
Facial Feature Tracking, Extraction and Selection

Summer Internship Report
Meysam Shahrbaf(B.Sc. student) and Daniel Khashabi(B.Sc. student)

Under the supervision of
Mr. Mahdi Kalayeh(M.Sc.), Illinois Institute of Technology

Dr. Hamid Sheikhzadeh(Ph.D.), Amirkabir University of Technology

Media Processing Laboratory
Amirkabir University of Technology, 2011

Contents

1 Introduction 2

2 Facial Feature Tracking 2
2.1 Correlation-based facial feature tracking . 2

2.1.1 Basic model . 2
2.1.2 Hierarchical correlation tracking . 3

2.2 Active Appearance Model . 4
2.2.1 Shape model . 5
2.2.2 Appearance model . 6
2.2.3 Shape deformation . 6
2.2.4 Model fitting procedure . 7
2.2.5 Cutting-edge trends in AAM . 12

3 Facial features extraction 12
3.1 Gabor wavelet based feature extraction . 12
3.2 Feature points selection based feature extraction . 15

4 Feature selection 15
4.1 Conventional AdaBoost classifier . 16

4.1.1 Multi-Class AdaBoost feature selection[1] . 17
4.1.2 Multi-Class weak learner . 20
4.1.3 Substantial computation cost . 22

4.2 Principal feature analysis based on PCA (principal component analysis) 23
4.2.1 Concepts of principal feature analysis (PFA) [2] . 24

5 Conclusions 26

6 Acknowledgement 26

1

mailto:meysam.sh.m@gmail.com
mailto:d.khashabi@gmail.com
mailto:mahdikalayeh@gmail.com
http://www.aut.ac.ir/official/main.asp?uid=hsheikh

Abstract

In this report, first we explain how we moved toward implementing an algorithm for tracking facial
features. The explanations, thoroughly covers our experiences, both our failures and successful trials.
As a failed experienced of facial feature tracking, we have explained the correlation-based tracking and
its improved extension. The second tracking method, is devoted to Active Appearance Model and its
details. The implementation of the explained model showed that the AAM model has enough ability for
real-time facial feature tracking. Simultaneously, we followed extraction of facial features using Gabor
wavelet and selecting facial feature points algorithms. Eventually, due to high dimension of extracted
feature vectors derived by the use of Gabor wavelet, we moved to selecting the most elite sup-population
of the features which will result in the most discriminative classification procedure and have lowest
redundant information. Hence, Adaboost method and PCA based algorithms are exploited so as to
reduce the dimension of the generated feature vector. The comprehensive explanation of the feature
selection methods has been brought in the main context.

1 Introduction

Our summer internship is the preliminary part of our overall B.Sc. thesis project. The final goal is to control
a computer using facial commands, i.e. sequence of facial expressions. In this case, we make discrimination
between facial commands with sister terms facial expressions and facial gestures. To make more clear, we
call command, as a sequence of facial gestures during a specific period of time. The ability to recognize such a
facial command recognition system, we should develop a system that track the states of face as times passes.
As a first step in reaching the facial commands, we need to track the facial feature on any face and derive
the information on the face. Most of the time of the summer internship, was devoted to the employment of
several feature tracking algorithms, e.g. Active Appearance Model and generation of facial feature by the use
of Gabor wavelet and the selection of facial feature using Adaboost and PCA methods. At the current time
we are planning to apply the generated feature to multi-kernel Relevance Vector Machine classifier combined
with a Markov model of the face states, for prediction and generation of facial commands, the results of
which will be published within a paper.

2 Facial Feature Tracking

Tracking the features laid on face is one of the most important part of this project. At the first look, facial
features’ tracking appears so important because they are needed for localizing the estimated position of
decisive parts on face, e.g. estimated position of eyes, cheeks, lip, etc; moreover, tracking decisive points on
face can be used to extract any arbitrary distance-based features on face, e.g. distance between upper and
lower lips, wideness of eyes, etc.
Following assumptions are made in the tracking implementation:

• The person’s face is almost in direct and stable condition relative to the camera. This is because the
camera is laid on the pupil’s head. Thus the algorithm should only be sensitive to slight head motions.

• However the camera is fixed on the head, the algorithm must be robust enough to camera’s gradual
sliding caused by factors like perspiration or person’s motion.

• Appropriate transformation is applied to eliminate poor illumination in the picture; thus, details of
the face are fairly distinguishable.

2.1 Correlation-based facial feature tracking

2.1.1 Basic model

Based on the method used in [3], one can track any point moving in two consecutive frames of a video, by
the use of correlation operation. As it is shown in Figure 1, by the use of a little square centred in the
feature point in the ith frame, assuming that the feature has a definite maximum velocity which does not
let it to move more than a limited distance between two specific frames, we look for a shape inside the

2

Figure 1: Correlation between two consecutive frames in with one big square(new frame) and little square(old
frame).

big square of (i + 1)th frame, similar to the little square of the ith frame, which can simply be done by
calculating correlation between the big and the little square. The point with the maximum correlation is
the new position of the feature, in frame i + 1. The algorithm of the aforementioned method is elucidated
in the Algorithm 1.
There is a direct relation between the size of the squares and the maximum speed of the features that the
method can track; the more big we assume the squares(especially bigger one), the more fast motions we can
track. On the other hand, increasing size of the squares causes the algorithm to run in significantly slow
rate. In additions, the more we increase the size of the squares the accuracy of the tracking deteriorates.
To classify the flaw with this method, we can say:

• The tracking has a few error in every cycle, whose accumulation in consecutive cycles causes the
features to go far off from the tracking points; due to limited movement of features on face, even a
little deviation of tracking points can cause considerable amount of error in the output.

• Sometimes the accidental similarity of the points can cause, erroneous displacement of the target
tracking point; as a noticeable example, one can refer to the similar color skin in of the various parts
of the face. This matter causes the algorithm to be unstable.

