Knowledge Representation: How far we have come?

Daniel Khashabi

Natural Input

Natural Output

Natural Input

"Yo ...what's up?"

Natural Output

Natural Input

"Yo ...what's up?"

Natural Output

"Yo ...not much! Sup yourself?!"

(Simon&Newell, 1956)

(Simon&Newell, 1956)

Goal: Program for proving theorems !

(Simon&Newell, 1956)

Goal: Program for proving theorems ! **Necessity:** Representation with symbols!

(Simon&Newell, 1956)

Goal: Program for proving theorems !

Necessity: Representation with symbols!

Hypothesis (physical symbol system hypothesis): "A physical symbol system has the necessary and sufficient means for general intelligent action."

(Simon&Newell, 1956)

Goal: Program for proving theorems !

Necessity: Representation with symbols!

Hypothesis (physical symbol system hypothesis): "A physical symbol system has the necessary and sufficient means for general intelligent action."

Reasoning: Problem solving as Search!

(Simon&Newell, 1956)

Goal: Program for proving theorems !

Necessity: Representation with symbols!

Hypothesis (physical symbol system hypothesis): *"A physical symbol system has the necessary and sufficient means for general intelligent action."*

Reasoning: Problem solving as Search!

(Simon&Newell, 1956)

"yes"

"yes"

Premise: brother("Jack","I") Proposition: sibling("Jack","I")

"yes"

Premise: brother("Jack","I") Proposition: sibling("Jack","I")

Deduction:

Induction:

Deduction: Conclusion from given axioms (facts or observations)

Induction:

Deduction: Conclusion from given axioms (facts or observations)

All humans are mortal.	(axiom)
Socrates is a human.	(fact/ premise)
Therefore, it follows that Socrates is mortal.	(conclusion)

Induction:

Deduction: Conclusion from given axioms (facts or observations)

All humans are mortal.	(axiom)
Socrates is a human.	(fact/ premise)
Therefore, it follows that Socrates is mortal.	(conclusion)

Induction: Generalization from background knowledge or observations

Deduction: Conclusion from given axioms (facts or observations)

All humans are mortal.	(axiom)
Socrates is a human.	(fact/ premise)
Therefore, it follows that Socrates is mortal.	(conclusion)

Induction: Generalization from background knowledge or observations

Socrates is a human	(background knowledge)
Socrates is mortal	(observation/ example)

Therefore, I hypothesize that all humans are mortal (generalization)

Deduction: Conclusion from given axioms (facts or observations)

All humans are mortal.	(axiom)
Socrates is a human.	(fact/ premise)
Therefore, it follows that Socrates is mortal.	(conclusion)

Induction: Generalization from background knowledge or observations

Socrates is a human	(background knowledge)
Socrates is mortal	(observation/ example)

Therefore, I hypothesize that all humans are mortal (generalization)

Abduction: Simple and mostly likely explanation, given observations

Deduction: Conclusion from given axioms (facts or observations)

All humans are mortal.	(axiom)
Socrates is a human.	(fact/ premise)
Therefore, it follows that Socrates is mortal.	(conclusion)

Induction: Generalization from background knowledge or observations

Socrates is a human	(background knowledge)
Socrates is mortal	(observation/ example)

Therefore, I hypothesize that all humans are mortal (generalization)

Abduction: Simple and mostly likely explanation, given observations

All humans are mortal	(theory)
Socrates is mortal	(observation)
Therefore, Socrates must have been a human	(diagnosis)

Formalize world in logical form!

Formalize world in logical form!

Example: "My desk is at home" \rightarrow at(I, desk) "Desk is at home" \rightarrow at(desk, home)

Formalize world in logical form!

Example: "My desk is at home" \rightarrow at(I, desk) "Desk is at home" \rightarrow at(desk, home)

Hypothesis: Commonsense knowledge can be formalized with logic.

Formalize world in logical form!

Example: "My desk is at home" \rightarrow at(I, desk) "Desk is at home" \rightarrow at(desk, home)

Hypothesis: Commonsense knowledge can be formalized with logic.

Do reasoning on formal premises!

Formalize world in logical form!

Example: "My desk is at home" \rightarrow at(I, desk) "Desk is at home" \rightarrow at(desk, home)

Hypothesis: Commonsense knowledge can be formalized with logic.

Do reasoning on formal premises!

Example Contd.: $\forall x \forall y \forall z \text{ at}(x,y), \text{ at}(y,z) \rightarrow \text{ at}(x, z)$ $\therefore \text{ at}(I, \text{ home})$

Formalize world in logical form!

Example: "My desk is at home" \rightarrow at(I, desk) "Desk is at home" \rightarrow at(desk, home)

Hypothesis: Commonsense knowledge can be formalized with logic.

