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Abstract 1©
We study standard online learning algorithms when the feedback is delayed by an adversary. We obtain:

I O(
√
D) regret bounds for online-gradient-descent, and

I O(
√
D) regret bounds for follow-the-perturbed-leader,

where D is the sum of delays. These bounds collapse to optimal O(
√
T ) in the undelayed settings and the algo-

rithms are essentially unmodified.

Delayed Feedback Model 4©
I dt ∈ Z+ denotes a non-negative delay. Feedback from round t is

delivered at the end of round t + d1 − 1 and can be used in round t + dt.

I Ft = {u ∈ [T ] : u + du − 1 = t} denotes the set of rounds whose
feedback appears at the end of round t.

I D =
∑T

t=1 dt denotes the sum of all delays. In the standard setting with no
delays, D = T .

Online Learning 2©
Each round t = 1, . . . , T , we pick xt ∈ K and
adversary picks cost function ft. We incur the
loss ft(xt). The regret of our strategy is the dif-
ference between our total loss and the total loss
of the best fixed point in hindsight:

R(T ) =

T∑
t=1

ft(xt)− arg min
x∈K

T∑
t=1

ft(x).

The goal is to minimize the regret R(T ).

Motivation 3©
Standard models assume that the adversary
gives us the loss function ft before we select the
next point xt+1. What if the feedback is delayed?
For example:

I Online advertising algorithms serve many
ads simultaneously.

I Online algorithms planning resource
allocation in the cloud cannot wait for one
batch job to end before launching the next.

I Online learning algorithms managing
financial portfolios are subject to information
and transaction delays from the market.

I Distributed and parallelized optimization
algorithms suffer communication delays
between asynchronous processors.

online-gradient-descent 5©
Convex setting:

Convex domain K, convex loss functions {ft : Rn→ R}
Undelayed algorithm and regret bound: [Zinkevich, 2003]

xt+1 = πK

(
xt − Θ

(
1√
T

)
f ′(xt)

)
,

where πK projects to nearest point in K.

⇒
T∑
t=1

ft(xt) ≤ arg min
x∈K

T∑
t=1

ft(x) + O(
√
T ).

Delayed algorithm:

xt+1 = πK

xt − Θ

(
1√
D

)∑
s∈Ft

f ′(xs)


(!) Same as undelayed algorithm when Ft = {t}

Delayed regret bound:
T∑
t=1

ft(xt) ≤ arg min
x∈K

T∑
t=1

ft(x) + O(
√
D)

(!) Matches undelayed regret bound when D = T

Extensions 7©
I O(

√
D) regret bound for online-mirror-descent, a generalization of

online-gradient-descent and randomized expert selection by
exponential weights.

I O(
√
D) regret bound for follow-the-lazy-leader, a variation of

follow-the-perturbed-leader for switching costs.

follow-the-perturbed-leader 6©
Discrete setting:

Discrete domain K, cost vectors {ct ∈ Rn}
Undelayed algorithm and regret bound: [Kalai and Vempala, 2005]

xt+1 = arg min
x∈K

c0 · x +

t∑
s=1

cs · x,

where c0 ∼ [0,Θ(
√
T )]n uniformly at random.

⇒
T∑
t=1

ct · xt ≤ arg min
x∈K

T∑
t=1

ct · x + O(
√
T )

Delayed algorithm:

xt+1 = arg min
x∈K

c0 · x +

t∑
s=1

∑
r∈Fs

cr · x

where c0 ∼ [0,Θ(
√
D)]n uniformly at random.

(!) Same as undelayed algorithm when Ft = {t}

Delayed regret bound:
T∑
t=1

ct · xt ≤ arg min
x∈K

T∑
t=1

ct · x + O(
√
D)

(!) Matches undelayed regret bound when D = T

Selected References 8©
A. Kalai and S. Vempala. Efficient algorithms for online decision problems. J. Comput. Sys. Sci., 71:291–307,
2005. Extended abstract in Proc. 16th Ann. Conf. Comp. Learning Theory (COLT), 2003.

M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proc. 20th Int. Conf.
Mach. Learning (ICML), pages 928–936, 2003.


