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Online Demo 

 Please check 

outhttp://cogcomp.cs.illinois.edu/page/demo_view/Coref 

 

4 

http://cogcomp.cs.illinois.edu/page/demo_view/Coref
http://cogcomp.cs.illinois.edu/page/demo_view/Coref
http://cogcomp.cs.illinois.edu/page/demo_view/Coref


General Framework  

                   

                          

                                              

                 

           

          

 

 

 

 

 

 

5 

Jack threw the bags of Mary into the water 

since he is angry with her. 
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General Framework  

 Mention Detection 

 Pairwise Mention Scoring 

 Goal: Coreferent Mentions have higher scores 

 Inference (ILP) 

 Best-Link 

 All-Link 
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ILP formulation of CR 
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General Framework 

 Learning (for Pairwise Mention Scores) 

 Structural SVM 

 Features: 

 Mention Types, String Relations, Semantic, Relative Location, 

Anaphoricity(Learned), Aligned Modifiers, Memorization, etc. 
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VS. Stanford Muti-pass Sieve System 
VS. Berkeley CR System   



Difficulties in CR 

 Hard Coreference Problems 

 [A bird] perched on the [limb] and [it] bent. 

 [Robert] is robbed by [Kevin], and [he] is arrested by police. 

 

 Gender / Plurality information cannot help 

 -> Requires Knowledge 
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Part 1  
Solving Hard Coreference Problems 
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 [Lakshman] asked [Vivan] to get him some ice cream because 
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Predicate Schemas 
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Sub Obj 

Shared Mention 



Predicate Schemas 

 Type 1 

   

 (Cat1) [The bee] landed on [the flower] because [it] had pollen. 

 S(have(m=[the flower], a=[pollen])) > 

    S(have(m=[the bee],     a=[pollen])) 

 

 Type 2 

   

 (Cat2) [Jim] was afraid of [Robert] because [he] gets scared around 

new people. 

 

                                                                    

                                                                      

11 

Sub Obj 

Shared Mention 
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 Type 1 

   

 (Cat1) [The bee] landed on [the flower] because [it] had pollen. 
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    S(have(m=[the bee],     a=[pollen])) 

 

 Type 2 
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new people. 

 S 

    S(be afraid of(a=*, m=*) | get scared around(m=*, a=*), because) 
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Sub Obj 

Shared Mention 
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Predicate Schemas 

 Possible variations for scoring function statistics. 
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Predicate Schemas in Coreference 
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Predicate Schemas in Coreference 

 Pairwise Mention Scoring Function 
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 Scoring Function for Predicate Schemas 
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Predicate Schemas in Coreference 

 Pairwise Mention Scoring Function 

 

 

 

 Scoring Function for Predicate Schemas 

 

 

 

 We can add scores of Predicate Schemas as Features 
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Ways of Using Knowledge 

 Major Disadvantages of Using Knowledge as Features 

 Noise in Knowledge 

 Inexplicit Textual Inference 

 

 Alternative way 

 Using Knowledge as Constraints 
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Using Knowledge as Constraints  
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Using Knowledge as Constraints  

 Generating Constraints 
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Using Knowledge as Constraints  

 Generating Constraints 

 

 

 

 ILP inference (Best-Link) 
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Scores for Predicate Schemas 

 Multiple Sources 

 Gigaword 

 Wikipedia 

 Web Search 

 Polarity Information 
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Scores for Predicate Schemas 

 Gigaword 

 Chunking + Dependency Parsing  

     => predicate(subject, object) 

     => Type 1 Predicate Schema 

 Heuristic Coreference 

     => Type 2 Predicate Schema 
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Scores for Predicate Schemas 

 Gigaword 

 Chunking + Dependency Parsing  

     => predicate(subject, object) 

     => Type 1 Predicate Schema 

 Heuristic Coreference 

     => Type 2 Predicate Schema 

 Wikipedia 

 Entity Linking to ground on Wikipedia Entries (Disambiguation) 

 Gather Simple Statistics for 1) immediately after 2) immediately 

before 3) after 4) before 

  

