Solving Hard Coreference Problems

Cognitive Computation Group, University of Illinois

Problem Description

♦ Standard Coreference Instances

[John] adores [Mary] because [she] is pretty. [Prof. Roth] is satisfied with his [students] because [they] work hard.

Problems with Existing Coref Systems Rely heavily on gender / plurality information

◆ Hard Coreference Instances

[A bird] perched on the [limb] and [it] bent. [A bird] perched on the [limb] and [it] sang.

♦ Goal

A better overall coreference system

- Improve on solving hard coreference problems
- Maintain the state-of-art performance on standard coreference problems

Predicate Schemas

♦ Type 1 Schema

$$pred_m(m,a)$$
 m: Sub a: Obj

[The bee] landed on [the flower] because [it] had pollen. S(have(m=[the flower], a=[pollen])) > S(have(m=[the bee], a=[pollen]))

◆Type 2 Schema

$$pred_m(m,a)|\hat{pred}_m(m,\hat{a}),cn|$$

[Jim] was afraid of [Robert] because [he] gets scared around new people.

S(be afraid of (m=*, a=*)) | get scared around (m=*, a=*), because) > S(be afraid of (a=*, m=*) | get scared around (m=*, a=*), because)

♦ Schema Variations

$$\begin{array}{c} \mathcal{S}\left(\operatorname{pred}_{m}\left(m,a\right)\right) \\ \mathcal{S}\left(\operatorname{pred}_{m}\left(a,m\right)\right) \\ \mathcal{S}\left(\operatorname{pred}_{m}\left(m,*\right)\right) \\ \mathcal{S}\left(\operatorname{pred}_{m}\left(m,*\right)\right) \\ \mathcal{S}\left(\operatorname{pred}_{m}\left(m,a\right)|\widehat{\operatorname{pred}}_{m}\left(m,\widehat{a}\right),cn\right) \\ \mathcal{S}\left(\operatorname{pred}_{m}\left(a,m\right)|\widehat{\operatorname{pred}}_{m}\left(\widehat{a},m\right),cn\right) \\ \mathcal{S}\left(\operatorname{pred}_{m}\left(a,m\right)|\widehat{\operatorname{pred}}_{m}\left(\widehat{a},m\right),cn\right) \\ \mathcal{S}\left(\operatorname{pred}_{m}\left(a,m\right)|\widehat{\operatorname{pred}}_{m}\left(\widehat{a},m\right),cn\right) \\ \mathcal{S}\left(\operatorname{pred}_{m}\left(m,*\right)|\widehat{\operatorname{pred}}_{m}\left(\widehat{a},m\right),cn\right) \\ \mathcal{S}\left(\operatorname{pred}_{m}\left(m,*\right)|\widehat{\operatorname{pred}}_{m}\left(m,*\right),cn\right) \\ \vdots \end{array}$$

◆Example Beyond Above Schemas

[Lakshman] asked [Vivan] to get him some ice cream because [he] was hot.

Utilizing Knowledge

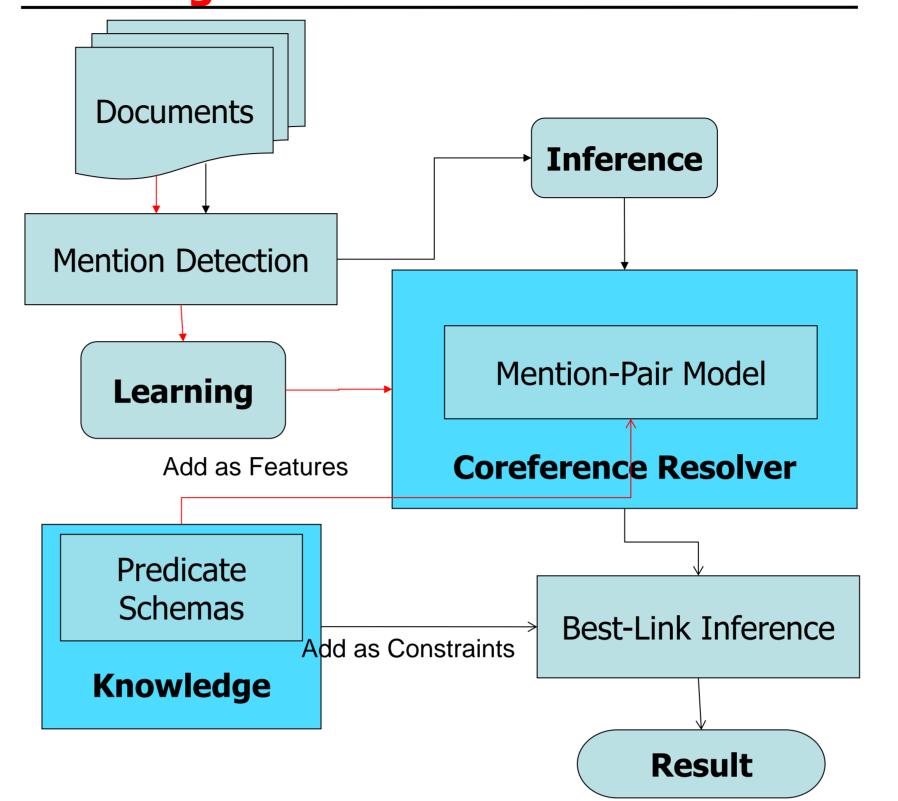
♦ Knowledge as Features

$$w_{u,v} = \mathbf{w}^T \phi(u,v) + \widetilde{\mathbf{w}}^T \mathbf{s}(u,v)$$
Pairwise Mention Scoring Function