Algorithm 1 Correlation-based feature tracking

Define bigSquareSize, smallSquareSize
loop

Form the small square Si = crop(framei, smallSquareSize, centeredAt : featurePoint)
Form the big square Si+1 = crop(framei+1, bigSquareSize, centeredAt : featurePoint)
Calculate the correlation between the Si and Si+1: c(x, y) =

∑
j

∑
k Si(j, k)Si+1(x+ j, y + k)

Find the position of the maximum correlation: indmax = arg maxx,y c(x, y)
Correlation offset: corrOffset = indmax − size(Si)
Rectangle offset: rectangleOffset = bigSquareSize− smallSquareSize
Calculate the overall offset: offset = rectangleOffset+ corrOffset
Update the feature point: featurePoint←− featurePoint+ offset

end loop

2.1.2 Hierarchical correlation tracking

Based on experiments done with the method explained with the previous method, following results derived:

• The more small square we choose, the more precisely it can track the feature points. But the flimsy
point of such case is its inability in tracking sudden fast movement of the object. In sum, smaller
squares are rather precise trackers, but not robust against fast movements.

3

(a) The points are tracked almost correctly. (b) Some points are tracked correctly(red) and
some incorrectly jumped to another similar
point(green).

Figure 2: Correlation-based facial feature tracking in 3 consecutive frames.

• The bigger squares are more robust in tracking sudden movements. But such big squares have signifi-
cant robustness in tracking the fast movements, due to embracing a vast number pixels.

The two above points give us the idea of hierarchical employment of both large and small squares which is
elucidated in the Algorithm 2. If we assume a set of squares for the correlation process, as in the algorithm,
the position of the feature is found by sequential employment of the Algorithm 1 starting with the largest
square and to the smallest square. In fact, by employing a big set of squares, the approximate position of
the feature begins. The smaller squares have the role of finding the exact position of the feature on face,
where the approximate position of the feature is previously determined by bigger squares.
In sum, after implementation of the Algorithm 2, the tracking ability of the algorithm, both in the sense
of tracking accuracy and tracking robustness at the presence of sudden movements significantly increased;
the noticeable flaw of the new hierarchical method is its huge amount computational process demand, which
makes it an impractical methods. Yet, increasing the accuracy of tracking by this method, the algorithm still
lacks morphological positioning of the features on face and their relative positioning. This gives us the ability
to track some points that solely based on their color. We should admit that there are some untrackable points
due to their nondescript position; but it is possible to approximate their position on face, with considering
relative movements of their neighbouring points. The imperfections mentioned before, made us to move
toward a state-of-the-art algorithm of Active Appearance Model.

Algorithm 2 Hierarchical correlation for feature tracking

Define set of K big and small squares bigSquareSizek, smallSquareSizek
loop

Define the estimated feature point estimateFeaturePoint = featurePoint
for k = 1 to K do

Form the small square Si = crop(framei, smallSquareSizek, centeredAt : featurePoint)
Form the big square Si+1 = crop(framei+1, bigSquareSizek, centeredAt : estimatedFeaturePoint)

Calculate the correlation of the Si and Si+1: c(x, y) =
∑
i

∑
j Si(x, y)Si+1(x+ i, y + j)

Find the position of the maximum correlation: indmax = arg maxx,y c(x, y)
Correlation offset: corrOffset = indmax − size(Si)
Rectangle offset: rectangleOffset = bigSquareSize− smallSquareSize
Calculate the overall offset: offset = rectangleOffset+ corrOffset
Update the feature point: estimatedFeaturePoint←− estimatedFeaturePoint+ offset

end for
Update the feature point: featurePoint←− estimatedFeaturePoint

end loop

2.2 Active Appearance Model

Regarding the deformable state of human face, a desirable algorithm should consider specific characteristics
inherent in human face. In fact, when tracking several feature points on face, it is vital to consider the

4

(a) ShapeModels shown
with white lines.

(b) Appearance (tex-
ture) model of the face
area.

Figure 3: Sample appearance and shape values

correlative movement of the features on face, i.e. no two point can take any two relative state to each
other. Thus the model should consider the state of the features and their deformation in relation to each
other. The AAM method explained in [4]. As it is explained in the aforementioned reference, the AAM
consists of a linear model face. As it is explained, we can decompose characteristic of face into two group
of facial appearances and facial shape. As it is depicted in the Figure 3(a), the shape model consists global
positioning of the features on face; by changing the facial expression, laughing, crying, ... one distorts the
default positioning of the facial feature points. At what follows, it will be shown that, however the basic
structure of the appreance and shape is linear, the procedures of training and fitting are non-linear[4].
The AAM is first proposed in [5, 6, 7, 8]. However due to shape-appearance structure of the of the AAM,
it is applicable to any deformable object, but it is mostly used for tracking of facial feature point tracking
in a sequence of images, i.e. video [9, 10, 11]. It is important to mention that the AAM is just one member
of a broad set of shape and appearance algorithms,i.e. Active Shape Model(ASM), Direct Appearance
Model(ADM), Active Blobs and Morphable Models.
One can separate the AAM algorithm into two online and offline time. In the offline time we aim at training
the algorithm based on manually warped images, the input data-set; thus, similar to conventions in[4], we
name this section training phase. The online time consists of fitting the model on the localized image of the
face(object) and finding best deformation of the image that fits the output image, with the least absolute
sum of the error; we name this phase the fitting phase.
It is noteworthy to mention that here it is assumed that the input images are localized to fit only the small
amount of the background image. To state the matter in other way, in a real application of the AAM, it
is essential to find the proximity of the deformed object using another algorithm, e.g. in the case of facial
feature tracking, a face recognition algorithm can be exploited so as to find the approximate place of face
and then we can apply on that approximate position. Another point in the input images is that, they should
all normalized in the sense of the translation, scale and rotation. A pre-eminent approach toward this goal
can be achieved by Procrustes method as in [12]; therefore, the AAM is only dealing with some local shape
and appearance deformations.

