. In each
of the following we will give partial answers to the
following questions:

• What are the representations? What is the
level of abstraction?

• How is knowledge acquired?
• How are contradictions and updating the ex-

isting information handled?
• Is there any notion of time/date/number? If

so, how are temporal and quantitative issues
handled?

• How the information is accessed?
• Prominent success stories.

The works are presented in chronological order.

8.1 Cyc (1984–present)
The Cyc project (Lenat, 1995) started with the ef-
fort to formalize knowledge (including common-
sense) into a logical framework. As of 2003,
Cyc contained around 118,000 concepts, used
in around 2,000,000 assertions (Liu and Singh,
2004). The assertions in this KB are mostly
crafted by knowledge engineers.

To properly use Cyc KB it is essential to first
map the raw text into CycL, the logical represen-
tation used by Cyc. However, the mapping is quite
complex due to the complexity and ambiguity of
natural language. Since the representation of con-
cepts and assertions are formalized based on logic,
its deductive reasoning works great when all de-
tails are precise and unambiguous. However, the
usual nature of natural language is full of ambigu-
ity and brevity. The limited access to the knowl-
edge base and tools to use it for common public
was another limitation which made it hard for re-
searchers to improve upon this KB.

8.2 WordNet (1985–present)
WordNet (Miller, 1995; Fellbaum, 1998) is ar-
guably the most impactful resource used in NLP
community. The resource is optimized for lexical
categorization. It contains (mostly) nouns, verbs,

adjectives and adverbs4, labeled with ‘sense’
classes. Meaning in Wordnet is defined through
synsets, which are the set of synonyms. In addi-
tion, the elements are linked with small set of se-
mantic relations, e.g. ‘is-a’, synonym, hyponym,
etc. For example here, the hierarchy of hypernyms
of happiness is shown bellow:

abstraction
=> attribute
=> state

=> feeling
=> emotion

=> spirit
=> emotional_state

=> happiness

In other words, WordNet could be seen as a
combination of dictionary and thesaurus. It also
contains the morphological information to get the
lemma or stem of a word. As of 2012, it contains
155,287 words with a total of 206,941 word-sense
pairs, organized in 117,659 synsets.

The knowledge in the WordNet is mostly hand-
crafted by knowledge engineers. WordNet has ex-
tensively been used for word sense disambigua-
tion (WSD), in which it is aimed to differentiate
the right meaning of the words, based on context
information. Given the nice relational hierarchy
of words in WordNet, one of its popular usages
is as a similarity metric, for example by taking
into account the distance in the hypernymy tree,
or similarity between the synsets.

A criticism (or maybe advantage?), is that the
information in WordNet is general, and there is no
domain-specific classification of knowledge (e.g.
food, engineering, etc). Also it has been argued
that the sense categorization inside WordNet is too
fine-grained. For example, it can happen in many
cases that, a word’s meaning corresponds to mul-
tiple senses in WordNet. To solve the sense gran-
ularity issue, there have been many proposals, in-
cluding clustering techniques, etc.

4It ignores determiners, prepositions, pronouns, conjunc-
tions, and particles.
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8.3 ThoughtTreasure (1994–2000)
Begun in December 1993, ThoughtTreasure
(Mueller, 1998) was aimed to contain common-
sense knowledge. Adopting the view of Minsky
(1988) that there is no single “right” representa-
tion for everything, ThoughtTreasure uses various
forms of representation to represent the knowl-
edge. The major part of the knowledge is a set of
concepts, which are linked as assertions. Bellow
are examples of the assertions:

[isa soda drink]
(Soda is a drink.)

[is the-sky blue]
(The sky is blue.)

The final version contained a total of 27,000 con-
cepts and 51,000 assertions. Unlike many other
KBs, it has several domain-specific lower ontolo-
gies such as for clothing, food, and music. It con-
tains assertions containing quantities, such as the
followings:

[duration attend-play
NUMBER:second:10800]
(The duration of a play is 10,800
seconds.)