Do reasoning on formal premises!

Example Contd.: $\forall x \forall y \forall z \text{ at}(x,y), \text{ at}(y,z) \rightarrow \text{ at}(x, z)$ $\therefore \text{ at}(I, \text{ home})$

Hypothesis: Commonsense problems are solved by logical reasoning

(Daniel G Bobrow, 1964)

Goal: Elementary school algebra problem solver **Input:** Natural Language

(Daniel G Bobrow, 1964)

Goal: Elementary school algebra problem solver **Input:** Natural Language

Example: The sum of two numbers is 111. One of the numbers is consecutive to the other number. Find the two numbers.

(Daniel G Bobrow, 1964)

Goal: Elementary school algebra problem solver **Input:** Natural Language

Example: The sum of two numbers is 111. One of the numbers is consecutive to the other number. Find the two numbers.

Example: Bill s father s uncle is twice as old as bills father. 2 years from now bill s father will be 3 times as old as bill. The sum of their ages is 92. Find Bill s age.

(Daniel G Bobrow, 1964)

Goal: Elementary school algebra problem solver **Input:** Natural Language

Example: The sum of two numbers is 111. One of the numbers is consecutive to the other number. Find the two numbers.

Example: Bill s father s uncle is twice as old as bills father. 2 years from now bill s father will be 3 times as old as bill. The sum of their ages is 92. Find Bill s age.

Example: The distance between New York to Los Angeles is 3000 miles. If the average speed of a jet place is 600 miles per hour find the time it takes to travel from New York to Los Angeles by jet.

(Terry Winograd, 1968)

Person: Pick up a big red block. **Computer:** OK.

(Terry Winograd, 1968)

Person: Pick up a big red block. Computer: OK. Person: Grasp the pyramid. Computer: I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.

(Terry Winograd, 1968)

Person: Pick up a big red block.
Computer: OK.
Person: Grasp the pyramid.
Computer: I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.
Person: Find a block which is taller than the one you are holding and put it into the box.
Computer: BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE ONE I AM HOLDING.

(Terry Winograd, 1968)

Person: Pick up a big red block.
Computer: OK.
Person: Grasp the pyramid.
Computer: I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.
Person: Find a block which is taller than the one you are holding and put it into the box.
Computer: BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE ONE I AM HOLDING.
Computer: OK.
Person: What does the box contain?

(Terry Winograd, 1968)

Person: Pick up a big red block.
Computer: OK.
Person: Grasp the pyramid.
Computer: I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.
Person: Find a block which is taller than the one you are holding and put it into the box.
Computer: BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE ONE I AM HOLDING.
Computer: OK.
Person: What does the box contain?
Computer: THE BLUE PYRAMID AND THE BLUE BLOCK.

Person: What is the pyramid supported by?

Red Blue Green

(Terry Winograd, 1968)

Person: Pick up a big red block. **Computer:** OK. **Person:** Grasp the pyramid. Computer: I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN. **Person:** Find a block which is taller than the one you are holding and put it into the box. **Computer:** BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE ONE I AM HOLDING. **Computer:** OK. **Person:** What does the box contain? **Computer:** THE BLUE PYRAMID AND THE BLUE BLOCK. **Person:** What is the pyramid supported by? **Computer:** THE BOX. **Person:** How many blocks are not in the box?

(Terry Winograd, 1968)

Person: Pick up a big red block. **Computer:** OK. **Person:** Grasp the pyramid. Computer: I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN. **Person:** Find a block which is taller than the one you are holding and put it into the box. **Computer:** BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE ONE I AM HOLDING. **Computer:** OK. **Person:** What does the box contain? **Computer:** THE BLUE PYRAMID AND THE BLUE BLOCK. **Person:** What is the pyramid supported by? **Computer:** THE BOX. **Person:** How many blocks are not in the box? **Computer:** FOUR OF THEM. **Person:** Is at least one of them narrower than the one which i told you to pick up?

(Terry Winograd, 1968)

Person: Pick up a big red block. **Computer:** OK.

Person: Grasp the pyramid.

Computer: I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.

Person: Find a block which is taller than the one you are holding and put it into the box.

Computer: BY "IT", I ASSUME YOU MEAN THE BLOCK

WHICH IS TALLER THAN THE ONE I AM HOLDING.

Computer: OK.

Person: What does the box contain?

Computer: THE BLUE PYRAMID AND THE BLUE BLOCK.

Person: What is the pyramid supported by?

Computer: THE BOX.

Person: How many blocks are not in the box?

Computer: FOUR OF THEM.

Person: Is at least one of them narrower than the one which i told you to pick up?

Computer: YES, THE RED CUBE.

Person: Is it supported?

Red Blue Green

(Terry Winograd, 1968)

Person: Pick up a big red block. **Computer:** OK.

