CONVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Coreference Resolution with Knowledge

Haoruo Peng March 20, 2015

Coreference Problem

[Helicopters] will [patrol the temporary nofly zone around [[New Jersey]'s MetLife Stadium Sunday]], with [F16s based] in [Atlantic City] ready to be scrambled if [an unauthorized aircraft] does enter [the restricted airspace]. Down below, [bombsniffing dogs] will [patrol [the trains] and buses that are expected to take approximately 30,000 of [the 80,000plus spectators] to Sunday's Super Bowl between [the Denver Broncos] and [Seattle Seahawks]]. [The Transportation Security Administration] said [it] has added about two dozen dogs to monitor [passengers] coming in and out of [the airport around the Super Bowl]. On Saturday, [[TSA] agents] demonstrated how [the dogs] can sniff out many different types of [explosives]. Once [they] do , [they] 're trained to sit rather than attack , so as not to raise suspicion or create a panic . [[[TSA] spokeswoman] Lisa Farbstein] said [the dogs] undergo 12 weeks of training , [which] costs about 200,000 , factoring in food , [vehicles] and salaries for [trainers] . [Dogs] have [been used in cargo areas for some time] , but have just been [introduced recently in [passenger] areas at [Newark] and [[JFK] airports]] . [JFK] has one [dog] and [Newark] has a handful , [Farbstein] said .

Coreference Problem

Online Demo

Please check out<u>http://cogcomp.cs.illinois.edu/page/demo_view/Coref</u>

Jack threw the bags of Mary into the water since he is angry with her.

Jack threw the bags of Mary into the water since he is angry with her.

Mention Detection

Jack threw the bags of *Mary* into the water since *he* is angry with *her*.

Mention Detection

Jack threw the bags of *Mary* into the water since *he* is angry with *her*.

Mention Detection Pairwise Mention Scoring

Jack threw the bags of *Mary* into the water since *he* is angry with *her*.

Mention Detection

Pairwise Mention Scoring

Goal: Coreferent Mentions have higher scores

Jack threw the bags of Mary into the water since he is angry with her.

Mention Detection

Pairwise Mention Scoring

Goal: Coreferent Mentions have higher scores

Jack threw the bags of Mary into the water since he is angry with her.

Mention Detection

Pairwise Mention Scoring

Goal: Coreferent Mentions have higher scores

Inference (ILP)

Best-Link

All-Link

ILP formulation of CR

Best-Link

$$\arg \max_{y} \sum_{u,v} w_{uv} y_{uv}$$
s.t.
$$\sum_{u < v} y_{uv} \le 1, \forall v$$

$$y_{uv} \in \{0, 1\}$$

- All-Link

$$\begin{aligned} \arg \max_{y} \sum_{u,v} w_{uv} y_{uv} \\ \text{s.t. } y_{um} \ge y_{uv} + y_{vm} - 1, \forall u, v, m \\ y_{uv} \in \{0, 1\} \end{aligned}$$

Learning (for Pairwise Mention Scores)

- □ Structural SVM
- □ Features:
 - Mention Types, String Relations, Semantic, Relative Location, Anaphoricity(Learned), Aligned Modifiers, Memorization, etc.

Learning (for Pairwise Mention Scores)

- □ Structural SVM
- Features:
 - Mention Types, String Relations, Semantic, Relative Location, Anaphoricity(Learned), Aligned Modifiers, Memorization, etc.

Evaluation MUC

BCUB

CEAF_e

Learning (for Pairwise Mention Scores)

- □ Structural SVM
- Features:
 - Mention Types, String Relations, Semantic, Relative Location, Anaphoricity(Learned), Aligned Modifiers, Memorization, etc.

Evaluation

MUC

BCUB CEAF_e

IllinoisCoref

VS. Stanford Muti-pass Sieve System VS. Berkeley CR System

HAMPAIGN

Difficulties in CR

Hard Coreference Problems

- □ [A bird] perched on the [limb] and [it] bent.
- □ [Robert] is robbed by [Kevin], and [he] is arrested by police.
- Gender / Plurality information cannot help
- -> Requires Knowledge

CONVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Part 1 Solving Hard Coreference Problems

Motivating Examples

Motivating Examples

Category 1

[A bird] perched on the [limb] and [it] bent.