2.2.1 Shape model

As it is mentioned before the shape model is a set of positions, that make up the mesh of the shape model.
To define the shape model based on common terminology [4]:

s = s0 +

n∑
i=1

pisi

s = [x1, y1, x2, y2, ..., xv, yv]

Regarding the above formula, the shape model is linear by considering the mean shape of the input data-set
features points, s0 and the constitutional shape vectors {si}ni=1 to be at hand. It should be elucidated that
the set of {si}ni=1 consists of possible displacements of facial features, but the mean shape vector, s0 is

5

Figure 4: Three first principle components of the shape model.

Figure 5: Three first principle components of the appearance model.

roughly the position of features on face. To decipher in another way, we can express the linear shape formula
as deviations of the mean shape vector s0 to the extent of the

∑n
i=1 pisi. The set of {pi}ni=1 is called shape

parameters.
The constitutional shape vectors {si}ni=1 should calculated in a away that make as sparse and spanning as
possible space for the input training data. One can simply use the well-known rank reduction method of Prin-
cipal Component Analysis(PCA) for this aim. As it is mentioned in [8], the principle shape components are
those eigenvectors corresponding to the the biggest set of the eigenvalues in the correlation matrix(covariance
matrix). Based on the spanning characteristic of the principle shape components derived from the training
data, it must has been revealed that the expressiveness of the input images is highly important from the
sense of the generating an expressive shapes vectors {si}ni=1.

2.2.2 Appearance model

Like the shape mode, the appearance model is also a linear function of constitutional appearance functions
Ai(x). In order to make the comparison of two appearances of in two images, it is reasonable to first
make them have same shape; in other words, in defining the appearance model, it is considered that the
face(object) has the mean shape s0, i.e. are shapeless. Thus, we define x = (x, y) ∈ s0, as [4]:

A(x) = A0(x) +

m∑
i=1

λiAi(x), ∀x ∈ s0

in which A(x) shows the appearance(texture, intensity) over the all pixels of the face(object). In fact, the
appearance model, yields in a picture, with the shape of s0(shapeless), whose intensities are deviated from
the mean intensities, A0(x) to the extent of

∑m
i=1 λiAi(x). Comparing to the shape model, the mean appear-

ance, A0(x) is average appearance of the input data and the sequence {λi}mi=1 the appearance parameters,
is possible appearance deviations from the mean appearance.
Similar to the shape model, the A(x) are selected by the help of PCA dimension reduction; choosing eigen-
vectors with the maximum corresponding eigenvalues, which yield to the most sparse and the most accurate
approximation of the target image, as it is explained in [4].

2.2.3 Shape deformation

As it is mentioned all the images in the training procedure of the appearance model, should have the mean
shape, s0(shapeless). At the time of training, because all the training inputs are manually warped, it is
possible to deform all of them to the shape of as mean shape, s0. Such deformation can be done by a
bunch of ways, e.g. triangulating the warped points and by definition of a piecewise affine warp between
corresponding triangles[8]. To make it clear, first, the corresponding triangles are found and then by creating

6

Figure 6: bi-linear deformation between two corresponding triangles. Image from [13].

the warp function between two triangles, values from the deformed image are bi-linearly sampled. To be
more exact, if we define the warp function W(x; p) with parameters p, the I(W(x; p)) is the deformed
image based on the warp function W. Based the Figure 6, by considering the distance values α and β, for
each point in the first triangle, we can compute its correspond point in the second triangle [4]. The method
is also called Piecewise Affine Warp. Such a warp function can defined as the following:

W(x,p) = (xi, yi)
T

+ α
[
(xj , yj)

T − (xi, yi)
T
]

+
[
(xk, yk)

T − (xi, yi)
T
]

in which the values are depicted in the Figure 6. In fact, by this way, we do the inverse warp of image I back
to the mean-shape, s0. The values α and β only depend the input pixel and selected triangles. In overall,
one can write the warp function as:

W(x; p) = (a1 + a2x+ a3y, a4 + a5x+ a6y)
T

(1)

To state in another way, one can find the warp function between to corresponding triangles by calculating
only six constants {ai}6i=1. The procedure for piecewise affine method is elucidated in the Algorithm 3:

Algorithm 3 Piecewise affine deforming

for all triangles in the mean-shape s0 do
Compute the corresponding vertex coordinates using the shape mode.
Compute the warp function {ai}6i=1

For each pixel in the mean-shape triangle, calculate the value of I(W(x; p))
end for

Till here, we have only defined independent; in the combined AAM model[8], the appearance and shape
parameters are one-by-one coupled, based on rationale that the appearance and shape variations are mutually
dependent. In this case a third PCA should be employed on the combined AAM model for deriving a
more compact model[8]; where in the independent AAM model, the appearance and shape parameters vary
independently. The same as [4] we exploit the independent model of the AAM, due to its simplicity and
applicability.

2.2.4 Model fitting procedure

The fitting procedure, consists of minimizing the error between the input image and the approximated output
image of the model. Such fitting problem is a nonlinear optimization problem. If we define the error for each
pixel of an image, the error image[4]:

E(x) = A0(x) +

m∑
i=1

λiAi(x)− I(W (x; p))

where the W(x; p) is the corresponding pixel of x under the shape deformation with parameters {pi}ni=1.
Thus I(W (x; p)) is the corresponding intensity to the pixel x in the input image. The goal is to minimize

7

the cumulative error of the fitting:

Ecum =
∑
x∈s0

[
A0(x) +

m∑
i=1

λiAi(x)− I(W (x; p))

]

