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Abstract

In many natural language processing tasks, contex-
tual information from given documents alone is not
sufficient to support the desired textual inference.
In such cases, background knowledge about certain
entities and concepts could be quite helpful. While
many knowledge bases (KBs) focus on combining
data from existing databases, including dictionar-
ies and other human generated knowledge, we ob-
serve that in many cases the information needed to
support textual inference involves detailed informa-
tion about entities, entity types and relations among
them; e.g., is the verb “fire” more likely to occur
with an organization or a location as its Subject? In
order to facilitate reliable answers to these types of
questions, we propose to collect large scale graph-
based statistics from huge corpora annotated using
state-of-the-art NLP tools. In order to systemati-
cally design, acquire and access such a knowledge
base, we formalize a class of tree based knowl-
edge schemas based on Feature Description Logic
(FDL). We define a range of knowledge schemas,
then extract and organize the resulting statistical
KB using a new tool, the PROFILER. Our experi-
ments demonstrate that the PROFILER helps in clas-
sification and textual inference. Specifically, we
demonstrate its application to co-reference resolu-
tion, showing considerable improvements by care-
ful use of the PROFILER’s statistical knowledge.

1 Introduction
Knowledge representation and acquisition are two central
problems in the design of Natural Language Processing
(NLP) systems. While these are separate processes, they are
absolutely dependent. A representation needs to be expres-
sive enough, yet it should not compromise efficiency at acqui-
sition and inference stages [Levesque and Brachman, 1987].
Most importantly, usage of patterns of a KB should dictate
how knowledge is represented and how it is acquired.

Beyond relatively “static” and manually curated knowl-
edge bases such as Wordnet and Freebase [Bollacker et al.,
2008] the last few years have seen a significant body of

work attempting to acquire KBs. However, even these ef-
forts typically aim at acquiring sets of rules or graphs; exam-
ples include significant efforts on open domain information
extraction [Banko et al., 2007], using automatic acquisition
methods to acquire structured knowledge bases such as the
Extended WordNet and the YAGO ontology [Hoffart et al.,
2013], and projects such as NELL [Carlson et al., 2010], ac-
quiring a large body of “rules” and “facts”. However, almost
all these efforts, while using huge amounts of data, are quite
simplistic from the representational perspective – often using
simple relational patterns (e.g. X such as Y, Z) to extract infor-
mation from texts; they rarely facilitate typing of information,
do not support disambiguation (which Ford is it?) and do not
use the structure of the text in any significant way. These
acquisition efforts have seen minimal success in supporting
textual inference, mostly, we believe, due to the knowledge
representation used – sets of rules or graphs that do not cor-
respond well to inference patterns they need to support.

Consider the problem of co-reference resolution. For the
co-reference resolution of the pronoun “he” in the sentence
“Jimbo arrested Robert because he stole an elephant from
the zoo”, there is a need to use some global statistical knowl-
edge indicating that the Obj of arrest is more likely than its
Subj to be the Subj of stole. Providing an NLP system with
such information requires that we think carefully about the
knowledge representation and about the acquisition process
that could support it.

This paper proposes a general framework for relational rep-
resentation of (statistical) knowledge that is acquired from
text, and is designed to support textual inferences. Our rep-
resentation is driven by the need to facilitate aggregation of
knowledge while taking into account typing of concepts and
entities, their disambiguation, and the relational structure of
the text. In particular, the need to support inferences of the
kind shown above necessitates that the knowledge acquisition
is designed appropriately to facilitate it.

Our knowledge representation is designed based on Fea-
ture Description Logic (FDL), a relational (frame-based)
language that is expressive yet supports efficient inference
[Cumby and Roth, 2003a; 2003b]. Variations of this language
were shown to be useful in multiple applications, from pro-
viding principled formulations for feature extraction in ma-
chine learning, to formalisms for the semantic web [Baader
et al., 2008]. In this work, we use FDL to create a formal
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Table 1: Visualization of sample profiles. The tokens in the vertical axis are the most frequent co-occurring tokens in the cor-
responding schema, and the associated numbers are normalized by the total number of co-occurrences. The detailed definition
of schema is presented in §2.

definition for different types of knowledge schemas defined
based on graphs, acquire information from data using these
schemas, and retrieve information from our KB using these
schemas to support textual inference decisions.

