
US009344690B2 

(12) United States Patent (10) Patent No.: US 9,344,690 B2 
NOWOZin et al. (45) Date of Patent: May 17, 2016 

(54) IMAGE DEMOSAICING 4,642,678 A 2, 1987 Cok 
5,373.322 A 12/1994 Laroche et al. 
5,382,976 A 1, 1995 Hibbard 

(71) Applicant: Microsoft Corporation, Redmond, WA 5,629,734 A 5/1997 Hamilton, Jr. et al. 
(US) 7,149.262 B1* 12/2006 Nayar ................... GO6T 3,4015 

375,341 
(72) Inventors: Reinhard Sebastian Bernhard Continued 

Nowozin, Cambridge (GB); Danyal (Continued) 
Khashabi, Urbana, IL (US); Jeremy 
Martin Jancsary, Vienna (AT); Bruce FOREIGN PATENT DOCUMENTS 
Justin Lindbloom, Eden Prairie, MN CN 103442159 A * 12/2013 
(US); Andrew William Fitzgibbon, 
Cambridge (GB) OTHER PUBLICATIONS 

(73) Assignee: Microsoft Technology Licensing, LLC, “International Search Report & Written Opinion Received for PCT 
Redmond, WA (US) Patent Application No. PCT/US2015/012330. Mailed Date: Apr. 22, 

2015, 13 P 
(*) Notice: Subject to any disclaimer, the term of this ageS inued 

patent is extended or adjusted under 35 (Continued) 
U.S.C. 154(b) by 156 days. 

(21) Appl. No.: 14/163,851 Primary Examiner — Jingge Wu 
(74) Attorney, Agent, or Firm — Tom Wong; Micky Minhas: 

(22) Filed: Jan. 24, 2014 Zete Law, P.L.L.C. 

(65) Prior Publication Data 

US 2015/0215590 A1 Jul 30, 2015 (57) ABSTRACT 

(51) Int. Cl Image demosaicing is described, for example, to enable raw 
we image sensor data, where image elements have intensity val H04N 9/00 (2006.01) 

H04N 9/04 (2006.01) ues in only one of three color channels, to be converted into a 
G06T3/40 (2006.01) color image where image elements have intensity values in 
H04N 9/69 (200 6. 01) three color channels. In various embodiments a trained 

(52) U.S. Cl machine learning component is used to carry out demosaicing 
AV e. we optionally in combination with denoising. In some examples 

CPC .............. Italysis?'E', 'C.C. the trained machine learning system comprises a cascade of 
• u. fs trained regression tree fields. In some examples the machine 

(58) Field of Classage Search f045: f learning component has been trained using pairs of mosaiced 
CPC ........ G06T 3/4015; H04N 9/045; H04N 9/69 and demosaiced images where the demosaiced images have 
See application file for complete search history. been obtained by downscaling natural color digital images. 

(56) References Cited For example, the mosaiced images are obtained from the 

U.S. PATENT DOCUMENTS 

3,971,065. A 
4,605.956 A 

7/1976 Bayer 
8, 1986 Cok 

demosaiced images by Subsampling according to one of a 
variety of color filter array patterns. 

20 Claims, 10 Drawing Sheets 

--- 
- /iosa 

8 
-b-c- 
iced image, 

One R, G or 3 
\signal pe sense, 

- - 112 
-- - 

demosaicing: 
;" | 

/6 ... ; R and G and B 
per sense, 

  

  

  

  



US 9,344,690 B2 
Page 2 

(56) References Cited 

U.S. PATENT DOCUMENTS 

7,158,685 B2 1/2007 Guenter 
8,295,595 B2 10/2012 Matsushita et al. 
8,417,047 B2 4/2013 Chatterjee et al. 

2004/0001641 A1 1/2004 Guenter ................ GO6T 3, 4015 
382,260 

2004/0086177 A1* 5/2004 Zhang .................... HO4N 9,045 
382, 167 

2008. O152215 A1* 6, 2008 Horie ................. GO2B 27,2214 
382,154 

2009 OO27504 A1* 1/2009 Lim ..................... HO4N 17,002 
348,187 

2009/0027523 A1* 1/2009 Chang .................. HO4N 9,3147 
348,254 

2009/00284.65 A1 1/2009 Pan ....................... GO6T 3/4007 
382,300 

2011/0176730 A1* 7, 2011 Sasaki ................... GO6T 3, 4015 
382, 167 

2014/O126808 A1* 5, 2014 Geisler ................... GO6T 5,002 
382,159 

2014/0176760 A1* 6/2014 Taguchi .................. GO6T 5,002 
348,224.1 

OTHER PUBLICATIONS 

Deever, et al., “Digital Camera Image Formation: Processing and 
Storage', in book Digital Image Forensics, Jul. 31, 2012, pp. 45-77. 
Khashabi, et al., "Joint Demosaicing and Denoising via Learned 
Nonparametric Random Fields'. In Proceedings of IEEE Transac 
tions on Image Processing, vol. 23, Issue 12, Dec. 2014, pp. 4968 
4981. 
Narasimhan, et al., “Enhancing Resolution Along Multiple Imaging 
Dimensions. Using Assorted Pixels'. In Proceedings of IEEE Trans 
actions on Pattern Analysis and Machine Intelligence, vol. 27. Issue 
4, Apr. 2005, pp. 518-530. 
Nowozin, et al., “Pattern-Independent Demosaicing. Published on: 
Aug. 2013 Available at: http://web.engrillinois.edu/~khashab2/files/ 
2013 2014 demosaicing/2013 RTF demosaicing 1.pdf. 
Yin, et al., “Demosaicing and Super-Resolution for Color Filter 
Array via Residual Image Reconstruction and Sparse Representa 
tion”. Published in International Journal of Computer Science and 
Business Informatics, vol. 16, No. 1, Oct. 1, 2013, 12 Pages. 
He, et al., “A Self-Learning Approach to Color Demosaicking via 
Support Vector Regression'. In Proceeding of the 19th IEEE Interna 
tional Conference on Image Processing, Sep. 30, 2012, 4 pages. 
Burger, Harold Christopher, “Modelling and Learning Approaches to 
Image Denoising”. Published on: May 8, 2013, Available at: http:// 
www.hcburger.com/files/thesis.pdf. 
Paliya, et al., “Denoising and Interpolation of Noisy Bayer Data with 
Adaptive Cross-Color Filters'. In Proceeding of the Visual Commu 
nications and Image Processing, Jan. 28, 2008, 13 pages. 
Ramanath, et al., "Adaptive Demosaicking'. In Journal of Electronic 
Imaging, vol. 12, Issue 4, Oct. 2003, 10 pages. 
Siddiqui, et al., “Training-Based Demosaicing. In IEEE Interna 
tional Conference on Acoustics Speech and Signal Processing, Mar. 
14, 2010, 4 pages. 
Kapah, et al., “Demosaicing using Artificial Neural Networks'. In 
Electronic Imaging International Society for Optics and Photonics, 
Apr. 2000, 9 pages. 
Oaknin, Jacob H., “A Statistical Learning Approach to Color 
Demosaicing. In arXiv Preprint, arXiv:0905.2958, Feb. 12, 2010, 24 
pageS. 
Jancsary, et al., “Regression Tree Fields—An Efficient, Non-Para 
metric Approach to Image Labeling Problems”. In IEEE Conference 
on ComputerVision and Pattern Recognition, Jun. 16, 2012, 8 pages. 
Jancsary, et al., “Loss-Specific Training of Non-Parametric Image 
Restoration Models: A New State of the Art'. In Proceedings of the 
12th European Conference on Computer Vision, Oct. 7, 2012, 14 
pageS. 
Paliy, et al., “Spatially Adaptive Color Filter Array Interpolation for 
Noiseless and Noisy Data'. In International Journal of Imaging Sys 
tems and Technology, vol. 17. Issue 3, Oct. 2007, 18 pages. 