    => Type 1 Predicate Schema 

)       (approximation) 

                                                         

                                

 

17 



Scores for Predicate Schemas 

 Web Search 

 Google Query with Quote (counts) 

 “m predicate”, “m a”, “a m”, “m predicate a” 

     => Type 1 Predicate Schema 
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Scores for Predicate Schemas 

 Web Search 

 Google Query with Quote (counts) 

 “m predicate”, “m a”, “a m”, “m predicate a” 

     => Type 1 Predicate Schema 

 

 Polarity Information 

 Polarity on predicates => Polarity on mentions 

 Negate polarity if mention is object 

 Negate polarity for polarity-reversing connective 

 +1 if polarities for mentions are the same 

     -1 if polarities for mentions are different 

    => Type 2 Predicate Schema 
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Recap 

 Things to consider for using knowledge in NLP 

 Knowledge Representation 

 Predicate Schema 

 Knowledge Inference 

 Features VS. Inference 

 Knowledge Acquisition 

  Multiple Sources 
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Datasets 
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1http://www.hlt.utdallas.edu/~vince/data/emnlp12/ 

 Winograd dataset1 
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    [The bee] landed on [the flower] because [it] wanted pollen. 
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 [Jack] threw the bags of [John] into the water since [he] 
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 inoCoref dataset 

                   

 

 

 



Evaluation on Hard Coreference  

Dataset Winograd WinoCoref 

Metric Precision AntePre 

Illinois 51.48 68.37 

IlliCons 53.26 74.32 

Rahman and Ng (2012) 73.05 —– 

KnowFeat 71.81 88.48 

KnowCons 74.93 88.95 

KnowComb 76.41 89.32 
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Evaluation on Standard Coreference 
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Analysis on Effects of Schemas 
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Part 2  
Profiler: Knowledge Schemas at Scale 
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Goal 

 How to enlarge the Knowledge acquired from text 

 Data Volume 

 Schema Richness 

 

 

 Profiler 

 Demo: http://austen.cs.illinois.edu:60000/ 
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Motivation 
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Enriched Schemas 
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Enriched Schemas 
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Implementation 
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Effect of Wikification (Entity-Linking) 
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Effect of Wikification (Entity-Linking) 
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Knowledge Visualization 
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Knowledge Visualization 
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Future Directions 

 The use of world knowledge in NLP tasks 

 Knowledge Representation (schemas) 

 Is co-occurrence information enough? 

 Knowledge Inference 

 Sparsity Issues 

 Knowledge Acquisition 

 Which sources to choose? 

 Interpolation /  

 Tasks beyond CR (CR can be seen as a subset of AI-complete 

problems) 

 

 Outlier Detection for Singleton Mentions 
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Thank You ! 
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 Performance Gaps 

 

 

 

 

 -> Requires Better Mention Detection 
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System Dataset  Gold Predicted Gap 

Illinois CoNLL-12   77.05 60.00  17.05 

Berkeley  CoNLL-11  76.68 60.42  16.26 

Stanford ACE-04  81.05  70.33  10.72 



A Joint Framework for Mention Head 
Detection and Coreference Resolution 

 Goal: Improve CR on predicted mentions (End-to-End) 

 Solution: 

 

 

 

 Traditional: MD -> Coref 

 Our paper: Mention Head -> Joint Coref -> Head to Mention 

 Joint Learning / Inference Step 

 Add decision variables to decide whether to choose a head or not 

 Joint Coref is able to reject some mention head candidates 

 Results 

40 

[Multinational companies investing in [China]] had become so angry that [they] recently 
set up an anti-piracy league to pressure [the [Chinese] government] to take action. 
[Domestic manufacturers, [who] are also suffering], launched a similar body this month.  

Dataset Illinois Baseline Our Paper 

ACE-04 68.27 68.27 71.20 

CoNLL-12 60.00 61.71 63.01 



ILP formulation of CR 

 Best-Link with Knowledge Constraints 

 

 

 

 

 

 Best-Link with Joint Mention Detection 
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