With this flexible schema definition, we are able to ex-
tract many useful occurrence statistics on big corpora. Ta-
ble 1 shows how we structure the extracted information in
the PROFILER. The statistics that share an important com-
mon constituent are gathered into the same profiles. For ex-
ample, all of the schema instances which contain the entity
“Seattle” (the city) as one of their constituents are gathered in
the profile of “Seattle” (the city). Similarly we have profiles
for “Seattle” (Seahawks), “grow” (sense 3, meaning “produce
by cultivation”), “grow” (sense 4, meaning “go from child to
adult”), and so on. As can be seen, there can be multiple pro-
file types, e.g. (Wikipedia based) entities, (Propbank based)
Verbsense [Kingsbury and Palmer, 2002], etc. 1 Each pro-
file has a set of keys that uniquely identifies it. For example,
profiles of Wikipedia entities are uniquely identified by both
their surface form and the Wikipedia url. In doing this, we
are able to disambiguate different entities that have the same
surface form, as we show in the visualization.

Given an entity, we can look at various statistics gathered
for it. Different schemas might be useful for different tasks.
Here we give examples for the problems of named entity
recognition and co-reference resolution, although the usage
of our schemas is not limited to these applications.

Consider the examples in Table 2. For each sentence and
task, a graph is provided to represent the useful schemas. In
the first sentence we want to solve a co-reference problem,
where the goal is to connect “it” to either “the tree” or “axe”.
If we have statistics indicating whether it is more likely to
have the adjective “tall” applied to “the tree” or “axe”, we can
solve this problem. The schema graph of this knowledge is
represented in the first example of Table 2, where w is a word

1Currently we only support the two mentioned profile types, al-
though adding more profile types is just a matter of adding new input
annotations.

and can be instantiated as “the tree” and “axe”. The statistics
from the two graph instances provides information that is es-
sential to addressing this inference task. In the second exam-
ple sentence, we want to tag the constituents with NER labels.
Having statistics on the pattern PER “bought” ORG, where
PER and ORG are possible NER labels, can be used to model
the correlation between labeling of two local constituents
based on their mutual context. In the graph, the arc labels
R1 and R2 could be substituted with any proper relations
which approximate our goal, such as (R1, R2) =(before,
after). Consider the co-reference problem in example 3.
The knowledge that the subject of “steal” is more likely to
be the object of “arrest” rather than the subject of “arrest”
would provide enough information for this instance. This cor-
responds to the graph provided for this example in which Subj
of “steal” is co-referred to Obj of “arrest”.

As can be observed from our examples, there is a wide
range of patterns that can be defined for different problems
and applications. We create a unified language for expressing
these schemas, and we implement a scalable system that al-
lows concise schema definitions and fast statistics extraction
from gigantic corpora. To summarize the main contributions
of this paper:

1. We propose a formalization for graph-based representa-
tion of knowledge schemas, based on FDL.

2. We create PROFILER, a publicly available tool which
contains statistics of various knowledge schemas.

3. Finally, we show the application of our tool to dataless
classification of people-occupations. We also address
hard co-reference resolution problems and show consid-
erable improvements.

The rest of the paper is organized as follows. We explain
the graph-based knowledge schemas formulation in §2. The
details of the acquisition system are given in §3. We report
our preliminary experimental results in §4.



# Sentence Schema Graph

1 “I chopped down [the tree] with my [axe] because [it] was tall.”
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2 “[Larry Robbins], founder of Glenview Capital Management,
bought shares of [Endo International Plc] ...”
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3 “[Jimbo] arrested [Robert] because [he] stole an elephant from
the zoo.”
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Table 2: Example sentences and schema graphs.