Gunturk, et al., "Color Plane Interpolation Using Alternating Projec 
tions'. In IEEE Transactions on Image Processing, vol. 11, Issue 9, 
Sep. 2002, 17 pages. 
Foi, et al., “Practical Poissonian-Gaussian Noise Modeling and Fit 
ting for Single-Image Raw-Data'. In IEEE Transactions on Image 
Processing, vol. 17. Issue 10, Oct. 2008, 18 pages. 
Takamatsu, et al., “Estimating Demosaicing Algorithms Using Image 
Noise Variance'. In 23 IEEE Conference on Computer Vision and 
Pattern Recognition, Jun. 13, 2010, 8 pages. 
Li, et al., “Color Filter Arrays: Representation and Analysis'. In 
Technical Report Series—RR-08-04, 2008, May 2008, 20 pages. 
Wang, et al., “New Color Filter Arrays of High Light Sensitivity and 
High Demosaicking Performance'. In 18th IEEE International Con 
ference on Image Processing, Sep. 11, 2011, 4 pages. 
Hirakawa, et al., "Adaptive Homogeneity-Directed Demosaicing 
Algorithm”. In IEEE Transactions on Image Processing, vol. 14. 
Issue 3, Mar. 2005, 4 pages. 
Menon, et al., “Demosaicing with Directional Filtering and a Poste 
riori Decision'. In IEEE Transactions on Image Processing, vol. 16, 
Issue 1, Jan. 2007, 10 pages. 
Zhang, et al., "Color Demosaicking via Directional Linear Minimum 
Mean Square-Error Estimation'. In IEEE Transactions on Image 
Processing, vol. 14, Issue 12, Dec. 2005, 12 pages. 
Lukac, et al., “Color Image Zooming on the Bayer Pattern”. In IEEE 
Transactions on Circuits and Systems for Video Technology, vol. 15. 
Issue 11, Nov. 2005, 18 pages. 
Kimmel, Ron, “Demosaicing: Image Reconstruction from Color 
CCD Samples'. In IEEE Transactions on Image Processing, vol. 8, 
Issue 9, Sep. 1999, 8 pages. 
Taubman, David, “Generalized Wiener Reconstruction of Images 
from Colour Sensor Data Using a Scale Invariant Prior'. In Interna 
tional Conference on Image Processing, vol. 3, Sep. 10, 2000, 4 
pages. 
Lu, et al., “Demosaicking by Alternating Projections: Theory and 
Fast One-Step Implementation'. In IEEE Transactions on Image 
Processing, vol. 19, Issue 8, Aug. 2010, 13 pages. 
Alleysson, et al., “Linear Demosaicing Inspired by the Human Visual 
System”. In IEEE Transactions on Image Processing, vol. 14, Issue 4. 
Apr. 2005, 12 pages. 
Dubois, Eric, “Frequency-Domain Methods for Demosaicking of 
Bayer-Sampled Color Images'. In IEEE Signal Processing Letters, 
vol. 12, Issue 12, Dec. 2005, 4 pages. 
Dubois, E., "Filter Design for Adaptive Frequency-Domain Bayer 
Demosaicking'. In IEEE International Conference on Image Pro 
cessing, Oct. 8, 2006, 4 pages. 
Moghadam, et al., “Compressive Framework for Demosaicing of 
Natural Images'. In IEEE Transactions on Image Processing, vol. 22. 
Issue 6. Jun. 2013, 16 pages. 
Moghadam, et al., “Compressive Demosaicing. In IEEE Interna 
tional Workshop on Multimedia Signal Processing, Oct. 4, 2010, 6 
pageS. 
Aghagolzadeh, et al., “Bayer and Panchromatic Color Filter Array 
Demosaicing by Sparse Recovery'. In Proceedings of the Interna 
tional Society for Optics and Photonics, Jan. 24, 2011, 11 pages. 
Su, Chung-Yen, “Highly Effective Iterative Demosaicing Using 
Weighted-Edge and Color-Difference Interpolations'. In IEEE 
Transactions on Consumer Electronics, vol. 52, Issue 2, Sep. 2006, 7 
pageS. 
Zhang, et al., "Color Demosaicking by Local Directional Interpola 
tion and Nonlocal Adaptive Thresholding'. In Journal of Electronic 
Imaging, vol. 20, No. 2, Apr. 2011, pp. 29. 
Milanfar, Peyman, "A Tour of Modern Image Filtering”. In Proceed 
ings of IEEE Signal Processing Magazine, vol.30, Issue 1, Jan. 2013, 
23 pages. 
Getreuer, Pascal, “Color Demosaicing with Contour Stencils'. In 
Proceedings of 17th International Conference on Digital Signal Pro 
cessing, Jul. 6, 2011, 6 pages. 
Chatterjee, et al., “Is Denoising Dead?". In IEEE Transactions on 
Image Processing, vol. 19, Issue 4, Apr. 2010, 17 pages. 
Zhang, et al., “Color Reproduction from Noisy CFA Data of Single 
Sensor Digital Cameras”. In IEEE Transactions on Image Process 
ing, vol. 16, Issue 9, Sep. 2007, 14 pages. 



US 9,344,690 B2 
Page 3 

(56) References Cited 

OTHER PUBLICATIONS 

Hirakawa, et al., "Joint Demosaicing and Denoising”. In IEEE Inter 
national Conference on Image Processing, vol. 15, Issue 8, Aug. 
2006, 12 pages. 
Leung, et al., "Least-Squares Luma Chroma Demultiplexing Algo 
rithm for Bayer Demosaicking'. In IEEE Transactions on Image 
Processing, vol. 20, Issue 7, Jul. 2011, 10 pages. 
Condat, et al., "Joint Demosaicking and Denoising by Total Variation 
Minimization'. In 19th IEEE International Conference on Image 
Processing, Sep. 30, 2012, 4 pages. 
Danielyan, et al., “Cross-Color BM3D Filtering of Noisy Raw Data'. 
In Proceedings of International Workshop on Local and Non-Local 
Approximation in Image Processing, Aug. 19, 2009, 5 pages. 
Menon, et al., "Joint Demosaicking and Denoising with Space-Vary 
ing Filters'. In 16th IEEE International Conference on Image Pro 
cessing, Nov. 7, 2009, 4 pages. 
Park, et al., “A Case for Denoising Before Demosaicking Color Filter 
Array Data'. In Proceedings of the Conference Record of the Forty 
Third Asilomar Conference on Signals, Systems and Computers, 
Nov. 1, 2009, 5 pages. 
Chatterjee, et al., “Noise Suppression in Low-Light Images through 
Joint Denoising and Demosaicing'. In Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, Jun. 20. 
2011, 8 pages. 