Person: Grasp the pyramid.

Computer: I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.

Person: Find a block which is taller than the one you are holding and put it into the box.

Computer: BY "IT", I ASSUME YOU MEAN THE BLOCK

WHICH IS TALLER THAN THE ONE I AM HOLDING.

Computer: OK.

Person: What does the box contain?

Computer: THE BLUE PYRAMID AND THE BLUE BLOCK.

Person: What is the pyramid supported by?

Computer: THE BOX.

Person: How many blocks are not in the box?

Computer: FOUR OF THEM.

Person: Is at least one of them narrower than the one which i told you to pick up?

Computer: YES, THE RED CUBE.

Person: Is it supported?

Computer: YES, BY THE TABLE.

Person: Can the table pick up blocks?

(Terry Winograd, 1968)

Person: Pick up a big red block. **Computer:** OK.

Person: Grasp the pyramid.

Computer: I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.

Person: Find a block which is taller than the one you are holding and put it into the box.

Computer: BY "IT", I ASSUME YOU MEAN THE BLOCK

WHICH IS TALLER THAN THE ONE I AM HOLDING.

Computer: OK.

Person: What does the box contain?

Computer: THE BLUE PYRAMID AND THE BLUE BLOCK.

Person: What is the pyramid supported by?

Computer: THE BOX.

Person: How many blocks are not in the box?

Computer: FOUR OF THEM.

Person: Is at least one of them narrower than the one which i told you to pick up?

Computer: YES, THE RED CUBE.

Person: Is it supported?

Computer: YES, BY THE TABLE.

Person: Can the table pick up blocks?

Computer: NO.

Person: Can a pyramid be supported by a block?

Computer: YES.`

Red Blue Green

(Terry Winograd, 1968)

Person: Pick up a big re **Computer:** OK. **Person:** Grasp the pyrar Computer: I DON'T UN **Person:** Find a block wl **Computer:** BY "IT", I AS WHICH IS 7

Basic rules:

- Small world •
 - Memory
 - Deduction rule
 - Learn new names

Computer: OK.

Person: What does the box contain?

Computer: THE BLUE PYRAMID AND THE BLUE BLOCK.

Person: What is the pyramid supported by?

Computer: THE BOX.

Person: How many blocks are not in the box?

Computer: FOUR OF THEM.

Person: Is at least one of them narrower than the one which i told you to pick up?

Computer: YES, THE RED CUBE.

Person: Is it supported?

Computer: YES, BY THE TABLE.

Person: Can the table pick up blocks?

Computer: NO.

Person: Can a pyramid be supported by a block?

Computer: YES.`

e box.

SHRDLU

(Terry Winograd, 1968)

Person: Pick up a big re Computer: OK. Person: Grasp the pyrar Computer: I DON'T UN Person: Find a block wl Computer: BY "IT", I AS WHICH IS T

Computer: OK. Person: What does the box contain? Computer: THE BLUE PYRAMID / Person: What is the pyramid support Computer: THE BOX. Person: How many blocks are not in Computer: FOUR OF THEM. Person: Is at least one of them narrow Computer: YES, THE RED CUBE. Person: Is it supported? Computer: YES, BY THE TABLE. Person: Can the table pick up blocks? Computer: NO. Person: Can a pyramid be supported by a block?

Computer: YES.

(John McCarthy & Patrick J. Hayes, 1959)

(John McCarthy & Patrick J. Hayes, 1959)

Axioms:

 $\begin{array}{l} \textit{Paint}(x,c,t) \implies \textit{Color}(x,c,t) \\ \textit{Move}(x,p,t) \implies \textit{Position}(x,p,t) \end{array}$

(John McCarthy & Patrick J. Hayes, 1959)

Axioms:

 $Paint(x,c,t) \implies Color(x,c,t)$ $Move(x,p,t) \implies Position(x,p,t)$

Initial State:

Color(A, Red, t) Position(A, House, t)

(John McCarthy & Patrick J. Hayes, 1959)

Axioms:

 $\begin{array}{l} \textit{Paint}(x,c,t) \implies \textit{Color}(x,c,t) \\ \textit{Move}(x,p,t) \implies \textit{Position}(x,p,t) \end{array}$

Initial State:

Color(A, Red, t) Position(A, House, t)

Action: Move(A,Garden,t+1)

(John McCarthy & Patrick J. Hayes, 1959)

Axioms:

 $\begin{array}{l} \textit{Paint}(x,c,t) \implies \textit{Color}(x,c,t) \\ \textit{Move}(x,p,t) \implies \textit{Position}(x,p,t) \end{array}$

Initial State:

Color(A, Red, t) Position(A, House, t)

Action: Move(A,Garden,t+1)