@19770120:19810120|[President-of
country-USA Jimmy-Carter]
(Jimmy Carter was the President of
the USA from January 20, 1977 to
January 20, 1981.)

The ontology supports English and French;
35,000 lexical entries in English and 21,000 lexi-
cal entries in French. For each entry there are at
most 118 features attached. Examples of features
are ZEROART (zero article taker), SING (sin-
gular), FML (formal), CAN (Canadian).

Grids are 2D maps of floorplans which repre-
sent in a typical life how objects (flower, window,
table, chair, etc) are arranged near each other. A
grid can belong to a kitchen, bedroom, a restau-
rant, etc. There are rules for how the grids (for ex-
ample bedroom and kitchen) might be related to
each other in the form of procedural commands.
There are 29 grids in total included in the KB.

ThoughtTreasure also contains procedural
knowledge, in the form of about 100 scripts,
which are representations of typical activities

(e.g. eating at a restaurant). For a fixed script,
it contains details details on how events follow
each other, and how people and physical objects
might interact with each other. For example the
procedure to buy a ticket, is a represented as an
automaton:

purchase-ticket(A, P) :-
dress(A, purchase-ticket),
RETRIEVE building-of(P, BLDG);

near-reachable(A, BLDG),
near-reachable(A, FINDO(office)),

2: interjection-of-greeting(A, B =
FIND(human NEAR counter)),
WAIT FOR may-I-help-you(B, A)

OR WAIT 10 seconds AND GOTO 2,
...

The KB contains such scenarios for typical ac-
tivities like inter-personal relations, sleeping, at-
tending events, sending a message with phone,
etc. The finite automata give a relatively good way
to simulate behavior of actors in different scenar-
ios.

As mentioned, for different types of informa-
tion different ways of representation have been
used; (1) logical assertions for encyclopedic facts,
(2) grids for stereotypical physical settings, and
(3) finite automata for rules of thumb, device be-
havior, and mental processes.

Considering the lexical hierarchies by some
specific set of relations, ThoughtTreasure is sim-
ilar to WordNet. Also it is similar to Cyc, in
the sense that it has commonsense knowledge
and most of its information is as assertions be-
tween concepts. However, as mentioned ear-
lier, ThoughtTreasure is using multiple represen-
tations in addition to logic (finite automata, grids,
scripts).

8.4 ConceptNet(2000–present)

ConceptNet (Liu and Singh, 2004) was motivated
by importance of commonsense knowledge in tex-
tual reasoning.

As of 2014, ConceptNet5 (Speer and Havasi,
2012) contains over 10 million assertions, and
about 7 million of those assertions are in English.
There are 50 relations, and 2,798,486 English con-
cepts. As a graph, just the English part is about 3
million nodes and 7 millon edges or arcs connect-
ing them.
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Compared to WordNet, it contains more so-
phisticated relations like LocationOf, SubeventOf,
UsedFor, etc. An example subgraph of the con-
ceptNet is shown in Figure 2.

The data collection for ConceptNet was
extracted from the Open-Mind Commonsense
(OMCS) project (Singh et al., 2002), during which
common people (rather than knowledge experts)
were asked to fill in possible relations between
concepts or a concept relating to a another one.
The OMCS data was already in a semi-structured
form the way it was collected by prompting users
with fill-in-the-blank templates. The extraction
of ConceptNet5 relations are done by design of
regular expression on the semi-structured OMCS
data. In the final stage of the construction, the con-
cepts are stripped of determiners, and tenses and
reduced to their lemma forms.

ConceptNet’s knowledge representation is
semi-structured English. Since many of the
concepts are represented with natural language,
there are many redundancies in the representation.
Unlike WordNet, the concepts can be relatively
more complex phrases, e.g. ‘cut food’, ‘kick a
ball’, ‘drive to work’. Also there is relativey more
variety of relations between concepts; e.g. ‘IsA’,
‘RelatedTo’, ‘PartOf’, ‘UsedFor’, ‘CapableOf’,
‘AtLocation’, ‘Causes’, ‘Synonym’, ‘Antonym’,
etc. Also, conceptNet, does not have sense labels
(either relations or concepts). For example the
concept ‘Power’ (in Figure 2) can be used in the
sense of ‘having authority’, or in the sense of
‘rate of doing physical work’.