Regarding the aforementioned error function, the appearance models should be calculated within a s0 shape,
at the time of analyzing any given picture, the algorithm, at the first step, should calculate the deformed
shape of the target image, and change it to mean shape (shapeless form), as an input image of the appear-
ance model; and at the rest, fitting the linear model of the appearance to the shapeless input image. Thus,
in a AAM fitting problem, the minimization should be done simultaneously with respect to both shape
parameter {pi}ni=1 and appearance parameters {λi}mi=1. For the sake of convenience, temporarily we omit
the appearance parameters and only work with {pi}ni=1.
Three general methods for fitting problem is explained in [14], namely Forward Additive, Forward Com-
positional and Inverse Compositional. More exact analysis of the methods fitting methods for the general
image alignment problems can be found in [13]. Such problem can be so challenging because of the nonlinear
nature of such optimization; In addition to non-linearity, huge number of pixels is another hindrance in fast
reaching to the solution, because of the need for calculating lots of gradients on the image pixels. The goal
is to approximate or pre-compute the gradient values to reach to a fast method of fitting.
The Lucas-Kanade alignment [14] is a method of additive updating the image parameters. In fact, if we only
consider a target image, T(x); and an input image, I(x) and the the warp function W(x;p) with parameters

p, we aim at minimizing
∑

x [I(W(x; p))− T (x)]
2

with additive update p← p+ ∆p :

Ep+∆p =
∑
x

[I(W(x; p + ∆p))− T (x)]
2

Rewriting the Taylor expansion of the above formula:

Ep+∆p =
∑
x

[
I(W(x; p)) +∇I ∂W

∂p
∆p− T (x)

]2

∂

∂∆p
Ep+∆p =

∑
x

2

[
∇I ∂W

∂p

]T [
I(W(x; p)) +∇I ∂W

∂p
∆p− T (x)

]
= 0

∆p = H−1
∑
x

[
∇I ∂W

∂p

]T
[T (x)− I(W(x; p))]

where H, the Hessian matrix is:

H =
∑
x

[
∇I ∂W

∂p

]T [
∇I ∂W

∂p

]
In sum, the procedures for the Lucas-Kanade algorithm is shown in the Algorithm 4. One can simply
calculate the computational complexity of the algorithm O(n3), where the largest computational demand is
lied in inverting the Hessian matrix, H. Due to high computational demand and slowness of Lucas-Kanade,
it is merely impossible to use this method in real applications.

The Inverse Compositional Method postulates that the ∆p in the square error summation can be seen
in a different way; as it is suggested in the [14], we can enter the ∆p by another warping function into the
target image:

Ep,∆p =
∑
x

[T (W(x; ∆p))− I(W(x; p))]
2

where we can write the Taylor expansion for the T (W(x; ∆p)) as:

Ep,∆p =
∑
x

[
T (W(x; 0)) +∇T ∂W

∂p
∆p− I(W(x; p))

]2

8

Algorithm 4 Lucas-Kanade Image Alignment

while |∆p| ≤ ε do
Calculate I(W(x;p)), the warped image
Compute the error E = T (x)− I(W(x;p))
Warp the gradient ∇I with W(x;p)

Evaluate the Jacobian ∂W
∂p at (x;p)

Compute the steepest descent images ∇I ∂W∂p
Compute Hessian matrix H =

∑
x

[
∇I ∂W∂p

]T [
∇I ∂W∂p

]
Compute

∑
x

[
∇I ∂W∂p

]T
[T (x)− I(W(x;p))]

Compute ∆p = H−1∑
x

[
∇I ∂W∂p

]T
[T (x)− I(W(x;p))]

Update the parameter p←− p + ∆p
end while

By differentiating the above expression, we have:

∂

∂∆p
Ep,∆p =

∑
x

2

[
∇T ∂W

∂p

]T [
T (W(x; 0)) +∇T ∂W

∂p
∆p− I(W(x; p))

]
= 0

therefore,

∆p = −
∑
x
H−1

[
∇T ∂W

∂p

]
[T (x)− I(W(x; p))]

and the Hessian matrix is:

H =
∑
x

[
∇T ∂W

∂p

]T [
∇T ∂W

∂p

]
The main difference of the Inverse Compositional method with the Lucas-Kanade method is emanated from

calculation of ∂W
∂p

∣∣∣
W(x;0)

= cte in the Inverse Compositional method and ∂W
∂p

∣∣∣
W(x;p)

in the Lucas-

Kanade which is changing in every iteration. Thus, in the Inverse Compositional method it is sufficient to

pre-calculate the constant values of ∂W
∂p and H−1 once at the beginning of the algorithm.

In the [14], it is shown that two fitting methods Inverse Compositional and Lucas-Kanade are equivalent.
The Inverse Compositional fitting algorithm is shown in the Algorithm 5. An intermediary algorithm called
Forward Compositional is also mentioned in the [14], which we have withheld to explain. More empirical
surveys on fitting algorithms can be found in [13].

The updating ∆p in every cycle applied by the update W(x;p) ←− W(x;p) ◦W(x;∆p)−1, where we
need to calculate W(x;∆p)−1. Due to non-linearity of the warp function, we cannot easily calculate its
inverse. As in the[14], we can use an approximation of W(x;∆p)−1 instead of its exact value:

W(x; ∆p) = W(x; 0) +
∂W

∂p
∆p = x +

∂W

∂p
∆p

W(x;−∆p) = W(x; 0)− ∂W

∂p
∆p = x− ∂W

∂p
∆p

By composing two warp functions we have :

W(x; ∆p) ◦W(x;−∆p) = x +
∂W

∂p
∆p− ∂W

∂p
∆p +O(∆p2) ' x

W(x;−∆p) = W(x; ∆p)−1 (2)

9

Algorithm 5 Inverse Compositional Algorithm

Compute ∇T
Evaluate ∂W

∂p at (x;0)

Compute the steepest descent image ∇T ∂W
∂p

Compute Hessian matrix H =
∑
x

[
∇T ∂W

∂p

]T [
∇T ∂W

∂p

]
while |∆p| ≤ ε do

Calculate I(W(x;p)), the warped image
Compute the error E = I(W(x;p))− T (x)

Compute
∑
x

[
∇T ∂W

∂p

]T
[I(W(x;p))− T (x)]

Compute ∆p = H−1∑
x

[
∇T ∂W

∂p

]T
[I(W(x;p))− T (x)]

Update the warp W(x;p)←−W(x;p) ◦W(x;∆p)−1

end while

Figure 7: Warp Jacobians with respect to the vertices’ positions. Image from [15].