Expected State: Color(A, Red, t+1) Position(A, Garden, t+1)

(John McCarthy & Patrick J. Hayes, 1959)

Axioms:

 $Paint(x,c,t) \implies Color(x,c,t)$ $Move(x,p,t) \implies Position(x,p,t)$

Initial State:

Color(A, Red, t) Position(A, House, t)

Action: Move(A,Garden,t+1)

Expected State:

Color(A, Red, t+1)
Position(A, Garden, t+1)

Actual State: Color(A,Red,t+1) / Color(A,Blue,t+1) Position(A,Garden,t+1)

(John McCarthy & Patrick J. Hayes, 1959)

Axioms:

 $Paint(x,c,t) \implies Color(x,c,t)$ $Move(x,p,t) \implies Position(x,p,t)$

Initial State:

Color(A, Red, t) Position(A, House, t)

Action: Move(A,Garden,t+1)

Expected State:

Color(A, Red, t+1) Position(A, Garden, t+1)

Actual State:

Color(A, Red, t+1) / Color(A, Blue, t+1)

Position(A,Garden,t+1)

(John McCarthy & Patrick J. Hayes, 1959)

(John McCarthy & Patrick J. Hayes, 1959)

Axioms:

 $\begin{array}{l} \mbox{Paint}(x,c,t) \implies \mbox{Color}(x,c,t) \\ \mbox{Move}(x,p,t) \implies \mbox{Position}(x,p,t) \\ \mbox{Color}(x,c,t) \ \mbox{Move}(x,p,t) \implies \mbox{Color}(x,c,t+1) \\ \mbox{Position}(x,p,t) \ \mbox{A paint}(x,c,t) \implies \mbox{Position}(x,p,t+1) \end{array}$

(John McCarthy & Patrick J. Hayes, 1959)

Axioms:

 $\begin{array}{l} \mbox{Paint}(x,c,t) \implies \mbox{Color}(x,c,t) \\ \mbox{Move}(x,p,t) \implies \mbox{Position}(x,p,t) \\ \mbox{Color}(x,c,t) \ \mbox{Move}(x,p,t) \implies \mbox{Color}(x,c,t+1) \\ \mbox{Position}(x,p,t) \ \mbox{A paint}(x,c,t) \implies \mbox{Position}(x,p,t+1) \end{array}$

Initial State:

Color(A, Red, t)
Position(A, House, t)

(John McCarthy & Patrick J. Hayes, 1959)

Axioms:

 $\begin{array}{l} \mbox{Paint}(x,c,t) \implies \mbox{Color}(x,c,t) \\ \mbox{Move}(x,p,t) \implies \mbox{Position}(x,p,t) \\ \mbox{Color}(x,c,t) \ \mbox{Move}(x,p,t) \implies \mbox{Color}(x,c,t+1) \\ \mbox{Position}(x,p,t) \ \mbox{A paint}(x,c,t) \implies \mbox{Position}(x,p,t+1) \end{array}$

Initial State:

Color(A, Red, t) Position(A, House, t)

Action:

Move(A,Garden,t)

(John McCarthy & Patrick J. Hayes, 1959)

Axioms:

 $\begin{array}{l} \mbox{Paint}(x,c,t) \implies \mbox{Color}(x,c,t) \\ \mbox{Move}(x,p,t) \implies \mbox{Position}(x,p,t) \\ \mbox{Color}(x,c,t) \ \mbox{Move}(x,p,t) \implies \mbox{Color}(x,c,t+1) \\ \mbox{Position}(x,p,t) \ \mbox{A paint}(x,c,t) \implies \mbox{Position}(x,p,t+1) \end{array}$

Initial State:

Color(A, Red, t)
Position(A, House, t)

Action:

Move(A,Garden,t)

Expected State = Actual State:

Color(A,Red,t+1) Position(A,Garden,t+1)

(John McCarthy & Patrick J. Hayes, 1959)

Axioms:

 $\begin{array}{l} \mbox{Paint}(x,c,t) \implies \mbox{Color}(x,c,t) \\ \mbox{Move}(x,p,t) \implies \mbox{Position}(x,p,t) \\ \mbox{Color}(x,c,t) \ \mbox{Move}(x,p,t) \implies \mbox{Color}(x,c,t+1) \\ \mbox{Position}(x,p,t) \ \mbox{A paint}(x,c,t) \implies \mbox{Position}(x,p,t+1) \end{array}$

Initial State:

Color(A, Red, t) Position(A, House, t)

Action:

Move(A,Garden,t)

Expected State = Actual State:

Color(A, Red, t+1) Position(A, Garden, t+1)

(John McCarthy & Patrick J. Hayes, 1959)

Problem: Many actions don't change many properties!