[The bee] landed on [the flower] because [it] had pollen.

Motivating Examples

Category 1

[A bird] perched on the [limb] and [it] bent.

[The bee] landed on [the flower] because [it] had pollen.

Category 2

[Jack] is robbed by [Kevin], and [he] is arrested by police. [Jim] was afraid of [Robert] because [he] gets scared around new people.

Motivating Examples

Category 1

[A bird] perched on the [limb] and [it] bent.

[The bee] landed on [the flower] because [it] had pollen.

Category 2

[Jack] is robbed by [Kevin], and [he] is arrested by police. [Jim] was afraid of [Robert] because [he] gets scared around new people.

С

[Lakshman] asked [Vivan] to get him some ice cream because [he] was hot.

Type 1 $\Box \ pred_m(m, a)$

Type 2

(Cat1) [The bee] landed on [the flower] because [it] had pollen.

Sub Obj

pred_m(m,a)
 (Cat1) [The bee] landed on [the flower] because [it] had pollen.
 S(have(m=[the flower], a=[pollen])) >
 S(have(m=[the bee], a=[pollen]))

Type 2

Type 1

Type 1

pred_m(m,a)
 (Cat1) [The bee] landed on [the flower] because [it] had pollen.
 S(have(m=[the flower], a=[pollen])) >
 S(have(m=[the bee], a=[pollen]))

Type 2 $\Box \ pred_m(m,a)| pred_m(m,\hat{a}), cn$

Sub Obj

Type 1

pred_m(m,a)
 (Cat1) [The bee] landed on [the flower] because [it] had pollen.
 S(have(m=[the flower], a=[pollen])) >
 S(have(m=[the bee], a=[pollen]))

Type 2 $\Box \ pred_m(m,a)| pred_m(m,\hat{a}), cn$

Sub Obj

Sub

Obj

Type 1

 pred_m(m,a)
 (Cat1) [The bee] landed on [the flower] because [it] had pollen.
 S(have(m=[the flower], a=[pollen])) >
 S(have(m=[the bee], a=[pollen]))

 Shared Mention
 Type 2

 $\square pred_m(\underline{m}, a) | pred_m(\underline{m}, \hat{a}), cn$

Sub

pred_m(m,a)
 (Cat1) [The bee] landed on [the flower] because [it] had pollen.

S(have(m=[the flower], a=[pollen])) >

Obj

S(have(m=[the bee], a=[pollen]))

Shared Mention

Type 2

Type 1

 $\square pred_m(\underline{m}, a) | pred_m(\underline{m}, \hat{a}), cn$

(Cat2) [Jim] was afraid of [Robert] because [he] gets scared around new people.

Sub

pred_m(m, a)
 (Cat1) [The bee] landed on [the flower] because [it] had pollen.

S(have(m=[the flower], a=[pollen])) >

Obj

S(have(m=[the bee], a=[pollen]))

Shared Mention

Type 2

Type 1

 $\square pred_m(\underline{m}, a) | pred_m(\underline{m}, \hat{a}), cn$

(Cat2) [Jim] was afraid of [Robert] because [he] gets scared around new people.

S

S(be afraid of(a=*, m=*) | get scared around(m=*, a=*), because)

Possible variations for scoring function statistics.

Pairwise Mention Scoring Function

$$f_{u,v} = \mathbf{w}^{\top} \phi(u, v)$$

Pairwise Mention Scoring Function

$$f_{u,v} = \mathbf{w}^{\top} \phi(u, v)$$

Scoring Function for Predicate Schemas

$$\mathbf{s}(u,v)$$

Pairwise Mention Scoring Function

$$f_{u,v} = \mathbf{w}^{\top} \phi(u,v)$$

Scoring Function for Predicate Schemas

$$\mathbf{s}(u,v)$$

We can add scores of Predicate Schemas as Features

Ways of Using Knowledge

Major Disadvantages of Using Knowledge as Features

- Noise in Knowledge
- Inexplicit Textual Inference
- Alternative way
 - Using Knowledge as Constraints