8.5 OpenIE (2003–present)

Open Information Extraction (Etzioni et al., 2004;
Mausam et al., 2012) consists of a series of
projects dedicated to extraction of relational tuples
from text, without resorting to any pre-specified
vocabulary or ontology. The systems mostly start
with identification of relation phrases and asso-
ciated arguments, for a given arbitrary sentences.
The type of the relation can be very general; me-
diated by a verb, nouns, adjectives, etc.

In the following box, a sample output of OLLIE

(Mausam et al., 2012) on the input text has been
shown.

Q: Jimbo was afraid of Bobbert because she gets scared

around new people.

(she;gets scared around;new people)

(Jimbo; was afraid of; Bobbert)

(Jimbo; was; afraid of Bobbert)

Although OpenIE, at first look, is an open re-
lation extractor, the result of running it on web-
scale data can be used as a knowledge base of re-
lations between arguments. In Balasubramanian
et al. (2013) unigram and bigram counts of co-
occurring relations have been published.

Unlike other knowledge bases, OpenIE is an
open relation-tuple extraction system which can
be used a resource. Therefore, there is not much
human power is used for extraction of the rules.
One issue is that, since the rules are extracted
from text, it will have problems in extraction of
the rules that are implicit or not usually mentioned
(like facts relevant to commonsense). It has also
been argued that the surface relations for Ope-
nIE are brittle. In other words, a fixed relation
might be expressed in many different forms, and
they will be treated differently. Similarly, a sur-
face string, might have two different meanings,
depending on its context, therefore expressing two
different sense of the relation.

8.6 Freebase (2007–2015)
Freebase (Bollacker et al., 2008) is a collabora-
tive knowledge base acquired by Google in 2010.
Including 46 million of concepts, Freebase is a
very popular source of information. The infor-
mation was acquired from many sources, such
as Wikipedia page and human entries. The data
are represented in the form of entities/concepts
which are connected by relations. The KB can be
searched, queried like a database and used to pro-
vide information to applications. In 2015, Google
announced that it is shutting down Freebase, and
will be replaced with Wikidata (see Section 8.9).

There are many successful usages of Freebase,
although many of such works are limited in the
sense that, they mostly rely on direct usages of the
facts, without much reasoning on chains of facts.

8.7 NELL (2010–present)
The Never-Ending Language Learner (NELL)
(Carlson et al., 2010; Mitchell et al., 2015)
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Figure 2: A small visualization of the relations inside ConceptNet5. From conceptnet5.media.
mit.edu

has been developed to learn from the web 24
hours/day since its start in January 2010. So
far has acquired over 80 million beliefs (relations
among two fixed entities/concepts). NELL up-
dates its parameters based on new belief, which
results in extension of its capability for generating
new beliefs.

NELL is one of the most unique efforts to gen-
erate knowledge in the loop of reasoning and us-
age. There has been much engineering on this
system to create a stable loop of reasoning and
knowledge extraction. For example, deviations in
knowledge base facts might be result of some ini-
tial erroneous conclusions which creates system-
atic noise in the results, as the loop of reason-
ing and extraction continues based on the previ-
ous facts. There is vast number of new innova-
tive works suggesting ways to add new facts given
the existing knowledge; e.g. (Gardner et al., 2013;
Lao et al., 2011). Despite the huge volume of facts
in NELL, the usage of this KB has been limited in
problems which need reasoning on top of facts,
e.g. question answering.

8.8 Probase (2012–present)

Probase (Wu et al., 2012) is a probabilistic tax-
onomy which contains 2.7 million concepts ex-
tracted automatically from 1.68 billion web pages.
The probabilities are used to model inconsistent,
ambiguous and uncertain information.