Zhang, et al., “PCA-Based Spatially Adaptive Denoising of CFA 
Images for Single-Sensor Digital Cameras”. In IEEE Transactions on 
Image Processing, vol. 18, Issue 4, Apr. 2009, 16 pages. 
Hirakawa, et al., “Image Denoising for Signal-Dependent Noise'. In 
Proceedings of IEEE International Conference on Acoustics, Speech, 
and Signal Processing, vol. 2, Mar. 18, 2005, 4 pages. 
Condat, Laurent, “A Simple, Fast and Efficient Approach to 
Denoisaicking: Joint Demosaicking and Denoising. In Proceedings 
of 17th IEEE International Conference on Image Processing, Sep. 26. 
2010, 4 pages. 
Jeon, et al., “Demosaicking of Noisy Bayer Sampled Color Images 
with Least-Squares Luma-Chroma Demultiplexing and Noise Level 
Estimation'. In IEEE Transactions on Image Processing, vol. 22. 
Issue 1 Jan. 2013, 11 pages. 
Zoran, et al., “Scale Invariance and Noise in Natural Images'. In 
Proceedings of 12th International Conference on Computer Vision, 
Sep. 29, 2009, 8 pages. 
Kim, et al., “A New In-Camera Imaging Model for Color Computer 
Vision and its Application'. In IEEE Transactions on Pattern Analy 
sis and Machine Intelligence, vol. 34. Issue 12, Dec. 2012, 14 pages. 
Wang, et al., “Image Quality Assessment: From Error Visibility to 
Structural Similarity”. In IEEE Transactions on Image Processing, 
vol. 13, Issue 4, Apr. 2004, 14 pages. 
"Second Written Opinion Issued in PCT Application No. PCT/ 
US2015/012330'. Mailed Date: Jan. 19, 2016, 10 pages. 

* cited by examiner 



U.S. Patent May 17, 2016 Sheet 1 of 10 US 9,344,690 B2 

6 

osaiced image 
One R, G or B 
ignal per sense 

OO 102^ Camera 
-1 optics MAGE 

/ 

demosaicing 

R and G and B 
Signal per sense 

RAW 

Demosaicing /N: 
120 component 

FIG. 1 

  

  

    

  

    

  



U.S. Patent May 17, 2016 Sheet 2 of 10 US 9,344,690 B2 

1 OO Eight from scene 

optical operations 200 

Color Filter Array 108 

Analog/Digital 2O2 
Conversion 

RAW image 116 

Black-level adjustment 204 
Color scaling 

denoising 2O6 

208 Demosaicing 

Color transform 2O 
Gamma Correction 

Colour image 212 
Output 

FIG. 2 

  



U.S. Patent May 17, 2016 Sheet 3 of 10 US 9,344,690 B2 

ight from OO 
SCee 

Optical operations 200 

Color Filter Array 108 

Analog/Digital 2O2 
Conversion 

RAW image 16 

Black - level adjustment 204 
Color Scaling 

combined demosaicing 300 
and denoising 

Color transform 210 
Gamma correction 

Color image 
Output 

212 

FIG. 3 

  



U.S. Patent May 17, 2016 Sheet 4 of 10 US 9,344,690 B2 

training data 
pairs of 
mosaiced X ar. A 

and training trained demosaicing 404 
demosaiced engine component 

images 

pairs of noisy 
mosaiced trainin trained demosaicing 

and denoised e and denoising 
images 9 Component 

FIG. 4 

      

  

  

  

  

    

  

  

    

    

    



U.S. Patent May 17, 2016 Sheet 5 of 10 US 9,344,690 B2 

502 500 

mosaiced predictor de 

image n r 
restored f Predictor a predictor iced 

mosaiced 2 image 3 mosaice 
image 2 Image 

3 

F.G. 5 

  

  



U.S. Patent May 17, 2016 Sheet 6 of 10 US 9,344,690 B2 

602 604 

downscading 
process 

mosaiced 
image 

C D 
demosaiced 600 

images 

Color filter array ibrary 610 

noise model ibrary 612 

814 
Create training data and 

partition 

BAYER, noise mode 

Training 
data Set A 

Training 
data set B 

Training 
data set C 

BAYER, No noise model 

Training 622 
data Set. A 

Training - 624 
data set B 

X-Trans, noise model 

Training 
data Set A 

Training 
data Set B 

Training 
data set C 

Training 626 
data set C 

- FIG. 6 
618 62O 

  

  

  



U.S. Patent May 17, 2016 Sheet 7 of 10 US 9,344,690 B2 

702 

Optional 
noise 

estimation 

Fitt in missing color 
values Smale 

demosaiced image 
Mosaiced image 7O6 

Downscaling with 
averaging 

708 Optional 
Black-level adjustment - noise 

Color Scaling addition Downscaling with 
weighted averaging 

demosaiced noisy 
image 

RAW image 

1 16 

FIG. 7 

  

  

  

    

  

  

  

  

  

    

  



U.S. Patent May 17, 2016 Sheet 8 of 10 US 9,344,690 B2 

FIG. 8 

  



U.S. Patent May 17, 2016 Sheet 9 of 10 US 9,344,690 B2 

900 

color filter array 9 O2 
Image sensor 904 

Optical system 906 

Analog/Digital 
Converter 910 

92 

Image processing pipeline 

Black-eve denoise Color transform 
adjustment and demosaic Gamma 
Color Scalind Correction 

FIG. 9 

  



U.S. Patent May 17, 2016 Sheet 10 of 10 US 9,344,690 B2 

image capture 
device 

10O2 1020 ter 
Communication input/output 

O24 

Optional 
Display 
device 

Memory 

Operating Application O26 
system Software 

image logic 

Black-level adjustment 
Color Scaling 

denoise and demosaic 

Color transform 
Gamma correction 

FIG. 10 

  

  

    

  

  

  



US 9,344,690 B2 
1. 

IMAGE DEMOSAICNG 

BACKGROUND 

Image demosaicing is an image processing stage used for 
images captured by existing digital color cameras which use 
imaging sensors with color filter arrays. In these types of 
cameras (generally speaking most of the currently available 
digital color cameras) the semiconductor imaging sensor is a 
greyscale sensor that is not capable of detecting different 
colors. To enable color images to be captured, a color filter 
array is placed over the semiconductor imaging sensor. The 
color filter array is a grid of color filters arranged in a tessel 
lating pattern so that each sensor element (sensel) of the 
imaging sensor receives light in a color range according to the 
filter array cell color positioned over the sensel. In this way a 
mosaic image is captured where image elements have single 
intensity values for one of three or more color channels (red, 
green and blue for example). Demosaicing is a process 
whereby intensity values for the other two channels are cal 
culated for each of the image elements. 
Many different existing image demosaicing processes 

exist. These may be tailored for example, according to 
whether the output color images are destined for a particular 
type of display Screen or printing device. 

Existing image demosaicing processes are limited interms 
of accuracy and quality of results they produce. Artifacts are 
often introduced by existing image demosaicing processes. 
There is also a desire to achieve image demosaicing with 
minimal computing and memory resources and in short time 
scales. For example, many color cameras are implemented in 
resource constrained devices such as Smart phones, where 
limited processing and memory resources are under high 
demand. 
The embodiments described below are not limited to 

implementations which solve any or all of the disadvantages 
of known image demosaicing equipment. 

SUMMARY 

The following presents a simplified summary of the dis 
closure in order to provide a basic understanding to the reader. 
This summary is not an extensive overview of the disclosure 
and it does not identify key/critical elements or delineate the 
Scope of the specification. Its sole purpose is to present a 
selection of concepts disclosed herein in a simplified form as 
a prelude to the more detailed description that is presented 
later. 