For calculation of the Jacobian, one should use the chain rule:

∂W

∂p
=

n∑
i=1

[
∂W

∂xi

∂xi
∂p

+
∂W

∂yi

∂yi
∂p

]
where (xi, yi) is vertex set of the shape model and n, as mentioned before, number of shape models. We

divide the computation of the Jacobian into two steps[4]: (1) ∂W
∂xi

and ∂W
∂yi

, (2) ∂xi

∂p and ∂yi
∂p . The ∂W

∂yi
is

the rate of changes in the warp function with respect to the changes of the vertices, which can be straightly
derived by the warp generated function in equation 1, as follows:

∂W

∂xi
= (1− α− β, 0)

T ∂W

∂yi
= (0, 1− α− β)

T

The result of four sample Jacobian with respect to four different vertices are shown in the Figure 7. As it is
shown, the result is a shape-free image with non-zero values in all triangles that that share the corresponding
vertex and zero in all the other outer triangles, the Jacobian is zero. Based the above formula, it is obvious
that the Jacobian, inside the triangle, varies linearly.

For computing the second Jacobian, we can employ the shape model, replacing the shape value si with
the (xi, yi) position of ith shape vertex, based on the position of other corresponding vertex positions. If we
assume (xi, yi)

T as position of the ith vertex, (x0
i , y

0
i)T as the position of the corresponding vertex in the

mean-shape, (x
sj
i , y

sj
i)T as the position of the corresponding vertex in jth shape model[15]:

(xi, yi)
T = (x0

i , y
0
i)T +

n∑
j=1

pj(x
sj
i , y

sj
i)T

Thus, the resulting Jacobians are:

∂xi
∂p

=
(
xs1
i , x

s2
i , x

s3
i , ..., x

sn
i

) ∂yi
∂p

=
(
ys1
i , y

s2
i , y

s3
i , ..., y

sn
i

)

10

Figure 8: Warp Jacobians ∂W
∂p [4].

Figure 9: Warping the pixels from the base mesh s0 into the current mesh s.

By combining the two derived values for the Jacobians, we can find the overall Jacobian value, ∂W
∂p , as the

ones shown in the Figure 8.

We define the ∇I ∂W∂p as the Steepest Descent Image, or SD. In fact, SDs are result of multiplying

∇I = (∂I∂x ,
∂I
∂y) in ∂W

∂p , calculated in the previous section.

By exploiting the equation 2, we need to have a pragmatic look into applying the warp updating by
W(x;p)←W(x;p) ◦W(x;∆p)−1. The goal is to apply the variation of the shape parameters ∆p in a way
that makes our model picture, more similar to the input image. The goal is to change the position of the
vertices in the current mesh in a way that its shape become more similar the base shape’s. As we know
by the shape parameter variations ∆p we can compute the variation of shape model in the base mesh by
employing the basic shape model:

s0 + ∆s0 = s0 +

n∑
i=1

∆pisi

But in order to apply the shape variations in the current mesh, as shown in the Figure 9, we should calculate
the shape variations in the current shape s0. The problem arousing here is that because of various warp
functions defined for each triangle, each of which result in a different value for shape variations in the current
mesh. For the sake of overwhelming this challenge we simply calculate various values of the shape variations
and then calculate their average to derive the ∆s. After calculation of ∆s, we should calculate the new
shape parameters p

′

i:

p
′

i = si.(s + ∆s + s0)

where the shape principle components are orthonormal; the . is dot product, and the updated shape param-
eters are {p′

i}ni=1.

From now on, we focus on the question that how it is possible to apply the Inverse Compositional method
for using within AAM algorithm. As it is mentioned before, not only the model is dependent on the shape
parameters, {pi}ni=1, but also it is dependent upon the appearance parameters {λ}mi=1. After completing
the fitting algorithm for shape model, it is the time to derive the generalization of Inverse Compositional

11

method for AAM fitting with regard to to the both shape and appearance parameters. To make it clear, we
should minimize the following error function with respect to both shape and appearance parameters:

Ep,λ =
∑
x∈s0

[
A0(x) +

m∑
i=1

λiAi(x)− I(W(x; p))

]2

(3)

There are lots of methods introduced for minimization of the above error function, explanation of which
are brought in [4] and [13]. Two of the most eminent algorithms are called Project Out(PO) and Simultaneous
Inverse Compositional(SIC) which are explained in [4]. The PO algorithm is fast enough for real-time
implementations, but the SIC algorithm is more reliable, but slower.

2.2.5 Cutting-edge trends in AAM

The AAM is one of the hot current topics in todays image processing trends. There has been a bunch of works
in AAM, that try to reach to an optimal 3D model of the AAM [16, 17, 18, 19, 20]. The other challenge in the
kingdom of the AAM is finding some efficient methods for tracking in presence of occlusion[21]. The sister area
is illumination-independent AAM which is considered in [22, 23]. The other cutting-edge research on AAM
models is the answer of the question “how is it possible to make the algorithm generalize the tracking model
over a broad number of faces(deformable objects)”, i.e. increasing the generalization power of the algorithm
[24, 25, 26, 27, 28]. The papers also consider other challenges like computational complexity, finding the
global optimum point of the model. During online time, the significant time burden is due to the complexity
of the fitting algorithm. Thus, the faster fitting algorithm one can find, the faster it is possible to process a
video. This problem is mostly considered in [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. Yet
lots of efforts dedicated to this area, there is still a need for better algorithms both in terms of number of
iterations needed for convergence and the accuracy of the fitting. The other disparate trend is confronting the
is online-time updating of a defective model based on image construction error; due to general deformation
of the objects in long-term, i.e. aging, such methods can be so appealing. The other application of such
methods can be about deployment of the algorithm with various ilk of faces, i.e. the system accepts an initial
model; after replacing the main operator, the algorithm becomes more adapted to the new dominant faces
while working[45, 46].