Using Knowledge as Constraints

Using Knowledge as Constraints

Generating Constraints

$$\begin{cases} \text{if } s_i(u,v) \ge \alpha_i s_i(w,v) \Rightarrow y_{u,v} \ge y_{w,v}, \\ \text{if } s_i(u,v) \ge s_i(w,v) + \beta_i \Rightarrow y_{u,v} \ge y_{w,v} \end{cases} \end{cases}$$

Using Knowledge as Constraints

Generating Constraints

$$\begin{cases} \text{if } s_i(u,v) \ge \alpha_i s_i(w,v) \Rightarrow y_{u,v} \ge y_{w,v}, \\ \text{if } s_i(u,v) \ge s_i(w,v) + \beta_i \Rightarrow y_{u,v} \ge y_{w,v} \end{cases} \end{cases}$$

ILP inference (Best-Link)

$$\begin{aligned} \arg \max_{y} \sum_{u,v} w_{uv} y_{uv} \\ \text{s.t.} \ \sum_{u < v} y_{uv} \leq 1, \forall v \quad y_{uv} \in \{0,1\} \\ \text{if } s_{uv} \geq t + s_{um} \text{ then } y_{uv} \geq y_{um} \\ \text{if } s_{uv} \geq t' \cdot s_{um} \text{ then } y_{uv} \geq y_{um} \end{aligned}$$

Multiple Sources

- Gigaword
- Wikipedia
- Web Search
- Polarity Information

Gigaword

Chunking + Dependency Parsing

 > predicate(subject, object)
 > Type 1 Predicate Schema

 Heuristic Coreference

 > Type 2 Predicate Schema

Gigaword

Chunking + Dependency Parsing

=> predicate(subject, object)

=> Type 1 Predicate Schema

- Heuristic Coreference
 - => Type 2 Predicate Schema

Wikipedia

Entity Linking to ground on Wikipedia Entries (Disambiguation) Gather Simple Statistics for 1) immediately after 2) immediately before 3) after 4) before

=> Type 1 Predicate Schema

) (approximation)

Web Search

- Google Query with Quote (counts)
- "m predicate", "m a", "a m", "m predicate a"
 - => Type 1 Predicate Schema

Web Search

- Google Query with Quote (counts)
- "m predicate", "m a", "a m", "m predicate a"
 - => Type 1 Predicate Schema

Polarity Information

- Polarity on predicates => Polarity on mentions
- Negate polarity if mention is object
- Negate polarity for polarity-reversing connective
- +1 if polarities for mentions are the same
- -1 if polarities for mentions are different
- => Type 2 Predicate Schema

Recap

Things to consider for using knowledge in NLP

- Knowledge Representation
 - Predicate Schema
- Knowledge Inference
 - Features VS. Inference
- □ Knowledge Acquisition
 - Multiple Sources

- Winograd dataset¹
 - [The bee] landed on [the flower] because [it] had pollen.
 [The bee] landed on [the flower] because [it] wanted pollen.

¹http://www.hlt.utdallas.edu/~vince/data/emnlp12/

Winograd dataset¹

[The bee] landed on [the flower] because [it] had pollen.
 [The bee] landed on [the flower] because [it] wanted pollen.

Category	Cat1	Cat2	Cat3
Size	317	1060	509
Portion	16.8%	56.2%	27.0%

¹http://www.hlt.utdallas.edu/~vince/data/emnlp12/

Winograd dataset¹

[The bee] landed on [the flower] because [it] had pollen.
[The bee] landed on [the flower] because [it] wanted pollen.

Category	Cat1	Cat2	Cat3
Size	317	1060	509
Portion	16.8%	56.2%	27.0%

[Jack] threw the bags of [John] into the water since [he] mistakenly asked <u>him</u> to carry <u>his</u> bags.

¹http://www.hlt.utdallas.edu/~vince/data/emnlp12,

Winograd dataset¹

[The bee] landed on [the flower] because [it] had pollen.
[The bee] landed on [the flower] because [it] wanted pollen.