Image demosaicing is described, for example, to enable 
raw image sensor data, where image elements have intensity 
values in only one of three color channels, to be converted into 
a demosaiced image where image elements have intensity 
values in three color channels. In various embodiments a 
trained machine learning component is used to carry out 
demosaicing optionally in combination with denoising. In 
Some examples the trained machine learning system com 
prises a cascade of trained regression tree fields. In some 
examples the machine learning component has been trained 
using pairs of mosaiced and demosaiced images where the 
demosaiced images have been obtained by downscaling natu 
ral color digital images. For example, the mosaiced images 
are obtained from the demosaiced images by Subsampling 
according to one of a variety of color filter array patterns. 
Many of the attendant features will be more readily appre 

ciated as the same becomes better understood by reference to 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
the following detailed description considered in connection 
with the accompanying drawings. 

DESCRIPTION OF THE DRAWINGS 

The present description will be better understood from the 
following detailed description read in light of the accompa 
nying drawings, wherein: 

FIG. 1 is a schematic diagram of part of a digital color 
camera with a demosaicing component; 

FIG. 2 is a flow diagram of an image processing pipeline to 
produce a color image; 

FIG. 3 is a flow diagram of another image processing 
pipeline to produce a color image: 

FIG. 4 is a schematic diagram of a training engine for 
training a demosaicing component; 

FIG. 5 is a schematic diagram of a cascade of regression 
tree fields arranged to form a demosaicing component; 

FIG. 6 is a schematic diagram of a system for creating and 
partitioning training data for training demosaicing compo 
nents; 

FIG. 7 is a schematic diagram of part of the method of FIG. 
6 in more detail; 

FIG. 8 is an example of a color filter array pattern; 
FIG. 9 is a schematic diagram of a color camera; 
FIG. 10 illustrates an exemplary computing-based device 

in which embodiments of image demosaicing may be imple 
mented. 
Like reference numerals are used to designate like parts in the 
accompanying drawings. 

DETAILED DESCRIPTION 

The detailed description provided below in connection 
with the appended drawings is intended as a description of the 
present examples and is not intended to represent the only 
forms in which the present example may be constructed or 
utilized. The description sets forth the functions of the 
example and the sequence of steps for constructing and oper 
ating the example. However, the same or equivalent functions 
and sequences may be accomplished by different examples. 

Although the present examples are described and illus 
trated herein as being implemented in an image demosaicing 
system for still digital images, the system described is pro 
vided as an example and not a limitation. As those skilled in 
the art will appreciate, the present examples are suitable for 
application in a variety of different types of color imaging 
systems including those where streams of color images are 
captured, such as color video cameras. 

FIG. 1 is a schematic diagram of part of a digital color 
camera 104 with a demosaicing component 112. Only some 
of the components of the camera 104 are illustrated for clarity. 
The camera has camera optics 102 comprising one or more 
lenses or other optics for focusing light from a scene 100 onto 
an image sensor Such as a grid of semiconductor sensels 106. 
A color filter array 108 is positioned in front of the grid of 
sensels such that each sensel (sensor element) produces a 
signal in one of three primary color channels (red, green and 
blue for example). The signals are digitized to give mosaiced 
image 110. 
The mosaiced image 110 may be input to a demosaicing 

component 112 which calculates missing color channel Val 
ues so that image elements of an output demosaiced image 
have separate intensity values for three primary color chan 
nels. The demosaicing component may be computer imple 
mented using software and/or hardware. In some examples 
the demosaicing component is implemented, in whole or in 
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part, using one or more hardware logic components. For 
example, and without limitation, illustrative types of hard 
ware logic components that can be used include Field-pro 
grammable Gate Arrays (FPGAs), Program-specific Inte 
grated Circuits (ASICs). Program-specific Standard Products 
(ASSPs), System-on-a-chip systems (SOCs), Complex Pro 
grammable Logic Devices (CPLDS), graphics processing 
units (GPUs) or other. 

In the example of FIG. 1 the demosaicing component 112 
is shown as part of the camera 104. However, this is not 
essential. The demosaicing component may be at a personal 
computer 118 or other computing device. For example, the 
mosaiced image may be output as a RAW image 111 for 
example, in a RAW file. The RAW file may be input to a 
personal computer 118 or other computing device which has 
a demosaicing component 120 the same as the demosaicing 
component 112. The RAW IMAGE 111 may be transferred to 
the personal computer or other computing device in any Suit 
able manner, such as over a communications network. 

FIG. 2 is a flow diagram of an image processing pipeline to 
produce a color image. This image processing pipeline may 
be computer implemented using Software and/or hardware. 
For example, the pipeline is implemented, in whole or in part, 
at a digital color camera such as camera 104 of FIG. 1. This 
pipeline illustrates how a demosaicing process may be used as 
part of a process of calculating a color image 212 for render 
ing and/or printing. The pipeline illustrates how various 
examples described herein use demosaicing in a linear light 
space of Such a pipeline as opposed to a color image space 
(e.g. sRGB space) as in previous systems. By carrying out 
demosaicing in the linear light-space improved quality results 
are obtained. The term “linear light-space” is used to refer to 
a stage of a color image processing pipeline at which a digital 
mosaiced image has been linear color-scaled and black-level 
adjusted but at which a color transform and Gamma correc 
tion have not been applied to the digital mosaiced image. A 
linear light-space is therefore a stage of a color image pro 
cessing pipeline at which a digital mosaiced image has only 
undergone linear adjustments. 

Light from a scene 100 undergoes optical operations 200 as 
it passes through camera optics and is also filtered by color 
filter array 108 before hitting an imaging sensor at the camera. 
The imaging sensor produces an analog signal which under 
goes analog to digital conversion 202 resulting in a RAW 
image 116 which may be stored and/or output. The RAW 
image is processed for black-level adjustment and linear color 
Scaling 204 using any suitable black-level adjustment and 
linear color scaling process. The image may then be denoised 
206, for example, by denoising each of the color channels 
separately. Any Suitable denoising process may be used. The 
linear scaled, denoised, RAW image is then demosaiced 208 
using a trained machine learning component as described in 
more detail below. The demosaiced image is processed with a 
color transform and Gamma correction 210 resulting in a 
color image output 212 for rendering and/or printing. 

In some examples described herein, a combined denoising 
and demosaicing component is used. This is illustrated in 
FIG. 3 which is a flow diagram of another image processing 
pipeline to produce a color image. The pipeline is the same as 
that of FIG. 2 except that the denoising and demosaicing 
components are integral in a combined demosaicing and 
denoising component 300. 
As mentioned above the demosaicing component 208 and 

the combined demosaicing and denoising component 300 
may be implemented using training machine learning com 
ponents. With reference to FIG. 4 training data 400 compris 
ing pairs of mosaiced and demosaiced images may be used by 
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4 
a training engine 402 to produce a trained demosaicing com 
ponent 404. In another example, pairs of noisy mosaiced and 
denoised, demosaiced images 406 may be used by training 
engine 408 to produce a trained demosaicing and denoising 
component 410. However, it is not straightforward to obtain 
Suitable training data. This is because ground truth demosa 
iced images cannot be obtained directly from cameras which 
use color filter arrays. To obtain demosaiced images from 
RAW images some processing is carried out and this intro 
duced errors and artifacts. As a result the calculated demosa 
iced images are not empirically observed ground truth demo 
saiced images. For example, Some approaches have used 
linear interpolation to calculate missing color channel values 
and so compute a demosaiced image from a mosaiced image. 
Machine learning systems which use these types of calculated 
demosaiced images may be poor quality because they learn 
from demosaiced images which have artifacts and errors. In 
various examples described herein a new way of creating 
training data is described which uses a general downsampling 
method which works for arbitrary color filter arrays and arbi 
trary downscaling sizes. In some examples realistic image 
noise for the downsampled images is simulated. 
The training process at the training engine typically uses an 