Attributes (A) Values (V)
Word Raw text
Lemma Raw text
POS labels form Penn Treebank
NER { PER, ORG, LOC, MISC }

Wikifier Wikipedia urls
Verbsense Verb sense from Verbnet

Role { subj, obj }
Table 3: Set of attribute-values in our current system.

2 Generic Knowledge Description
In this section, we introduce a formal framework for char-
acterizing word-tuple occurences defined based on concept
graphs G(V,E), with certain labeling properties. In our
formalization, we use FDL as a means to represent rela-
tional data as quantified propositions [Khardon et al., 1999;
Cumby and Roth, 2003a], with some additional notation. We
first give a brief introduction of FDL2 and explain how we can
scale our knowledge description with any schema by taking
advantage of FDL’s inductive nature.

Definition 1 Given a set of attributes A = {a1, a2, . . .}, a
set of values V = {v1, v2 . . .} and a set of role alphabets
R = {r1, r2, . . .}, an FDL description is defined inductively
as following:

1. For an attribute a ∈ A and a value v ∈ V , a(v) is a
description, and it represents the set x ∈ X for which
a(x, v) is True.

2. For a description D and a role r ∈ R, (r D) is a role
description. Such description represents the set x ∈ X
such that r(x, y) is True, where y ∈ Y is described by
D.

3. For given descriptions D1, . . . , Dk, then
(AND D1, . . . , Dk) is a description, which repre-
sents a conjunction of all values described by each
description.

Based on the rules of the FDL, the output of each descrip-
tion is a set of elements. We will denote the description
of each node i with Di. Our goal is to describe the whole
concept graph or, in other words, to find tuples of words
(c1, c2, . . . , cn) (where n = |V |) which conform to the roles

2More details can be found in [Cumby and Roth, 2003a].
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Figure 1: Concept graphs for examples used here. Each con-
cept graph gives a relational description of words. Each node
represents a word. The label on each node is an attribute-
value pair for that word. The labels on edges are the relations
(or roles based on FDL notation) between words.

Roles (R)
Before
After

NearestBefore
NearestAfter

AdjacentToBefore
AdjacentToAfter

ExclusiveContaining
HasOverlap

DependencyPath(l)
Co-referred
SubjectOf

IsSubjectOf
ObjectOf

IsObjectOf

Table 4: Set of roles in our current system.

and attribute-values defined based on our desired graph. To
this end, we will cross-product the descriptions of individual
nodes to get the description of the whole graph. For future
use, we define Di1,...,ik , a set of k-element tuples, as the de-
scription of nodes i1, . . . , ik ∈ J|V |K 3.

Before stating the complete definition of the schemas, we
first give a couple of examples. For each example, a con-
cept graph represents the set of roles on edges, and attributes-
values on nodes. The concept graphs corresponding to our
examples are depicted in Figure 1.

3JkK = {1, . . . , k}
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Figure 2: One level of a hypothetical concept graph.

Example 1: Suppose we want to describe a pair of nouns
serving as subject and object of a verb “defeat”, respectively.

D1 = (AND (POS(N)) (subjectOf word(“defeat”)))
D2 = {word(“defeat”)}
D3 = (AND (POS(N)) (objectOf word(“defeat”)))

In Graph 1, D1 describes N1 and D3 describes N3. Their
cross-product, D1,2,3 = D1 ⊗D2 ⊗D3 represents the set of
tuples.
Example 2: Consider Graph 2 in Figure 1. Given the verb
“rob”, we want to describe nodes N1, N3, N4.