 $\begin{cases} M: Actions \\ N: Properties \end{cases} \Rightarrow MN \text{ additional axioms!} \end{cases}$

(John McCarthy & Patrick J. Hayes, 1959)

Problem: Many <u>actions</u> don't change many <u>properties</u>!

 $\begin{cases} M: Actions \\ N: Properties \end{cases} \Rightarrow MN \text{ additional axioms!} \end{cases}$

Solution: An action does not change any property *unless* there is evidence to the contrary

common sense law of inertia

(John McCarthy & Patrick J. Hayes, 1959)

Problem: Many <u>actions</u> don't change many <u>properties</u>!

 $\begin{cases} M: Actions \\ N: Properties \end{cases} \Rightarrow MN \text{ additional axioms!} \end{cases}$

Solution: An action does not change any property *unless* there is evidence to the contrary

common sense law of inertia

Result: Non-monotonic reasoning

(John McCarthy & Patrick J. Hayes, 1959)

Problem: Many actions don't change many properties!

 $\begin{cases} M: Actions \\ N: Properties \end{cases} \Rightarrow MN \text{ additional axioms!} \end{cases}$

Solution: An action does not change any property *unless* there is evidence to the contrary

common sense law of inertia

Result: Non-monotonic reasoning

Monotonicity of classical logic: $S \vDash R \Rightarrow S \cup B \vDash R$

(John McCarthy & Patrick J. Hayes, 1959)

Problem: Many actions don't change many properties!

 $\begin{cases} M: Actions \\ N: Properties \end{cases} \Rightarrow MN \text{ additional axioms!} \end{cases}$

Solution: An action does not change any property *unless* there is evidence to the contrary

common sense law of inertia

Result: Non-monotonic reasoning

Monotonicity of classical logic: $S \vDash R \implies S \cup B \vDash R$

Example of **non-monotonic** logic (abductive):

(John McCarthy & Patrick J. Hayes, 1959)

Problem: Many actions don't change many properties!

 $\begin{cases} M: Actions \\ N: Properties \end{cases} \Rightarrow MN \text{ additional axioms!} \end{cases}$

Solution: An action does not change any property *unless* there is evidence to the contrary

common sense law of inertia

Result: Non-monotonic reasoning

Monotonicity of classical logic: $S \vDash R \implies S \cup B \vDash R$

Example of **non-monotonic** logic (abductive):

Observation 1: Your daughter's messy room
Conclusion 1: She has school problem, or relationship problem, etc.
Observation 2: Bookshelf has broken.
Conclusion 2: The heavy weight of things on the shelf has broken it.

Goal:

Knowledge representation schema utilizing first-order relationships.

Goal:

Knowledge representation schema utilizing first-order relationships.

Example assertions :

"Every tree is a plant" "Plants die eventually"

Goal:

Knowledge representation schema utilizing first-order relationships.

Example assertions :

"Every tree is a plant" "Plants die eventually"

In 1986, Doug Lenat estimated the effort to complete Cyc would be 250,000 rules and 350 man-years of effort!

500k concepts, 17k relations, ~10M logical facts

Example entries:

Constants: #\$OrganicStuff

Example entries:

Constants: #\$OrganicStuff

Variable: (#\$colorOfObject #\$Grass ?someColor)

Example entries:

Constants: #\$OrganicStuff

Variable: (#\$colorOfObject #\$Grass ?someColor)

Expressions: (#\$colorOfObject #\$Grass #\$Green)

Example entries:

- Constants: #\$OrganicStuff
- Variable: (#\$colorOfObject #\$Grass ?someColor)
- Expressions: (#\$colorOfObject #\$Grass #\$Green)

Assertions: "Animals sleep at home" (ForAll ?x (ForAll ?S (ForAll ?PLACE (implies (and (isa ?x Animal) (isa ?S SleepingEvent) (performer ?S ?x) (location ?S ?PLACE)) (home ?x ?PLACE)))))

Semantic Networks

(Ross Quillian, 1963)

A graph of labeled nodes and labeled, directed arcs Arcs define binary relationships that hold between objects denoted by the nodes.

Link Type	Semantic s	Example
$A \xrightarrow{Subset} B$	$A \subset B$	$Cats \subset Mammals$
$A \xrightarrow{Member} B$	$A \in B$	$Bill \in Cats$
$A \xrightarrow{R} B$	R(A,B)	$Bill \xrightarrow{Age} 12$
$A \xrightarrow{[R]} B$	$\forall x, x \in A \Rightarrow R(x, B)$	$Bird \xrightarrow{legs} 12$
$A \xrightarrow{\mathbb{R}} B$	$\forall x \exists y, x \in A \Rightarrow y \in B \land R(x, B)$	$Birds \xrightarrow{Parent} Birds$

ConceptNet (2000-present)

- Based on Open Mind Common Sense (OMCS)
 - goal was to build a large commonsense knowledge base
 - from the contributions of many people across the Web.