update procedure and a training objective also referred to as a 
loss function. More detail about example training processes is 
given later in this document. The trained component 404, 410 
may comprise any suitable machine learning component Such 
as a neural network, Support vector machine, a linear regres 
sion model, a regression tree field, cascade of machine learn 
ing components. An example in which the trained component 
404, 410 comprises a cascade of regression tree fields is now 
given with reference to FIG. 5. For example, the demosaicing 
component 208 of FIG.2 may comprise the cascade of regres 
sion tree fields of FIG. 5. For example, the demosaicing and 
denoising component 300 of FIG.3 may comprise the cas 
cade of regression tree fields of FIG. 5. 
A regression tree field (RTF) is a plurality of regression 

trees used to represent a conditional random field. A condi 
tional random field (CRF) is a statistical model for predicting 
a label of an image element by taking into account other 
image elements in the image. A Gaussian conditional random 
field comprises unary potentials and pair-wise potentials. In 
an RTF one or more regression trees may be associated with 
unary potentials of a conditional random field and one or 
more regression trees may be associated with pairwise poten 
tials of a conditional random field. Unary potentials are 
related to individual image elements. Pair-wise potentials are 
related to pairs of image elements. Each leaf of the regression 
tree may store an individual linear regressor that determines a 
local potential. 
A regression tree comprises a root node connected to a 

plurality of leaf nodes via one or more layers of split nodes. 
Image elements of an image may be pushed through a regres 
sion tree from the root to a leaf node in a process whereby a 
decision is made at each split node. The decision is made 
according to characteristics of the image element and char 
acteristics of test image elements displaced therefrom by 
spatial offsets specified by the parameters at the split node. At 
a split node the image element proceeds to the next level of the 
tree down a branch chosen according to the results of the 
decision. During training, image statistics (also referred to as 
features) are chosen for use at the split nodes and parameters 
are stored at the leaf nodes. These parameters are then chosen 
So as to optimize the quality of the predictions (as measured 
by a loss function) on the training set. After training, image 
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elements and/or features of an input mosaiced image are 
pushed through the regression trees to find values of the 
parameters. 

FIG. 5 is a schematic diagram of a cascade of trained 
machine learning predictors 502,506, 510 such as regression 
tree fields. In this example each layer of the cascade com 
prises a single machine learning predictor which produces a 
demosaiced image (504, 508, 512) as output. That is, each 
machine learning predictor 502, 506, 510 is a layer of the 
cascade. The machine learning predictors may carry out 
demosaicing or demosaicing combined with denoising. The 
predictors 502, 506, 510 are connected in series. Three cas 
cade layers are shown in this example. However the number 
of cascade layers may be different. There can be two or more 
cascade layers depending on the particular task involved and 
the computational resources available. 

Predictor 2506 and predictor 3510 may be referred to as 
internal layers. A predictor in an internal layer receives input 
which is the output of the previous layer. For example, pre 
dictor 2 506 receives input which is restored image 1504 
output by predictor 1502. The initial layer comprises predic 
tor 1 which receives input from the mosaiced image 500 as do 
the other layers. That is, each layer receives the mosaiced 
image 300 as input. 

In some examples a predictor in an internal layer may also 
receive input from earlier layers, which are not the immedi 
ately previous layer. This is illustrated in FIG.5 which shows 
demosaiced image 1504 being used as input to predictor 3 
510. It is also possible for features computed from demosa 
iced image 1504 to be used as input to predictor 3510 (this is 
not shown in FIG. 5 for clarity). 

In the examples in FIG. 5 each cascade layer comprises a 
single predictor. However, it is also possible to use two or 
more predictors at each cascade layer. These predictors may 
be independent. 
A mosaiced image 500 Such as the mosaiced image in the 

linear light-space of FIGS. 2 and 3 may be input to the cascade 
to compute the series of demosaiced images. In some 
examples the processing through the cascade may be stopped 
according to user input, for example, where user input indi 
cates that a color image displayed on the basis of one of the 
demosaiced images is of an acceptable quality. 
The machine learning predictors of FIG.5 may be trained 

using training data created using a process as described with 
reference to FIG. 6 or with training data obtained in any other 
Suitable manner. During training a loss function is used to 
enable updates to be made to the predictors in the light of the 
training data examples. The loss function expresses a quality 
of demosaicing between input and output images and may be 
directly optimized during training. For example the loss func 
tion may comprise peak signal to noise ratio (PSNR), mean 
squared error (MSE), mean absolute deviation (MAD), or 
structural image similarity (SSIM). These are examples: 
other types of loss function may be used which express a 
quality of demosaicing between input and output images of a 
predictor. The loss function may be specified by a user, or may 
be preconfigured. 

In the demosaicing examples described herein using 
regression tree fields the demosaicing problem may be 
expressed using a conditional random field as follows: 

Which may be expressed in words as, the probability of a 
demosaiced image y given a mosaiced image X which has 
local and pair-wise potentials (given in a matrix 0) of a 
conditional random field, is proportional to the exponent of 
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6 
the negative of an energy function E of the demosaiced image 
y given the mosaiced image X and its potentials 0. 

Given a set V of pixel locations, and given the input vari 
ables X, one per element of V it is desired to infer the labeling 
of the output variables y, one per element of V. For an image, 
assume that V is arranged according to the grid layout of an 
image. To make training the model and inference simpler, 
limit to a set of local factors which are indexed by F. These 
factors may consist of different configurations like one vari 
able, pair-wise variables, etc. Call each of these configura 
tions “types” inside which the factors have the same structure, 
and denote the set of factors with the same type with 
F = FI type (F)=t. Denote the set of output variables y 
upon which the factor F is acting, and the energy function can 
be factorized over the factors, to a local energy of the factor 
variables by the quadratic energy function: 

in which defineb,(x)eR', as the set of linear basis vectors 
as a function of factor type t. Now the total energy over the 
graph may be found by Summing over factors as follows: 

ECyrixp:0)=XX, FECyrixp:0). 
Assume that for each type t a regression tree is defined, 

taking as input the adjacent set of inputs x and assigning to 
them a leaf index in the tree. Hence instead of having the 
parameters for each of the factors defined over each pixel, the 
process only saves parameters at the leaves of each tree. 

Given the parameters of potentials, the minimizer to the 
overall potential function in Equation 1 can uniquely be found 
by, 

referred to as equation 1. 

The regression tree fields may be trained discriminatively 
with respect to a given loss function. Thus by designing more 
sensible loss functions it is possible to improve the quality of 
the model. 

There are few important facts that may be exploited in a 
Successful demosaicing algorithm. For example, the strong 
correlation between the color channels. This means that the 
variation of intensities in each channel covary in a very simi 
lar way. In the examples described herein using regression 
tree fields, this correlation is taken into account by the joint 
quadratic-exponent energy minimization between pixels of 
different channels. 

In some examples, a cost function used during training may 
be generalized to take into account a camera response func 
tion. This facilitates a demosaicing system which is better 
able to create images which are appealing to human eye at the 
end of image pipeline after demosaicing and the nonlinear 
image transformations done inside the camera, after demosa 
icing. 
A camera response function may be defined as, 

in which L is the “linear-space image' which is mapped to 
I, i.e. the sRGB space (color image space), or some other 
Suitable perceptual color space. 