Category	Cat1	Cat2	Cat3
Size	317	1060	509
Portion	16.8%	56.2%	27.0%

[Jack] threw the bags of [John] into the water since [he] mistakenly asked <u>him</u> to carry <u>his</u> bags.

Evaluation on Hard Coreference

Dataset	Winograd	WinoCoref
Metric	Precision	AntePre
Illinois	51.48	68.37
IlliCons	53.26	74.32
Rahman and Ng (2012)	73.05	
KnowFeat	71.81	88.48
KnowCons	74.93	88.95
KnowComb	76.41	89.32

Evaluation on Standard Coreference

System	MUC	BCUB	CEAFe	AVG
		ACE		
IlliCons	78.17	81.64	78.45	79.42
KnowComb	77.51	81.97	77.44	78.97
OntoNotes				
IlliCons	84.10	78.30	68.74	77.05
KnowComb	84.33	78.02	67.95	76.76

Analysis on Effects of Schemas

Schema	AntePre(Test)
Type 1	76.67
Type 2	79.55
Type 1 (Cat1)	90.26
Type 2 (Cat2)	83.38

Part 2 Profiler: Knowledge Schemas at Scale

Goal

How to enlarge the Knowledge acquired from text

- Data Volume
- Schema Richness

- Profiler
 - Demo: <u>http://austen.cs.illinois.edu:60000/</u>

Motivation

#	Sentence	Schema Graph
1	"I chopped down [the tree] with my [axe] because [it] was tall."	Word ("tall") Word(w) POS(ADJ) POS(N)
2	"[Larry Robbins], founder of Glenview Capital Management, bought shares of [Endo International Plc]"	$ \begin{array}{c c} R_1 & R_2 \\ \hline N2 & N3 \\ NER(PER) & word("bought") & NER(ORG) \end{array} $
3	"Among [paper] and [rock] I chose rock, because [it] can beat scissors."	word("paper") word("beat") word("rock")
4	"[Jimbo] attacked [Bobbert] because [he] stole an elephant from the zoo."	word("arrest") word("Robbert") word("he") word("steal")

Enriched Schemas

Concept Graph	Attributes = { Values }	Relations	Num- ber of Schemas
$ \underbrace{N_1}_{a_1(v_1)} \underbrace{N_2}_{a_1(v_1)} $	<pre>word = { set of words } POS = { Noun, Noun-Phrase, Verb, Verb-Phrase, Modifier } Wikifier = { URLS } Verbsense = { All verb senses }</pre>	Possible roles from Table 4 except Co-referred	24
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<pre>word = { set of words } POS = { Noun, Noun-Phrase, Verb, Verb-Phrase, Modifier } Verbsense ={ All verb senses }</pre>	Subj, ObjOf	2
(N_1) (V_2) (V_2) (V_3) (V_3) (V_4) (V_4) (V_4)	<pre>word = { All words } Verbsense = {All verb senses }</pre>	Subj, ObjOf, Co-referred	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<pre>word = { set of words } Verbsense = { All verb sense }</pre>	Subj, ObjOf, Co-referred	4

Enriched Schemas

Attributes (\mathcal{A})	Values (\mathcal{V})			
Word	Raw text			
Lemma	Raw text			
POS	labels form Penn Treebank			
NER	{ PER, ORG, LOC, MISC }			
Wikifier	Wikipedia urls			
Verbsense	Verb sense from Verbnet			
Role	{ subj, obj }			

Enriched Schemas

Roles (\mathcal{R}) Before After NearestBefore NearestAfter AdjacentToBefore AdjacentToAfter ExclusiveContaining HasOverlap DependencyPath(l) Co-referred SubjectOf IsSubjectOf ObjectOf IsObjectOf

COMPUTATION GROUP

Implementation

3(

Effect of Wikification (Entity-Linking)

COMPUTATION GROUP

Effect of Wikification (Entity-Linking)

COMPUTATION GROUP

Knowledge Visualization

COMPUTATION GROUP

Knowledge Visualization

COMPUTATION GROUP

Publications

- [1] Solving Hard Coreference Problems. Haoruo Peng*, Daniel Khashabi* and Dan Roth. NAACL 2015.
- [2] A Joint Framework for Mention Head Detection and Coreference Resolution. Submitted to ACL 2015.
- [3] Profiler: Knowledge Schemas at Scale. Submitted to Transactions of ACL 2015.