A network represents semantic relation between concepts.

Premise: Meaning is based on prototypical abstract scenes

Premise: Meaning is based on prototypical abstract scenes

Cynthia

sold

a car

to Bob

Premise: Meaning is based on prototypical abstract scenes

Cynthia

sold

a car

to Bob

SELLER: PREDICATE: GOODS: BUYER:

Premise: Meaning is based on prototypical abstract scenes

Cynthia	sold	a car	to Bob
SELLER	PREDICATE	GOODS	BUYER

Premise: Meaning is based on prototypical abstract scenes

Cynthia	sold	a car	to Bob
SELLER	PREDICATE	GOODS	BUYER

SELLER:CynthiaPREDICATE:soldGOODS:a carBUYER:to Bob

Premise: Meaning is based on prototypical abstract scenes

Cynthia	sold	a car	to Bob
SELLER	PREDICATE	GOODS	BUYER
D 1	1 1.		
Bob	bought	a car	from Cynthia.

SELLER:CynthiaPREDICATE:soldGOODS:a carBUYER:to Bob
Frames (Minsky, 1974; Fillmore, 1977)

Premise: Meaning is based on prototypical abstract scenes

BUYER:

Cynthia	sold	a car	to Bob
SELLER	PREDICATE	GOODS	BUYER
Bob BUYER	bought PREDICATE	a car GOODS	from Cynthia. <mark>SELLER</mark>
	SELLER: Cyr PREDICATE: GOODS: a ca	ithia sold r	

to Bob

Frames

(Minsky, 1974; Fillmore, 1977)

Hierarchical Representation with Frames

cer(1 mi	c,r minimano,	÷/
Rel(Flie	s,Animals,T	Γ)
25776	100 120	

Mammals ⊂ Animals

Rel(Flies,Birds,T) Rel(Legs,Birds,2) Rel(Legs,Mammals,4)

Penguins ⊂ Birds Cats ⊂ Mammals Bats ⊂ Mammals

Rel(Flies, Penguins, F) Rel(Legs,Bats,2) Rel(Flies, Bats, T)

ThoughtTreasure (1994-2000) (Erik Mueller, 2000)

Procedural knowledge: For typical actions, like inter-personal relations, sleeping, attending events, sending a message

```
work-box-office(B, F) :-
         dress(B, work-box-office),
         near-reachable(B, F),
         TKTBOX = FINDO(ticket-box);
         near-reachable(B, FINDO(employee-side-of-counter)),
         /* HANDLE NEXT CUSTOMER */
100: WAIT FOR attend (A = human, B) OR
         pre-sequence(A = human, B), may-I-help-you(B, A),
/* HANDLE NEXT REQUEST OF CUSTOMER */
103: WAIT FOR request (A, B, R)
         AND GOTO 104 OR WAIT FOR post-sequence(A, B)
         AND GOTO 110,
104: TF R ISA tod
         { current-time-sentence(B, A) ON COMPLETION GOTO 103 }
     ELSE IF R ISA performance
         { GOTO 105 }
     ELSE
         { interjection-of-noncomprehension (B, A) ON COMPLETION GOTO 103}
```


Neuron

• (McCulloch, Pitts, 1943)

Neuron

• (McCulloch, Pitts, 1943)

• **1949-69:** Basic forms for updates for perceptron

- **1949-69:** Basic forms for updates for perceptron
- **1969:** Negative results on approximating ability of perceptron

- **1949-69:** Basic forms for updates for perceptron
- **1969:** Negative results on approximating ability of perceptron
- 1986: Advent of backpropagation and training multi-layer networks

- **1949-69:** Basic forms for updates for perceptron
- **1969:** Negative results on approximating ability of perceptron
- **1986:** Advent of backpropagation and training multi-layer networks

- **1949-69:** Basic forms for updates for perceptron
- **1969:** Negative results on approximating ability of perceptron
- 1986: Advent of backpropagation and training multi-layer networks
 80s: popularization of "parallel distributed models" aka "Connectionism"

Classical representations:

Classical representations:

Classical representations:

Classical representations:

Distributed representation:

• a symbol is encoded across all elements of the representation each element the representation takes part in representing the symbol.

Classical representations:

Distributed representation:

• a symbol is encoded across all elements of the representation each element the representation takes part in representing the symbol.

Jack

Classical representations:

Distributed representation:

- a symbol is encoded across all elements of the representation
- each element the representation takes part in representing the symbol.

Jack's dad

Classical representations:

Distributed representation:

- a symbol is encoded across all elements of the representation
- each element the representation takes part in representing the symbol.