D1 = (subjectOf word(“rob”))
D2 = {word(“rob”)}
D3 = (AND (POS(V)) (after word(“rob”)))
D4(w) = (objectOf word(w)) ,∀w ∈ D3

D3,4 =
⋃

w∈D3

({w} ⊗D4(w))

The cross product of the definitions gives the set of all possi-
ble quadruples: D1,2,3,4 = D1 ⊗D2 ⊗D3,4.
A general schema definition: We showed how to formally
characterize the set of all elements satisfying a concept graph
in our examples. Here we provide general characterization
protocols. As mentioned before, in the concept graph the
edges are roles r ∈ R, and nodes contain attributes a ∈ A
from the set of values v ∈ V . Figure 2 shows one layer of a
hypothetical concept graph. Assuming that the concept graph
is a rooted tree (hence no cycles) the following rule induc-
tively defines the description of each node in a concept graph:

Description of each node: If the parent is fixed (or is
a single-element set), the description of each child node
is inductively defined based on the description of its par-
ent, given the role/attribute labels. The description of the
node Ni is:

Di = (AND (ai(vi)) (ri word(c)))

If the parent is described by a set, Dparent, the de-
scription of each child node is inductively defined based
on each element of the parent description, given the
role/attribute labels. The description of the node Ni:

Di(c) = (AND (ai(vi)) (ri word(c))),∀c ∈ Dparent

This definition could be further changed depending on
the concept graph. For example, if there is no attribute
or role associated with the child, they could be omitted.
Similarly, if there are multiple attributes or roles, they
can be combined with AND or any proper operators.

Given the description of each node, we want the joint de-
scription of all nodes in the concept graph. In the following
we formalize how to combine atomic descriptions and get a
global description.

Combining atomic descriptions: For a fixed parent,
the description of the parent-children nodes is the cross
product of the child descriptions with the parent. If I
represents the set of indices for children:

Dparent, child = Dparent ⊗

(⊗
i∈I

Di

)
Suppose a parent node is described by a set of elements,
Dparent. If I represents the set of indices for children, the
description of the parent-child nodes is:

Dparent, child =
⋃

c∈Dparent

[
{c} ⊗

(⊗
i∈I

Di(c)

)]

A database of schema scores: So far, given a graph G(V,E)
we have created a description D1,...,|V |. We define a scoring
function S : G → R which maps a concept graph to a score
value. Now given a set of tuples of the form

(
c1, . . . , c|V |

)
,

the basic score can be the number of distinct tuples. The dis-
tinctness could be defined either based on the raw text, a nor-
malized form or any of the attributes (Table 3), which defined
the level of abstraction.

In many applications, the raw occurrence score might
not be very useful; instead, the conditional probabilities are
handy. The conditional probability in a graph could be de-
fined in different ways. Consider a subgraph of G, defined as
G′(E′, V ′), such that E′ ⊆ E and V ′ ⊆ V . A normalized
score of G with respect to its subset is defined as

S(G \G′|G′) ,
S(G)

S(G′)

Depending on the application, a different definition of G′

might be appropriate.
Querying the database: Our generic knowledge description
gives us a uniform interface for both knowledge acquisition
and queries. In order to get the scores, the user only needs to
supply a specific instance of any schema definition G.

3 Knowledge Acquisition Procedure
In this section we explain the knowledge acquisition proce-
dure, the flowchart of which is shown in Figure 3. To sup-
port fast data retrieval, we decide to pre-compute the statistics
for our schemas, instead of querying document annotations
in real time.4 First, we use ILLINOISCLOUDNLP [Wu et
al., 2014] to process raw documents with the annotations we
need in our schemas. ILLINOISCLOUDNLP is built around

4Pre-computing has the benefit of fast queries, although it limits
the users in query time. It is possible to create a combination of
pre-computing and on the fly computation of statistics for arbitrary
queries, which is the subject of our future work.
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Figure 3: Flowchart of Profiler data processing.