As mentioned Probase is a taxonomy which can
be thought of as an ontology with only isA rela-
tions. The extraction of concepts is done auto-
matically which has resulted in its big size. The
extraction is done by bootstrapping using syntac-
tic patterns and using iterative use of semantic

information in the extracted patterns. Compared
to Cyc, which has been using knowledge experts
for many years and Freebase, which was using
communal effort it can be considered an advan-
tage. From this perspective it is similar to Ope-
nIE, NELL, etc. Unfortunately Probase has so far
been used only for Microsoft’s internal user and
not publicly available.

8.9 Wikidata(2012–present)

Wikidata (Vrandečić and Krötzsch, 2014) is a
collaboratively knowledge base operated by the
Wikimedia Foundation.

The data is distributed across documents which
represents a topic and is identified by a unique
number (for example the item for the topic Pol-
itics is Q7163). Each topic contains a series of
statements which are in the form of key-value
pairs. Each single user can edit the values or add
new keys. The current user-interface of Wikidata
seems to be user-friendlier Freebase, another col-
laborative KB. The creators believe that such the
community-driven design will be the way to cre-
ate an ever-evolving and robust knowledge base.

8.10 Other efforts

Two early frame-based systems, FRL (Roberts
and Goldstein, 1977) and KRL (Bobrow and
Winograd, 1977) both defined on based on
frame models with default assignments, are the
early exemplar usages of frame-based knowledge
bases, although tailored for limited problems.
MindPixel(2000–2005) was a web-based collab-
orative project aimed to create a KB, though vali-
dating true/false statements or probabilistic propo-
sitions by online users. Yago (2007–present)
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(Suchanek et al., 2007) and DBPedia (2007–
present) (Auer et al., 2007) are two other knowl-
edge bases which are similar in representation to
Freebase. Their data is mostly collected based on
Wikipedia data. BabelNet(2012–present) (Navigli
and Ponzetto, 2010) is both a multilingual knowl-
edge base, with a semantic network which con-
nects concepts and named entities in a very large
network of semantic relations. It contains about
14 million entries, in about 271 languages.

It is important to mention that, there has been
a surge of interest in creating distributed rep-
resentations for natural language; for example
Word2Vec (Mikolov et al., 2013; Pennington
et al., 2014) and many other ongoing works.

9 Concluding remarks

Here we reviewed a substantial range of works re-
lated to Knowledge Representation. However due
to the richness of this subarea, much is missing
here. Our goal was to give an overall view of a se-
ries of outstanding past works to the readers who
might not have had the chance to go over this vast
literature, and remind ourselves the challenges the
modern trends in AI and Machine Learning are
facing.

Since the advent of AI systems, many works
have been based upon the physical symbol sys-
tem (Newell and Simon, 1976) assumption. This
seems to be a strong assumption, but just like
many scientific hypotheses, it is made by empir-
ical observation and it might not be necessary (or
might even be wrong).

Another trend followed traditionally is the sep-
aration of knowledge bases from reasoning sys-
tems, which we have inherited from the first sys-
tems designed based on logical axioms of world,
along with an independent logical reasoning (Mc-
Carthy, 1963).

There is not much work directly addressing the
issue of knowledge access. In real problems when
there are multiple levels of abstraction in knowl-
edge bases, or multiple resource, the question be-
comes what is the right place to look for knowl-
edge, and how to use it. This seems to be an open
issue to a large extent.

It seems to be a prevalent idea that uncertainty
is a necessity for AI. Despite decades of working
on probability theory and the whole set of areas

generated based on it, probability might not be the
right solution for simulating uncertainty in AI, al-
though there is no doubt that it is a useful solution.

Although we did not focus on reasoning, it is
directly determined by the way information about
the problem are formalized. Defining what is the
reasoning should be is hard; deduction, induction,
family of non-monotonic reasoning, MAP, etc?
Each of these have their own properties which oth-
ers might not have, but is there any efficient rea-
soning which subsumes others? Certainly if there
exist any, it needs to handle the diverse set of rep-
resentations too.
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