In some examples, peak signal to noise ratio (PSNR) is 
used for the loss function during training, and this loss func 
tion is generalized to take into account a camera response 
function of the form given above. This is achieved, for 
instance, by evaluating the loss function on the output of the 
camera response function. 
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FIG. 6 is a schematic diagram of a system for creating and 
partitioning training data for training demosaicing compo 
nents. Ground truth demosaiced images 600 (which have 
three primary color channel values per image element) are 
calculated and stored at store 600. In some examples the 5 
demosaiced images 600 are calculated from linearlight-space 
mosaiced images of natural scenes using a downscaling pro 
cess 604. In various examples the downscaling process is 
arranged to work for arbitrary color filter arrays and arbitrary 
downscaling sizes as described in more detail with reference 
to FIG. 7. The demosaiced images 600 may be obtained in 
other ways. 
A computer-implemented component 614 accesses the 

demosaiced images 600 and uses them to create and partition 
training data. The component 614 may access one or more 
color filter array patterns from a color filter array library 610. 
The component 614 may access a noise model from a noise 
model library 612. 

Given a demosaiced image that the component 614 has 
accessed from the store 600 the component subsamples the 
demosaiced image according to a color filter array pattern 
selected from the color filter array library 610. This produces 
a mosaiced image corresponding to the demosaiced image. 
The mosaic image and the demosaiced image are a training 
image pair. Many Such training image pairs are calculated and 
divided into a plurality of training data sets 622, 624, 626. 
Different ones of the training data sets may be used to train 
different machine learning predictors in a cascade of machine 
learning predictors. In the example of FIG. 6 a Bayer pattern 
is selected from the color filter array library 610 and used to 
form training data sets 616 without any noise model being 
taken into account. This training data 616 may be used to train 
a cascade of machine learning predictors such as those of is 
FIG. 5 to form a demosaicing component such as that of FIG. 
2. 

In a second example, a Bayer pattern is again selected from 
the color filter array library 610 and used to form training data 
sets 618. This time noise is added to the mosaiced images 40 
using a noise model selected from noise model library 612. 
This training data 616 may be used to train a cascade of 
machine learning predictors such as those of FIG.5 to form a 
combined demosaicing and denoising component such as that 
of FIG. 3. 

In a third example, an X-Trans pattern is selected from the 
color filter array library 610 and used to form training data 
sets 620. Noise is added to the mosaiced images using a noise 
model selected from noise model library 612. This training 
data 620 may be used to train a cascade of machine learning 
predictors such as those of FIG. 5 to form a combined demo 
saicing and denoising component such as that of FIG. 3. 
More detail about the downscaling process 604 is now 

given with reference to FIG. 7. A RAW mosaiced image 116 
from a camera with a color filter array is received and pro 
cessed using black-level adjustment and linear color Scaling 
204. This image is a mosaiced image 700 in a linear light 
space as described above. The image is input to a downscaling 
process 704 to fill in the missing color values. 
The output of the downscaling process is a smaller demo 

saiced image 710. Because of the scale invariance of natural 
images the fact that the demosaiced image is Smaller than the 
mosaiced image 700 does not matter. The smaller demosaiced 
image may be added to store 600 of FIG. 6. In some examples 
noise is added using optional noise addition component 712. 
This allows for the fact that the downscaling process of com 
ponent 704 removes noise. 

10 

15 

25 

30 

45 

50 

55 

60 

65 

8 
The optional noise addition component 712 may use input 

from a noise estimation component 702 which estimates an 
amount of noise in the mosaiced image 700. 

In some examples the downscaling process 704 comprises 
a downscaling with averaging process 706. For example, the 
image 700 is divided into same sized, square blocks of image 
elements. The red channel signals in a block are averaged to 
give a single red channel signal. This is also done for the blue 
and green channels. A downscaled image is created by replac 
ing a block by a single image element taking the averaged 
signals for the three color channels. The averages may be 
weighted. Other types of aggregation may be used in place of 
averaging. Because of the order of the colors in the color filter 
array pattern artifacts may be introduced in the downscaled 
image. Also, the size of the averaging blocks (and whether 
these have an odd or even number of image elements as a side 
length) impacts the quality of the results. 

In some examples the downscaling process uses a weighted 
averaging 708 where the weighted averaging is designed to 
give high quality results no matter what the color filter array 
pattern and/or block size. In some examples image elements 
are weights according to their spatial position within a block. 
For example, this is achieved by selecting weights so that the 
weighted average of the X coordinates in the block corre 
sponds to the center of the block; and the weighted average of 
they coordinates in the block corresponds to the center of the 
block. For example, the weights are found by Solving a maxi 
mum entropy problem and where the weights in a block Sum 
to 1, are non-negative, and have an average along a row of the 
center of the block, and an average along a column of the 
center of the block. 

For example, consider a block of size 2W x2W. To com 
pensate for the effect of a shift inside each color channel 
potentially introduced by downscaling, the process seeks to 
align the center of mass of each color channel, at the center of 
the block, (e.g. at coordinates 2.5, 2.5 where the block is a 
four by four image element block). In addition, a distribution 
of weights which satisfies constraints is sought, i.e. is a valid 
distribution, and at the same time increase the entropy of the 
distribution (maximum uncertainty/entropy principle) as it 
gives the least informative distribution. The problem can be 
represented as a constrained convex optimization as follows. 
Note that the weights are non-zero where the values of the 
samples in the corresponding channels are non-Zero, as an 
implicit constraint. 

X. p(x, y) = 1 
p(x, y) as O. Wix,y 

XExp(x,y) = 2.5, vy 
Xyp(x,y) = 2.5. V X 

Which may be expressed in words as a maximum entropy 
of a function p equals the negative of a Sum of the function 
applied to each weight in the block times the log of the 
function applied to the weights; Subject to a list of constraints 
which are that the weights Sum to 1, the weights are non 
negative, the Sum of the weights in a row is 2.5 and the Sum of 
the weights in a column is 2.5 (where the block has 4 image 
elements per row and column). 
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In general the center point of a block of size 2WX2W is 
(W+0.5, W+0.5) so that weights may be selected by solving 
the following constrained convex optimization: 

X. p(x, y) = 1 

Which may be expressed in words as a maximum entropy 
of a function p equals the negative of a sum of the function 
applied to each weight in the block times the log of the 
function applied to the weights; Subject to a list of constraints 
which are that the weights Sum to 1, the weights are non 
negative, the Sum of the weights in a row is an X coordinate of 
the center of the block and the sum of the weights in a column 
is a y coordinate of the center of the block. 
The above formulation can be solved for each channel 

separately, and the values of p(x, y) is Zero wherever there is 
no sample in that channel. As an example solving the problem 
for the Bayer pattern block 800 in FIG.8. for each channel 
gives the following weights, 

1 O 3 O 

10 OO O 
p(x, y) = 1 3 O 9 O 

O) () () () 

0 0 || 0 O 

1 O 9 O 3 
ph (x, y)= 0 0 || 0 O 

O 3 || 0 1 

1 
p(x, y) = s. 

FIG.9 is a schematic diagram of a digital color camera 900 
comprising a color filter array 902 arranged in conjunction 
with an image sensor 904. 

The image sensor 904 receives ambient light and light 
reflected from objects within a scene. The image sensor 904 
may comprise a CCD sensor, a CMOS sensor, for example a 
Photonic Mixer Device (PMD) sensor or other appropriate 
sensor which may be arranged to detect light reflected from 
Surfaces of objects, people or other entities within the camera 
range. 
The camera may further comprise an optical system 906 

that is arranged to gather and focus light from the environ 
ment on to the image sensor 904. The camera may also com 
prise an analog to digital converter 910 to digitize signals 
received at image sensor 904. A data store 908 at the camera 
may store images and other data. 