3 Facial features extraction

Automatic facial feature extraction is one of the most important and attempted problems in computer
vision and many multimedia applications. It is a necessary step in face recognition, facial image compression
and low-bit video coding. These applications play an important role in security systems, human-computer
interaction, and teleconferencing. Facial feature extraction, in general, refers to the detection of eyes, mouth,
nose and other important facial components. Various techniques have been proposed in the literature for
this purpose, e.g. facial feature points selection[3] and Gabor wavelet based feature extraction utilized in
present work.

3.1 Gabor wavelet based feature extraction

The human visual system can be viewed as composed of a filter bank. For the first time the 2D Gabor
wavelets were introduced by Daugman [47] for human iris recognition, and Lades et al. [48] exploited Gabor
wavelets for face recognition using the Dynamic Link Architecture (DLA) framework. The responses of the
respective filters can be modeled by Gabor functions of different frequencies and orientations. The Gabor
features have been found to be particularly appropriate for texture representation and discrimination, and
have been successfully applied to texture segmentation, face recognition, handwritten numerals recognition,
and fingerprint recognition. For face recognition applications, the number of Gabor filters used to convolve
face images varies with applications, but usually 40 filters (5 scales and 8 orientations) are used. However,
due to the large number of convolution operations of Gabor filters with the image (convolution at each
position of the image), the computation cost is prohibitive. Even if a parallel system was used, it took about
7 seconds to convolve a 128*128 image with 40 Gabor filters[48] . For global methods (convolution with the

12

Figure 10: A 2D Gabor filter in spatial domain

whole image), the dimension of the feature vectors extracted is also incredibly large, for example, 163,840
for an image of size 64*64. In the spatial domain, a 2D Gabor filter is a Gaussian kernel function modulated
by a sinusoidal plane wave as follows(Grigorescu et al. 2003; Petkov & Wieling 2006) [49]:

G(x, y;λ, θ, φ, σ, γ) = e

(
−x

2
θ + γ2y2

θ

σ2

)
e
i
(

2π
xθ
λ

+ φ
)

(4)

where
xθ = xcosθ + ysinθ (5)

and
yθ = −xsinθ + ycosθ (6)

The parameters used in the above equations are clarified as follows:
1 . σ is the standard deviation of the Gaussian factor and determines the (linear) size of its receptive field.
2 . λ specifies the wavelength of the cosine factor of the Gabor filter.
3 . θ specifies the orientation of the normal to the parallel stripes of the Gabor filter.
4 . φ is the phase offset of the cosine factor and determines the symmetry of the Gabor filter.
5 . γ is called the spatial aspect ratio and specifies the ellipticity of the Gaussian factor.
We also use another parameter called the band width (bw) of a gabor filter and is related to the ratio σ

λ as
follows:

bw = log2

σ
λπ +

√
ln 2
2

σ
λπ −

√
ln 2
2

(7)

Figures 10 & 11 show some samples of 2D Gabor wavelet in both spatial and frequency domains.
As mentioned before, in this method we first form a Gabor wavelet bank in different frequencies, scaling

and orientations and apply those Gabor wavelets to an image and create coefficients that can then be used
to reconstruct the image and in the rest of report we will state that these coefficients also can be used as
our extracted features. The Matlab code involves two main parts. The first part loops through all the pixels
of the image and multiplies the Gabor wavelet to each of them, and the second part alter orientation and
bandwidth of the wavelet to make different scaling and orientation. Moreover, it is noticeable that all the
other parameters are constant throughout the process.
Figures 12 & 13 & 14 represent the Gabor wavelet bank , the original image and output images very well.
As explained, according to the lots of former works we considered Gabor wavelet bank in 8 orientations and
5 scaling.

It is noticeable that the magnitude of output images were depicted in figure 14 and the value of magnitudes
can be used as our extracted features. The process of extracting features are what will clarify as follows.
As mentioned, once Gabor wavelets have been designed, image features at different location, frequency and
orientation can be extracted by convolving the image I(x, y) with the filters and calculating the magnitude
of the result as below:

O(x, y;λ, θ, φ, σ, γ) = |I(x, y) ∗G(x, y;λ, θ, φ, σ, γ)| (8)

13

Figure 11: Spatial domain[left image], frequency domain[right image]

Figure 12: Gabor wavelet bank in 5 frequencies and 8 orientations

Figure 13: Original image in 50*50

14

Figure 14: Magnitude of output images of Gabor wavelet

Figure 14 shows the magnitudes of Gabor representation of a face image with 5 scales and 8 orientations. A
series of row vectors could be obtained out of O(x, y) by concatenating its rows or columns, which are then
concatenated to generate a discriminative Gabor feature vector:

Feature vector= (O1(x, y), O2(x, y), ..., O40(x, y))T (9)

Where Oi(x, y) is the ith concatenated matrix over all its rows.

3.2 Feature points selection based feature extraction

After tracking of feature points from the first frame up to the last one, according to the [3] thirteen features
are extracted from the normalized position of the feature points by the position of the tip of the nose in
the first frame and the last one. Afterwards, these calculated features build a feature vector for a set of
sequences of gestures which form a command as explained in introduction. Then the extracted feature vector
is applied to multi-class multi-kernel relevance vector machine. According to figure 15 the extracted features
are illustrated in Table 1.

As mentioned before, the calculated value of the above 13 extracted features can make a feature vector
with 13 elements for all sequences of gestures corresponded to each command. Hence, due to the low
dimension of feature vector in comparison with the last method (Gabor wavelet based) we don’t need to use
feature selection techniques so as to reduce the dimension of feature vector, therefore the lower complexity
of system will be achieved.

4 Feature selection

Due to the high dimension of feature vector generated by Gabor wavelets, to select the relevant global and
local appearance features with the most discriminating information, we need to use some techniques in order
to selectivity reduce the dimensionality of the feature space that in turn results in significant speed up during
on-line classification. we should recognize from a high dimensional feature space only those dimensions that
convey the most information making the feature extraction process during the testing phase very efficient
with lower complexity. There are some methods in literature which proposes novel techniques to do that.