Scoring Function for Predicate Schemas

- Noise in Knowledge
- Inexplicit Textual Inference

♦ Knowledge as Constraints **Generating Constraints**


$$\begin{cases} \text{if } s_i(u,v) \ge \alpha_i s_i(w,v) \Rightarrow y_{u,v} \ge y_{w,v}, \\ \text{if } s_i(u,v) \ge s_i(w,v) + \beta_i \Rightarrow y_{u,v} \ge y_{w,v} \end{cases}$$

ILP inference (Best-Link)

$$\arg\max_{y} \sum_{u,v} w_{uv} y_{uv}$$
s.t.
$$\sum_{u < v} y_{uv} \le 1, \forall v$$

$$y_{uv} \in \{0,1\}, \forall u, v$$
if $s_{uv} \ge t + s_{um}$ then $y_{uv} \ge y_{um}$

Learning and Inference Framework

Results

♦ Datasets:

- Winograd (Rahman&Ng, 2012)
- Winocoref: Winograd with more mentions
- Standard Coref: ACE-2004, Ontonotes

♦Metrics:

- Accuracy: for "Winograd" (binary classification)
- MUC, BCUB, CEAF (general coref)
- AntePre:
 - *k* pronouns in sentence
 - Each pronoun has n_k antecedents
 - *m* correct binary decisions

$$AntePre = \frac{m}{\sum_{i=1}^{k} n_k}$$

Evaluations:

Hard Coreference Problems

Dataset	Metric	Illinois		Rahman and Ng (2012)	
Winograd	Precision	5	1.48	73.05	
WinoCoref	AntePre	e 68.3			
Dataset	KnowFe	at	KnowCons		KnowComb
Winograd	71.81 88.48		74.93 88.95		76.41
WinoCoref					89.32

Standard Coreference Problems

System	MUC	BCUB	CEAFe	AVG	
ACE					
IlliCons	78.17	81.64	78.45	79.42	
KnowComb	77.51	81.97	77.44	78.97	
OntoNotes					
IlliCons	84.10	78.30	68.74	77.05	
KnowComb	84.33	78.02	67.95	76.76	

Ablation Study

We categorized instances in Winograd data

Category	Cat1	Cat2	Cat3
Size	317	1060	509
Portion	16.8%	56.2%	27.0%

Evaluated on each category:

Schema	AntePre(Test)	AntePre(Train)
Type 1	76.67	86.79
Type 2	79.55	88.86
Type 1 (Cat1)	90.26	93.64
Type 2 (Cat2)	83.38	92.49

Knowledge Acquisition

if $s_{uv} \geq t' \cdot s_{um}$ then $y_{uv} \geq y_{um}$

Gigaword co-occurrences

Extract triples from Gigaword

$$\mathcal{S}_{giga}^{(1)} = [\mathcal{S}_{giga}^{(1)} \mathcal{S}_{giga}^{(2)}]$$

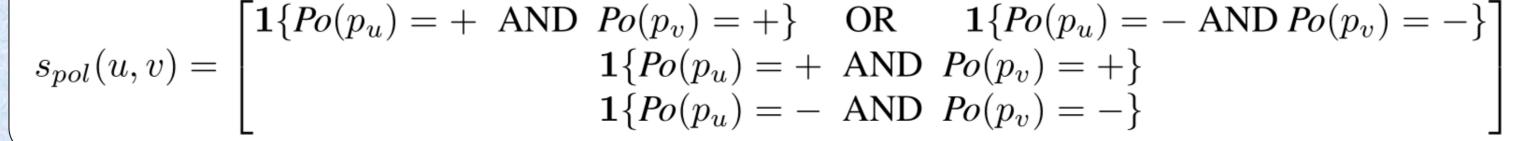
$$\mathcal{S}_{giga}^{(1)}(u,v) \equiv \mathcal{S}(pred_v(m = u, a = a_v))$$

$$\mathcal{S}_{giga}^{(2)}(u,v) \equiv \mathcal{S}(pred_u(m = u, a = a_u)|\widehat{pred}_v(m = u, a = a_v), cn).$$

♦ Wikipedia Disambiguated Co-occurrences

- Extract disambiguated noun, verbs and entities, etc. in Wikipedia (Illinois-Wikifier)
- Collect co-occurrence statistics: 1) immediately after 2) immediately before 3) before 4) after

$$S(u,v)_{wiki} \equiv S(pred_v(m=u,a=a_v)).$$


Web Search Statistics

Generate queries to get the score

1) "
$$u \ a_v$$
" 2) " $u \ pred_v$ " 3) " $u \ pred_v \ a_v$ " 4) " $a_v \ u$ " $\mathcal{S}_{web}(u,v) \equiv \mathcal{S}(pred_v(m=u,a=a_v))$

Polarity Information

- Initialize $Po(pred_u)$ and $Po(pred_v)$ (Wilson et al, 2005) $\mathcal{S}_{pol}(u,v) \equiv \mathcal{S}(pred_v(m=u,a=a_v))$
- Negate polarity when mention role is object
- If there is a polarity reversing connective (such as "but") preceding the predicate, reverse the polarity.