In one example the camera may comprise image process 
ing pipeline logic 912. In an embodiment image processing 
pipeline logic may be arranged to execute the methods 
described herein with reference to one or more of FIGS. 2 to 
7. In an example, the described method of training the demo 
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10 
saicing component may be executed as a one-time process 
during camera testing and calibration. 

Image processing pipeline logic may further comprise inte 
grated black-level adjustment and color Scaling logic 914. 
denoising and demosaicing logic 916 and color transform and 
Gamma correction logic 918 stored at a memory. 

In other examples, all or part of the image processing 
pipeline logic 912 may be located external to the camera on 
another device e.g. a game system, personal computer, 
mobile device or other computing device. 

Alternatively, or in addition, the functionality of one or 
more of the components of the image processing pipeline 
logic 912 may be performed, at least in part, by one or more 
hardware logic components. For example, and without limi 
tation, illustrative types of hardware logic components that 
can be used include Field-programmable Gate Arrays (FP 
GAs). Program-specific Integrated Circuits (ASICs), Pro 
gram-specific Standard Products (ASSPs), System-on-a-chip 
systems (SOCs), Complex Programmable Logic Devices 
(CPLDs), Graphics Processing Units (GPUs). 

FIG. 10 illustrates various components of an exemplary 
computing-based device 1000 which may be implemented as 
any form of a computing and/or electronic device, and in 
which embodiments of any of the methods described herein 
may be implemented. 

Computing-based device 1000 comprises one or more pro 
cessors 1002 which may be microprocessors, controllers or 
any other Suitable type of processors for processing computer 
executable instructions to control the operation of the device 
in order to do any of compute a demosaiced image from a 
mosaiced image, compute a demosaiced and denoised image 
from a noisy mosaiced image, train a machine learning Sys 
tem to compute a demosaiced image from a mosaiced image, 
compute a demosaiced denoised image from a mosaiced 
image, compute training data by downscaling mosaiced lin 
earlight-space images. In some examples, for example where 
a system on a chip architecture is used, the processors 1002 
may include one or more fixed function blocks (also referred 
to as accelerators) which implement a part of the methods 
described herein (rather than software or firmware). Platform 
Software comprising an operating system 1004 or any other 
Suitable platform software may be provided at the computing 
based device to enable application software 1006 to be 
executed on the device. In an example computing-based 
device 1000 may further comprise image logic 1008. Image 
logic 1008 may further comprise integrated black-level 
adjustment and color Scaling logic 1010, integrated denoise 
and demosaic logic 1012, integrated color transform and 
Gamma correction logic 1014. In some examples the image 
logic 1008 is arranged to compute training data using the 
methods of all or part of FIGS. 6 and 7. 
The computer executable instructions may be provided 

using any computer-readable media that is accessible by com 
puting based device 1000. Computer-readable media may 
include, for example, computer storage media Such as 
memory 1018 and communications media. Computer storage 
media, such as memory 1018, includes volatile and non 
volatile, removable and non-removable media implemented 
in any method or technology for storage of information Such 
as computer readable instructions, data structures, program 
modules or other data. Computer storage media includes, but 
is not limited to, RAM, ROM, EPROM, EEPROM, flash 
memory or other memory technology, CD-ROM, digital ver 
satile disks (DVD) or other optical storage, magnetic cas 
settes, magnetic tape, magnetic disk storage or other mag 
netic storage devices, or any other non-transmission medium 
that can be used to store information for access by a comput 
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ing device. In contrast, communication media may embody 
computer readable instructions, data structures, program 
modules, or other data in a modulated data signal. Such as a 
carrier wave, or other transport mechanism. As defined 
herein, computer storage media does not include communi 
cation media. Therefore, a computer storage medium should 
not be interpreted to be a propagating signal per se. Propa 
gated signals may be present in a computer storage media, but 
propagated signals perse are not examples of computer Stor 
age media. Although the computer storage media (memory 
1018) is shown within the computing-based device 1000 it 
will be appreciated that the storage may be distributed or 
located remotely and accessed via a network or other com 
munication link (e.g. using communication interface 1018). 
The computing-based device 1000 also comprises an 

input/output controller 1022 arranged to output display infor 
mation to a display device 1024 which may be separate from 
or integral to the computing-based device 1000. The display 
information may provide a graphical user interface. The 
input/output controller 1022 is also arranged to receive and 
process input from one or more devices, such as a user input 
device 1026 (e.g. a mouse, keyboard, camera, microphone or 
other sensor) and image capture device 1028 (Such as a digital 
color camera with a color filter array). In some examples the 
user input device 1026 may detect Voice input, user gestures 
or other user actions and may provide a natural user interface 
(NUI). This user input may be used to generate depth maps as 
described above. In an embodiment the display device 1024 
may also act as the user input device 1024 if it is a touch 
sensitive display device. The input/output controller 1022 
may also output data to devices other than the display device, 
e.g. a locally connected printing device. 
Any of the input/output controller 1022, display device 

1024 and the user input device 1026 may comprise NUI 
technology which enables a user to interact with the comput 
ing-based device in a natural manner, free from artificial 
constraints imposed by input devices such as mice, key 
boards, remote controls and the like. Examples of NUI tech 
nology that may be provided include but are not limited to 
those relying on Voice and/or speech recognition, touch and/ 
or stylus recognition (touch sensitive displays), gesture rec 
ognition both on Screen and adjacent to the Screen, air ges 
tures, head and eye tracking, Voice and speech, vision, touch, 
gestures, and machine intelligence. Other examples of NUI 
technology that may be used include intention and goal 
understanding systems, motion gesture detection systems 
using depth cameras (such as stereoscopic camera systems, 
infrared camera systems, RGB camera systems and combi 
nations of these), motion gesture detection using accelerom 
eters/gyroscopes, facial recognition, 3D displays, head, eye 
and gaze tracking, immersive augmented reality and virtual 
reality systems and technologies for sensing brain activity 
using electric field sensing electrodes (EEG and related meth 
ods). 
The term computer or computing-based device is used 

herein to refer to any device with processing capability Such 
that it can execute instructions. Those skilled in the art will 
realize that such processing capabilities are incorporated into 
many different devices and therefore the terms computer 
and computing-based device each include PCs, servers, 
mobile telephones (including Smartphones), tablet comput 
ers, set-top boxes, media players, games consoles, personal 
digital assistants and many other devices. 
The methods described herein may be performed by soft 

ware in machine readable form on a tangible storage medium 
e.g. in the form of a computer program comprising computer 
program codemeans adapted to performall the steps of any of 
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12 
the methods described herein when the program is run on a 
computer and where the computer program may be embodied 
on a computer readable medium. Examples of tangible stor 
age media include computer storage devices comprising 
computer-readable media Such as disks, thumb drives, 
memory etc. and do not include propagated signals. Propa 
gated signals may be present in a tangible storage media, but 
propagated signals perse are not examples of tangible storage 
media. The software can be suitable for execution on a par 
allel processor or a serial processor Such that the method steps 
may be carried out in any suitable order, or simultaneously. 

This acknowledges that software can be a valuable, sepa 
rately tradable commodity. It is intended to encompass Soft 
ware, which runs on or controls “dumb' or standard hard 
ware, to carry out the desired functions. It is also intended to 
encompass software which "describes' or defines the con 
figuration of hardware, such as HDL (hardware description 
language) software, as is used for designing silicon chips, or 
for configuring universal programmable chips, to carry out 
desired functions. 