15

Figure 15: The 22 facial feature points

Genetic Algorithm (GA) using selection of Gabor filters for pixel classification [50] and other classification
applications. However, the computation cost of GAs is very high, particularly in the case when a huge
number of features are available like our work. In addition, recently the AdaBoost algorithm has been used
to learn the most discriminative Gabor features for classification [51]. Unlike its success, AdaBoost algo-
rithm selects only features which perform individually best, the redundancy among all generated features is
not considered. So it may choose features with the same information without considering them with each
other.[52]. Information theory techniques are another approach so as to feature selection. For instance,
Conditional mutual information based method for selecting Gabor features for face recognition[53, 54] have
been used. Furthurmore, another novel method that recently has been used is based on Imperialist Com-
petitive Algorithm (ICA) done by M.H. Sigary and Caro Lucas, 2009. Moreover, there are some methods in
literature based on Principle Component Analysis (PCA). Applying Principal Component Analysis (PCA)
can reduce the dimensionality without sacrificing performance [55]. But, one can not avoid a high dimen-
sional feature space altogether since the principal components in PCA are still linear combinations of the
original features. Present report is aiming to utilize 2 common methods for feature selection, first, multi
class AdaBoost, second, principle feature analysis (PFA), based on principle component analysis (PCA). It
didn’t matter to us, using gabor wavelet so as to featre extraction and sacrificing the computation cost, on
account of the fact that it has been proven that the Gabor wavelet representation of face images is robust
against variations due to illumination and facial expression changes.

4.1 Conventional AdaBoost classifier

AdaBoost is an profitable classification algorithm, which expressively has been used for classification and
feature selection applications in literature. It works based on making a linear combination of weak classifiers
(features) and building a strong classifier (feature). The training data contains clients examples and impostors
examples with the AdaBoost parameter y = 0, 1 for impostors and clients, respectively. The initial weight
w1,i for each example is given according to the number of client’s or impostors examples. All weights of
clients examples are set equally, so as to impostors examples. The number of clients is L, and the number of
impostors is M . The initial weight w1,i for clients is 1/2l, and for impostors is 1/2m. Each Gabor wavelet
feature j corresponds to a weak classifier hj . A Linear Fisher Discriminant (LFD) classifier is adopted as the
weak classifier in this review. The LFD classifier determines the optimal threshold classification function,
such that the minimum number of examples is misclassified. When all the classifiers are trained, the weak
classifier ht is selected with the lowest classification error εt. After each round of training, the weights wt,i of
the training data are modified in order to emphasise those examples which are misclassified by the previous

16

Table 1: Extracted features based on the position of feature points

Number Feature Calculated value

1 Width of Eyes we = (x8−x7)+(x12−x11)
2

2 Openness of Eyes oe = (y9−y10)+(y13−y14)
2

3 Height of Eyebrows 1 he1 = (y3−y16)+(y4−y16)
2

4 Height of Eyebrows 2 he2 = (y1−y16)+(y6−y16)
2

5 Width of Mouth wm = x19 − x18

6 Openness of Mouth om = y20 − y21

7 Nose tip and Lip corners distance nl = (y16−y18)+(y16−y19)
2

8 Chin and Lip corners distance cl = (y18−y22)+(y19−y22)
2

9 Nose corners and Chin distance nc = (y15−y22)+(y17−y22)
2

10 Nose corners and Eyebrows distance ne = (y3−y15)+(y4−y17)
2

11 Openness to Width ratio of mouth ow = OM
WM

12 Corners and Bottom points of mouth distance cb = (y18−y21)+(y19−y21)
2

13 Two Eyebrows distance te = x4 − x3

weak classifier. The final strong classifier H takes the form of a weighted combination of weak classifiers ht
followed by a threshold. After feature selection, an individual can be represented by a face model consisting
of the selected key features.
We have implemented conventional AdaBoost for classification algorithm is depicted in figure 16 & 17 step-
by-step. The error and margin figures are plotted as well. This is a demo of how AdaBoost works. The demo
displays some 2-D data, and shows the development of the decision boundary, margins, error rate and margin
distribution as a boosted ensemble is trained. The data is split into two classes, red and blue. The decision
boundary appears as a yellow contour. The margins are shown on a white-black gradient, where white is a
confident classification as blue and black is a confident classification as red. In each step, one weak learner is
added, and learners are shown in a scrollable list, with their adjusted weights (in linear combination) beside
them. Weight adjustment involves normalisation and then scaling so that 1 represents an average learner
weight. ”Plot Error” shows the training error (blue) and the generalization error (red) against the size of
the ensemble. ”Plot Margins” shows the CDF of the margins for the current ensemble. The height of the
line above 0 indicates the proportion of the data with that margin.

4.1.1 Multi-Class AdaBoost feature selection[1]

AdaBoost (an abbreviation of Adaptive Boosting) was formulated by Freund and Schapire [56]. It is a rela-
tively efficient, simple, and easy learning strategy for improving the performance of classification algorithms.
AdaBoost is robust to noisy data, but susceptible to over fitting. It was first applied to face detection by
Viola and Jones [57]. In their work, features were extracted by Haar wavelets, then those features most
significant for face detection were selected by a modified AdaBoost algorithm. The images were finally clas-
sified by a cascade of AdaBoost classifiers. The final system detected faces very quickly. In this report, we
use a Gabor wavelet feature based AdaBoost approach for face feature selection. The initial idea is to from
a two-class classification concept similar to the work done by Viola and Jones in face detection [57].
For a given image I(x, y) with N ∗M pixels, the number of Gabor wavelet feature representations will be
of the order N ∗M ∗ 40. The feature space consists of all these features. In this case, it is 40 times larger
than the original image space. The Gabor wavelet feature representation described above resides in a very
high dimensional space. It is important to reduce the feature space to a lower dimensional representation
by feature selection. In this report, we use AdaBoost to select significant features from the pool of Gabor
wavelet features, forming a strong linear combination of selected features, to reduce the dimension.
AdaBoost is an efficient method for producing a highly accurate learning algorithm by combining a set of
rough and moderately accurate learning algorithm. Inaccurate learning algorithms sometimes are called ”
weak ”,learners, ” weak ” classifiers, or base classifiers. They have lower discrimination power to assign the
true label correctly. Hence, AdaBoost refers to a method of combining a set of weak learners into a strong