Image: Second second

Activity	Connectionist	Classical Symbolic Systems
Knowledge base And computation elements	Connections, network architecture Nodes, Weights, Thresholds	Rules, Premises, conclusions, rule strengths
Processing	Continuous activation	Discrete symbols

	Connectionist	Classical Symbolic Systems
Pro	Robust	Given rules, the reasoning can formally be done.
Con	Need a lot of training data No (logical) reasoning, just mapping from input to output	Brittle and crisp Need for many rules

	Connectionist	Classical Symbolic Systems
Pro	Robust	Given rules, the reasoning can formally be done.
Con	Need a lot of training data No (logical) reasoning, just mapping from input to output	Brittle and crisp Need for many rules

Systematicity debate: (Fodor and Pylyshyn)

"John loves Mary" "Mary loves John"

Connectionists do not account for systematicity, although it can be trained to. **Responses:** Elman (1990), Smolensky (1990), Pollak (1990), etc.

SHRUTI

• (Shastri, 1989)

Variable binding:

- conjunctive of elements and properties
- Variables of logical forms

SHRUTI

• (Shastri, 1989)

Variable binding by synchronization of neurons.

time

SHRUTI

• (Shastri, 1989)

Dynamic binding for First order logic!

Neural-Symbolic models

• (90s-now)

(Rodney Brooks, 1991)

• MIT CSAIL, Roboticist

Representation Necessary? (Rodney Brooks, 1991)

- MIT CSAIL, Roboticist
- Brooks, R.A. (1990) Elephants don't play chess. In Pattie Maes (Ed.) Designing autonomous agents. Cambridge, Mass, MIT Press

Representation Necessary? (Rodney Brooks, 1991)

- MIT CSAIL, Roboticist
- Brooks, R.A. (1990) Elephants don't play chess. In Pattie Maes (Ed.) Designing autonomous agents. Cambridge, Mass, MIT Press

Elephants don't play chess – but still intelligent

- MIT CSAIL, Roboticist
- Brooks, R.A. (1990) Elephants don't play chess. In Pattie Maes (Ed.) *Designing autonomous agents*. Cambridge, Mass, MIT Press

Elephants don't play chess – but still intelligent

 Brooks, R.A. (1991) Intelligence without Representation. Artificial Intelligence, 47, 139-159.

Representation Necessary? (Rodney Brooks, 1991)

- MIT CSAIL, Roboticist
- Brooks, R.A. (1990) Elephants don't play chess. In Pattie Maes (Ed.) *Designing autonomous agents*. Cambridge, Mass, MIT Press

Elephants don't play chess – but still intelligent

- Brooks, R.A. (1991) Intelligence without Representation. *Artificial Intelligence*, 47, 139-159.
- Brooks, R.A. (1991) Intelligence without Reason. In Proceedings of the 12th International Joint Conference on Artificial Intelligence. Morgan Kauffman.

Allen:

- Can approach goal, while avoiding obstacles –without plan or map of environment
- Distance sensors, and 3 layers of control

Allen:

- Can approach goal, while avoiding obstacles –without plan or map of environment
- Distance sensors, and 3 layers of control

Layer 1: avoid static and dynamic objects – repulsed through distance sensors

Allen:

- Can approach goal, while avoiding obstacles –without plan or map of environment
- Distance sensors, and 3 layers of control

Layer 1: avoid static and dynamic objects – repulsed through distance sensors **Layer 2**: randomly wander about

Allen:

- Can approach goal, while avoiding obstacles –without plan or map of environment
- Distance sensors, and 3 layers of control

Layer 1: avoid static and dynamic objects – repulsed through distance sensors
 Layer 2: randomly wander about
 Layer 3: Head towards distant places

Representation Necessary? (Rodney Brooks, 1991)

Allen:

- Can approach goal, while avoiding obstacles –without plan or map of environment
- Distance sensors, and 3 layers of control

Layer 1: avoid static and dynamic objects – repulsed through distance sensors
 Layer 2: randomly wander about
 Layer 3: Head towards distant places

• Tight connection of perception to action
Representation Necessary? (Rodney Brooks, 1991)

Allen:

- Can approach goal, while avoiding obstacles –without plan or map of environment
- Distance sensors, and 3 layers of control

Layer 1: avoid static and dynamic objects – repulsed through distance sensors
Layer 2: randomly wander about
Layer 3: Head towards distant places

 Tight connection of perception to action Layerwise design, working independently and in parallel.