Future Directions

The use of world knowledge in NLP tasks

- Knowledge Representation (schemas)
 - Is co-occurrence information enough?
- Knowledge Inference
 - Sparsity Issues
- Knowledge Acquisition
 - Which sources to choose?
 - Interpolation /
- Tasks beyond CR (CR can be seen as a subset of AI-complete problems)

Outlier Detection for Singleton Mentions

Collaborators

Daniel Khashabi

Zhiye Fei

Kaiwei Chang

Prof. Dan Roth

CONVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Thank You !

Hard Coreference Problems

- □ Ex.1 [A bird] perched on the [limb] and [it] bent.
- □ Ex.2 [Robert] is robbed by [Kevin], and [he] is arrested by police.
- Gender / Plurality information cannot help
- -> Requires Knowledge

Hard Coreference Problems

- □ Ex.1 [A bird] perched on the [limb] and [it] bent.
- □ Ex.2 [Robert] is robbed by [Kevin], and [he] is arrested by police.
- Gender / Plurality information cannot help
- -> Requires Knowledge

Hard Coreference Problems

- □ Ex.1 [A bird] perched on the [limb] and [it] bent.
- □ Ex.2 [Robert] is robbed by [Kevin], and [he] is arrested by police.
- Gender / Plurality information cannot help
- -> Requires Knowledge

Hard Coreference Problems

- □ Ex.1 [A bird] perched on the [limb] and [it] bent.
- Ex.2 [Robert] is robbed by [Kevin], and [he] is arrested by police.
- Gender / Plurality information cannot help
- -> Requires Knowledge

Performance Gaps

System	Dataset	Gold	Predicted	Gap
Illinois	CoNLL-12	77.05	60.00	17.05
Berkeley	CoNLL-11	76.68	60.42	16.26
Stanford	ACE-04	81.05	70.33	10.72

-> Requires Better Mention Detection
A Joint Framework for Mention Head Detection and Coreference Resolution

Goal: Improve CR on predicted mentions (End-to-End)Solution:

[Multinational <u>companies</u> investing in [<u>China</u>]] had become so angry that [<u>they</u>] recently set up an *anti-piracy league* to pressure [the [<u>Chinese</u>] <u>government</u>] to take action. [<u>Domestic manufacturers</u>, [<u>who</u>] are also suffering], launched a similar body this month.

- □ Traditional: MD -> Coref
- Our paper: Mention Head -> Joint Coref -> Head to Mention
- □ Joint Learning / Inference Step
 - Add decision variables to decide whether to choose a head or not
 - Joint Coref is able to reject some mention head candidates

Results	Dataset	Illinois	Baseline	Our Paper
	ACE-04	68.27	68.27	71.20
	CoNLL-12	60.00	61.71	63.01

ILP formulation of CR

Best-Link with Knowledge Constraints $\underset{u,v}{\operatorname{arg\,max}} \sum_{u,v} w_{uv} y_{uv}$ s.t. $\underset{u < v}{\sum} y_{uv} \leq 1, \forall v \quad y_{uv} \in \{0, 1\}$ if $s_{uv} \geq t + s_{um}$ then $y_{uv} \geq y_{um}$ if $s_{uv} \geq t' \cdot s_{um}$ then $y_{uv} \geq y_{um}$

Best-Link with Joint Mention Detection

 $\arg \max_{y} \sum_{u,v} w_{uv} y_{uv} + \sum_{m} \lambda_{m} y_{m}$ s.t. $\sum_{u < v} y_{uv} \le 1, \forall v \qquad y_{uv} \in \{0, 1\}$ $\sum_{u} y_{uv} \le y_{v}, \forall v \qquad y_{v} \in \{0, 1\}$