NLPCURATOR [Clarke et al., 2012] and Amazon Web Ser-
vices’ Elastic Compute Cloud (EC2). It provides a straight-
forward user interface to annotate large corpora with a vari-
ety of NLP tools supported by NLPCURATOR, on EC2. We
use Amazon Elastic MapReduce to aggregate the statistics.
It takes input directly from Amazon’s distributed key-value
storage S3, where ILLINOISCLOUDNLP stores its annotation
output. Finally, we store our profiles in MongoDB as it sup-
ports a flexible data model and scalable indexing.

In our experiments we annotate a large part of a Wikipedia
dump that contains 4,019,936 documents. The serialized an-
notation output is 1,455 GB in size when uncompressed, and
we use it as the input of our Elastic MapReduce program. 200
mid-end EC2 nodes are used for our MapReduce job, and the
job completes in 3 hours, at a cost of $420. The MapReduce
result is 198 GB in size, and it contains 3,636,263 profiles
for Wikipedia entities and 313,156 profiles for Verbsense en-
tities.

The categorization shown in Table 5 is based on the struc-
ture of the graphs. For each graph the set of possible attribute-
values and roles are provided, although in practice we do not
compute all of the possible combinations. Based on the struc-
ture of the problem, we pre-compute the ones which are more
likely to make improvements in the task.

4 Applications
In this section we evaluate the data gathered based on knowl-
edge schemas on two applications. The knowledge schemas

are expected to be applicable to any problem and are not lim-
ited to the two applications we introduce bellow.

4.1 Pattern discovery inside profiles

With the knowledge schemas extracted from big corpora, we
expect to discover meaningful regularities in the data. For
example, names of athletes tend to appear in similar context,
although they might be playing on different teams or at dif-
ferent positions. In other words, the profiles of athletes (or at
least some of the schemas) are expected to be similar. With
this in mind, we expect to be able to distinguish the occupa-
tion of people based on some aspects of their schemas. For
example, sample statistics of Tom Brady (football player) are
shown in Table 6. Many of the context words such as “pass”,
“throw”, etc represent the profession component of its profile.
Similarly, Nikola Tesla’s profile partly reflects his major ac-
tivities. Given such information, we can distinguish between
people with different occupations from each other without the
need of any test data specific training data. This has close
connections with the Dataless Classification paradigm which
has recently gained some popularity [Chang et al., 2008;
Song and Roth, 2014]. In addition, the aggregated profile
of all football players should be closer to individual football
players than that of entities with other occupations.

In order to test our hypothesis we create a dataset of
people-professions. First we prepare a list of people, each
with his/her name, Wiki url, and profession from Wikipedia5.
We use this list as starting point to extract profiles of entities.
We have gathered a list of entities E = {e1, . . . , en} such that
for each e we know its profession. For a given entity e ∈ E ,
v(e) represents the vector of statistics given in the profile of

5Extracted from http://en.wikipedia.org/wiki/
Lists_of_people_by_occupation for 2 levels of depth. In
all cases, we applied an NER filter to eliminate irrelevant profiles.
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Table 6: Sample statistics in the profiles of two people and two occupations, retrieved from “Verb After” schema. The profiles
of the occupations are created by averaging profile of many people with that occupation.

Dataset Winograd WinoCoref
Metric Precision AntePre
Rahman et al [2012] 73.05 —–
Peng et al [2015] 76.41 89.32
Our paper 77.16 89.77

Table 7: Performance results on Winograd and WinoCoref
datasets. With knowledge from our proposed schema, we get
performance improvement compared to [Peng et al, 2015].

e6. Consider the set P = {p1, . . . , pm} which contains the
set of professions. The vector of statistics for each profession
v(pi) is the average of v(ej) ∈ E with the same profession.
To make the experiment realistic we do 5 fold cross valida-
tion, i.e. when making prediction for some target people, the
profiles of the occupations are created using the rest of them.
To predict the occupation of an entity ei we assign it to the
profession with highest similarity measure. In our experi-
ment, we use Okapi BM25 as our similarity measure, and in
72.1% of the test cases, the correct answer is among the top-5
predictions.