Those skilled in the art will realize that storage devices 
utilized to store program instructions can be distributed 
across a network. For example, a remote computer may store 
an example of the process described as Software. A local or 
terminal computer may access the remote computer and 
download a part or all of the Software to run the program. 
Alternatively, the local computer may download pieces of the 
Software as needed, or execute Some Software instructions at 
the local terminal and some at the remote computer (or com 
puter network). Those skilled in the art will also realize that 
by utilizing conventional techniques known to those skilled in 
the art that all, or a portion of the software instructions may be 
carried out by a dedicated circuit, such as a DSP program 
mable logic array, or the like. 
Any range or device value given herein may be extended or 

altered without losing the effect sought, as will be apparent to 
the skilled person. 

Although the subject matter has been described in lan 
guage specific to structural features and/or methodological 
acts, it is to be understood that the subject matter defined in 
the appended claims is not necessarily limited to the specific 
features or acts described above. Rather, the specific features 
and acts described above are disclosed as example forms of 
implementing the claims. 

It will be understood that the benefits and advantages 
described above may relate to one embodiment or may relate 
to several embodiments. The embodiments are not limited to 
those that solve any or all of the stated problems or those that 
have any or all of the stated benefits and advantages. It will 
further be understood that reference to an item refers to one 
or more of those items. 
The steps of the methods described herein may be carried 

out in any Suitable order, or simultaneously where appropri 
ate. Additionally, individual blocks may be deleted from any 
of the methods without departing from the spirit and scope of 
the subject matter described herein. Aspects of any of the 
examples described above may be combined with aspects of 
any of the other examples described to form further examples 
without losing the effect sought. 
The term comprising is used hereinto mean including the 

method blocks or elements identified, but that such blocks or 
elements do not comprise an exclusive list and a method or 
apparatus may contain additional blocks or elements. 

It will be understood that the above description is given by 
way of example only and that various modifications may be 
made by those skilled in the art. The above specification, 
examples and data provide a complete description of the 
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structure and use of exemplary embodiments. Although vari 
ous embodiments have been described above with a certain 
degree of particularity, or with reference to one or more 
individual embodiments, those skilled in the art could make 
numerous alterations to the disclosed embodiments without 
departing from the spirit or scope of this specification. 

The invention claimed is: 
1. A method of image demosaicing comprising: 
receiving a digital mosaiced image; 
calculating a demosaiced image from the received image 

using a trained machine learning system, the demosa 
iced image being in a linear light-space of a color image 
processing pipeline, the trained machine learning sys 
tem having been trained using pairs of mosaiced and 
demosaiced images, at least one of the pairs comprising 
at least one of: 
the mosaiced images having been formed by Subsam 

pling trained demosaiced images according to a color 
filter array pattern; or 

the demosaiced images having been calculated from 
mosaiced images of a natural Scene using a downscal 
ing process; and 

wherein a linear light-space is a stage of a color image 
processing pipeline at which a digital image has been 
linear color-scaled and black-level adjusted but at which 
a color transform and Gamma correction have not been 
applied to the digital image. 

2. A method as claimed in claim 1 wherein the digital 
mosaiced image comprises a plurality of image elements each 
having a light intensity value for only one of three primary 
color channels, and wherein the demosaiced image comprises 
image elements having light intensity values for three pri 
mary color channels. 

3. A method as claimed in claim 1 wherein the received 
digital mosaiced image is in the linear light-space. 

4. A method as claimed in claim 1 wherein the trained 
machine learning system is one which has been trained using 
training demosaiced images having been formed by down 
Scaling linear light-space mosaiced images of natural scenes. 

5. A method as claimed in claim 1 wherein the trained 
machine learning system implements a discriminative model, 
being a model which seeks to describe a process of finding a 
demosaiced image which corresponds to a mosaiced image. 

6. A method as claimed in claim 3 wherein the trained 
machine learning system is one which has been trained using 
pairs of mosaiced and demosaiced images, the mosaiced 
images having been formed by Subsampling the trained 
demosaiced images according to a color filter array pattern. 

7. A method as claimed in claim 4 the downscaling having 
comprised replacing blocks of image elements by aggregated 
values computed by weighting image elements according to 
their spatial position within a block. 

8. A method as claimed in claim 4 the downscaling having 
comprised a weighted aggregation process over blocks of 
image elements, the weights having been selected to maxi 
mize entropy whilst also increasing towards a center of a 
block. 

9. A method as claimed in claim 6 wherein the mosaiced 
images have had noise added to them. 

10. A method as claimed in claim 9 wherein the noise has 
been added on the basis of an estimate of noise. 

11. A method as claimed in claim 1 wherein the trained 
machine learning system comprises at least one regression 
tree field. 

12. A method as claimed in claim 1 wherein the trained 
machine learning system comprises a plurality of regression 
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14 
tree fields arranged in a cascade architecture whereby at least 
Some of the regression tree fields are connected in series. 

13. A method as claimed in claim 1 at least party carried out 
using hardware logic. 

14. One or more tangible hardware device-readable media 
with device-executable instructions comprising: 

device-executable instructions to receive a digital mosa 
iced image comprising a plurality of image elements 
each having a light intensity value for only one of three 
primary color channels, the light intensity values having 
undergone only linear adjustments since output from an 
analog to digital converter; and 

device-executable instructions to calculate a demosaiced 
image from the received image using a trained machine 
learning system, the demosaiced image comprising 
image elements having light intensity values for three 
primary color channels, the trained machine learning 
system having been trained using pairs of mosaiced and 
demosaiced images, at least one of the pairs comprising 
at least one of: 
the mosaiced images having been formed by Subsam 

pling trained demosaiced images according to a color 
filter array pattern; or 

the demosaiced images having been calculated from 
mosaiced images of a natural Scene using a downscal 
ing process. 

15. An image demosaicing apparatus comprising: 
a memory arranged to store a digital mosaiced image; and 
a demosaicing logic arranged to calculate a demosaiced 

image from the received image using a trained machine 
learning system, the demosaiced image being in a linear 
light-space of a color image processing pipeline, the 
trained machine learning system having been trained 
using pairs of mosaiced and demosaiced images, at least 
one of the pairs comprising at least one of 
the mosaiced images having been formed by Subsam 

pling trained demosaiced images according to a color 
filter array pattern; or 

the demosaiced images having been calculated from 
mosaiced images of a natural Scene using a downscal 
ing process; and 

wherein a linear light-space is a stage of a color image 
processing pipeline at which a digital image has been 
linear color-scaled and black-level adjusted but at which 
a color transform and Gamma correction have not been 
applied to the digital image. 

16. An apparatus as claimed in claim 15 wherein the trained 
machine learning system is one which has been trained using 
training demosaiced images having been formed by down 
Scaling linear light-space mosaiced images of natural scenes. 

17. An apparatus as claimed in claim 15 wherein the trained 
machine learning system implements a discriminative model, 
being a model which seeks to describe a process of finding a 
demosaiced image which corresponds to a mosaiced image. 

18. An apparatus as claimed in claim 15 wherein the trained 
machine learning system is one which has been trained using 
pairs of mosaiced and demosaiced images, the mosaiced 
images having been formed by Subsampling the trained 
demosaiced images according to a color filter array pattern. 

19. An apparatus as claimed in claim 15 integral with a 
mobile camera phone. 

20. An apparatus as claimed in claim 15 the demosaicing 
logic being at least partially implemented using hardware 
logic selected from any one or more of a field-programmable 
gate array, a program-specific integrated circuit, a program 
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specific standard product, a system-on-a-chip, a complex pro 
grammable logic device, a graphics processing unit. 
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