Representation Necessary? (Rodney Brooks, 1991)

Allen:

- Can approach goal, while avoiding obstacles –without plan or map of environment
- Distance sensors, and 3 layers of control

Layer 1: avoid static and dynamic objects – repulsed through distance sensors
Layer 2: randomly wander about
Layer 3: Head towards distant places

- Tight connection of perception to action Layerwise design, working independently and in parallel.
- Like combination of Finite State Machines

Allen:

- Can approach goal, while avoiding obstacles –without plan or map of environment
- Distance sensors, and 3 layers of control

Layer 1: avoid static and dynamic objects – repulsed through distance sensors
Layer 2: randomly wander about
Layer 3: Head towards distant places

- Tight connection of perception to action Layerwise design, working independently and in parallel.
- Like combination of Finite State Machines
- No symbolic representation

Allen:

- Can approach goal, while avoiding obstacles –without plan or map of environment
- Distance sensors, and 3 layers of control

Layer 1: avoid static and dynamic objects – repulsed through distance sensors
Layer 2: randomly wander about
Layer 3: Head towards distant places

- Tight connection of perception to action Layerwise design, working independently and in parallel.
- Like combination of Finite State Machines
- No symbolic representation
 - implicit and distribution inside FSMs.

(Rodney Brooks, 1991)

(Rodney Brooks, 1991)

Subsumption Architecture

• No central model of world

INDUREY DIOOKS, 1771

- No central model of world
- Internal symbolic system be given meaning, only with physical grounding

Representation Necessary? (Rodney Brooks, 1991)

- No central model of world
- Internal symbolic system be given meaning, only with physical grounding
 - Robot says "pig" in response to a real pig detected in the world

- No central model of world
- Internal symbolic system be given meaning, only with physical grounding
 - Robot says "pig" in response to a real pig detected in the world
- No central locus of control.

(Rodney Brooks, 1991)

- No central model of world
- Internal symbolic system be given meaning, only with physical grounding
 - Robot says "pig" in response to a real pig detected in the world
- No central locus of control.
- Layers, or behaviours run in parallel

(Rodney Brooks, 1991)

- No central model of world
- Internal symbolic system be given meaning, only with physical grounding
 - Robot says "pig" in response to a real pig detected in the world
- No central locus of control.
- Layers, or behaviours run in parallel
- No separation into perceptual system, central system, and actuation system

(Rodney Brooks, 1991)

- No central model of world
- Internal symbolic system be given meaning, only with physical grounding
 - Robot says "pig" in response to a real pig detected in the world
- No central locus of control.
- Layers, or behaviours run in parallel
- No separation into perceptual system, central system, and actuation system
- Behavioural competence built up by adding behavioural modules

(Rodney Brooks, 1991)

Subsumption Architecture

- No central model of world
- Internal symbolic system be given meaning, only with physical grounding
 - Robot says "pig" in response to a real pig detected in the world
- No central locus of control.
- Layers, or behaviours run in parallel
- No separation into perceptual system, central system, and actuation system
- Behavioural competence built up by adding behavioural modules

Critiques:

(Rodney Brooks, 1991)

Subsumption Architecture

- No central model of world
- Internal symbolic system be given meaning, only with physical grounding
 - Robot says "pig" in response to a real pig detected in the world
- No central locus of control.
- Layers, or behaviours run in parallel
- No separation into perceptual system, central system, and actuation system
- Behavioural competence built up by adding behavioural modules

Critiques:

Scaling?

(Rodney Brooks, 1991)

Subsumption Architecture

- No central model of world
- Internal symbolic system be given meaning, only with physical grounding
 - Robot says "pig" in response to a real pig detected in the world
- No central locus of control.
- Layers, or behaviours run in parallel
- No separation into perceptual system, central system, and actuation system
- Behavioural competence built up by adding behavioural modules

Critiques:

- Scaling?
- How does it solve our AI problem?!

Questions left to answer

• "symbolic" representation necessary?

Questions left to answer

 "symbolic" representation necessary? Unify reasoning with representation? Separate knowledge base?

Questions left to answer

 "symbolic" representation necessary? Unify reasoning with representation? Separate knowledge base? Represent uncertainty better than "probability theory"?

Questions left to answer

- "symbolic" representation necessary? Unify reasoning with representation? Separate knowledge base? Represent uncertainty better than "probability theory"? Unify distributed and logic-based representation? Or do logical reasoning with statistical models ?
 - Or make more robust logical systems?

Questions left to answer

- "symbolic" representation necessary? Unify reasoning with representation? Separate knowledge base? Represent uncertainty better than "probability theory"? Unify distributed and logic-based representation? Or do logical reasoning with statistical models ?
- Or make more robust logical systems?How knowledge should be accessed?
 - How this can be made dynamics in the case when there are multiple types of information?

Thanks for coming!

ThoughtTreasure (1994-2000) (Erik Mueller, 2000)

Minsky (1988) : there is no single "right" representation for everything, **Facts:** 27,000 concepts and 51,000 assertions

[isa soda drink] (Soda is a drink.) [is the-sky blue] (The sky is blue.)