4.2 Improving Co-reference Resolution
To examine the power of our approach in a real NLP applica-
tion, we choose to apply our schemas in co-reference resolu-
tion problems. Many hard co-reference resolution problems
rely heavily on external knowledge [Rahman and Ng, 2011;
Ratinov and Roth, 2012; Rahman and Ng, 2012; Peng et
al., 2015]. In particular, Winograd [1972] showed that small
changes in context could completely change co-reference de-
cisions. In the following examples, minor differences in oth-
erwise identical sentences result in different references of the
same pronoun.

Ex.1 The [ball]e1 hit the [window]e2 and Bill repaired [it]pro .
Ex.2 The [ball]e1 hit the [window]e2 and Bill caught [it]pro .
In Ex.1, if we know “repair window” is more likely than

“repair ball”, we can decide that “it” refers to “window”.
Likewise, in Ex.2, one needs to know “catch” is more likely

6Here we use only 4 schemas from Table 5: Nearest Noun After,
Nearest Noun Before, Modifier Before, Neatest Verb After.

to be associated with “ball” than “window”. These references
can be easily solved by humans, but are hard for todays’ com-
puter programs. However, the schemas we proposed are de-
signed to capture this kind of knowledge7.

The Winograd dataset in [Rahman and Ng, 2012] contains
943 pairs of such sentences. It has a training set of 606 pairs
and a testing set of 337 pairs. In each sentence, there are two
entities and a pronoun, and we model it as a binary classi-
fication problem. Peng et al [2015] add more pronoun an-
notations to the dataset, model it as a general co-reference
resolution problem and provide the WinoCoref dataset8. In
this dataset, each co-referent cluster only contains 2-4 men-
tions and are all within the same sentence. We cannot use
traditional co-reference metrics in this problem. Instead, we
can view predicted co-reference clusters as binary decisions
on each antecedent-pronoun pair (linked or not). Following
Peng et al [2015], we compute the ratio of correct decisions
over the total number of decisions made, and we call this met-
ric AntePre.

We apply the knowledge extracted with our proposed
schemas to the system described in Peng et al [2015] and
test on both Winograd and WinoCoref datasets. The sys-
tem uses Integer Linear Programming (ILP) formulation to
solve co-reference problems, and it has a decision variable for
each co-reference link. The knowledge from the schemas we
proposed are automatically turned into constraints with tuned
thresholds at the decision time. We implement the system the
same way as described by Peng et al [2015]. By using our ad-
ditional schemas as constraints, we improve the performance
reported in [Peng et al., 2015]. Results in Table 7 show that
our schemas can be utilized as a reliable knowledge source
in solving hard co-reference resolution problems. We expect

7In the PROFILER, we can tell that the number of co-occurrences
for “catch” to be the nearest verb before “ball” is far larger than that
for “catch” to be the nearest verb before “window”. Moreover, we
also capture that the probability for “ball” to be object of “catch” is
far larger than that for “window” to be object of “catch”.

8Available at: http://cogcomp.cs.illinois.edu/
page/resource_view/96



the knowledge we gathered can also be applied to other NLP
applications that rely on external knowledge.

5 Concluding Remarks
We presented the PROFILER, a knowledge base created by
large scale graph-based statistics extracted from huge cor-
pora annotated using state-of-the-art NLP tools. We pro-
posed a tree based formalization based on Feature Descrip-
tion Logic (FDL). The representation takes into account typ-
ing of concepts and entities, along with their disambiguation.
We showed the application of our tool on dataless classifica-
tion of people-occupations and hard co-reference resolution.
More experiments need to be done to gain better insight into
this knowledge representation, the effect of disambiguation,
and other applications which can benefit from it.
Our current implementation includes a wide range of schemas
which are efficiently processed on Amazon cloud service.
However, this implementation can be generalized for on-
demand extraction of desired schemas which is the subject
of our future work.
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