17

Figure 16: The process of AdaBoost classification of 2 classes of generated Gaussian data (a)

18

Figure 17: The process of AdaBoost classification of 2 classes of generated Gaussian data (b)
19

Figure 18: The training error (blue) and the generalisation error (red) against the size of the ensemble

Figure 19: CDF of the margins for the current ensemble

classifier which gives a high accuracy for prediction and classification. AdaBoost has been a very prosperous
approach for solving two-class classification. It also has two multi-class classification versions, AdaBoost.M1
[56] and AdaBoost.M2 [56]. M1 is the most direct way to perform multi-class classification, and M2 is
an enhancement of M1. The multi-class AdaBoost algorithm is a combination of M1 and M2 which is a
variant from M1 with some extension on multiple labels from M2. The algorithm of multi-class AdaBoost
is given in Table 6. In each iteration, a significant feature is selected with the lowest error εt so that there
are T significant features after T iterations. A multi-class weak learner mh(x) is built on a single feature.
The error ε is calculated by summing the weights of all misclassified examples. The importance αt for each
significant feature is evaluated by the lowest error εt in the t-th iteration.

4.1.2 Multi-Class weak learner

In AdaBoost learning, weak learner is used to evaluate a feature. In [58], it has demonstrated that different
weak learners lead to different performance of AdaBoost at the end. Hence, weak learners are crucial and
primitive parts of the algorithm, and the design of weak learner is very important. In this report, a multi-class
weak learner - mPotsu (multi-class Potsu) is skimmed. The mPotsu weak learner is a multi-class variant
from Potsu weak learner, which is a type of two-class classifier built with the concept of perceptron [59]
and Otsus thresholding algorithm [60]. The mPotsu is constructed by multiple Potsu weak learners with
the one-against- rest strategy [61]. The strategy adopts a set of binary classifiers to create a multi-class
classifier. Given an example x and its label in k classes, a binary Potsu weak learner is trained between a
class j and test k − 1 classes. Since there are k classes, an mPotsu contains k binary Potsu weak learners.
Each Potsu gives an output indicating examples belonging to class j or not. Each Potsu in a mPotsu is
built for a particular class (client) against rest classes (clients). Given an example x, the first Potsu tells
x whether the first client or not. The input vector of mPotsu is taken from a single Gabor wavelet feature
across all examples in the training set. Hence, the input vector is one-dimensional. The training in each
Potsu uses a heuristic approach to find an optimal threshold for separating the examples from the class j

20

Algorithm 6 Multi-Class AdaBoost algorithm

1: Given example (x1, y1), ..., (xn, yn), where xi is the data of the ith example,
which are contributed by k features {j1, ..., jk},
and yi ∈ Y = {1, ..., c} for c subjects (classes).

2: Initialize the weights w1,i = 1
n for each example (xi, yi).

3: for t = 1, ..., T do
4: Normalize the weights wt,i ⇐=

wt,i∑n

i=1
wt,i

so that wt form a probability distribution.

5: for all {j1, ..., jk} do
6: Train a multi-class weak learner mhj built with one single

feature j with the weights wt,i.
7: the error is calculated as εj =

∑n
i=1 wt,iγ, where γ = 1

when yj /∈ mht(xi), and γ = 1 otherwise.
8: end for
9: Choose the optimal multi-class weak learner mht with the

lowest error εt from all mhj .
10: Select the corresponding feature jt of the multi-class weak

learner mht as a significant feature.
11: Remove the feature jt from the feature set {j1, ..., jk}.
12: Update the weights wt+1,i = wt,iβ

1−ei
t , where ei = 0 if

yj /∈ mht(xi) and ei = 1 otherwise, and βt = εt
1−εt .

13: end for

and other examples. If an example is successfully classified, the output will be labelled as 1, i.e. the positive.
If not, the output will be labelled as 0, i.e. the negative. Ideally, if the training examples are well separated
between each class, there will be only one positive output and the rest of samples will be negative outputs.
The plausible label is the corresponding class of positive label in mPotsu. However, in practice, there may
be more than one Potsu weak learners giving positive labels. It is because the training examples are not
linearly separable between different classes in most real situations. Hence, in the case of one-against-rest
strategy, it is rare to output only one plausible label of multi-class classifiers. Instead of giving only one
absolute label, mPotsu outputs a label vector η which compromises multiple positive labels.

η = (l1, l2, ..., lk) (10)

The label vector η contains k components corresponding to k classes. Each component lj is correspond-
ing to each class j, and has a boolean value between 1 and 0 indicating acceptance or rejection on the
corresponding class j. By introducing the label vector η, mPotsu is able to coexist multiple decisions. For
example, an mPotsu gives a label vector η = (1, 1, 1, 0, 0, ..., 0), which indicates the plausible class might be
class 1, class 2 or class 3 (since l1 = 1, l2 = 1, and l3 = 1). It makes mPotsu not give an absolute decision,
but several possible decisions. In AdaBoost, after every weak learner is trained, an evaluation is needed to
test the performance of the trained weak learner. Due to multi-label complexity on multi-class classification,
a loose evaluation method is applied in mPotsu. Given an example with its true class j, if lj = 1 in the
giving label vector η, the classification will be considered as true positive no matter what other components
li = 1. The classification is defined as:

y ∈ mht(x) when ly = 1 (11)

where mht(x) represents the mPotsu weak learner. For instance, an example x with its true label of class 1
is fed into an mPotsu. After training, the mPotsu gives a label vector η = (1, 1, 1, 0, ..., 0), where l1 in the
vector η is equal to 1, the classification is considered as true regardless l1 = 1, l2 = 2, and l3 = 3. Since
the method of classification is quite loose, the accuracy of mPotsu is low through assigning multiple labels
to an example. However, since AdaBoost can boost the performance from a set of weak classifiers, the low
accuracy on different mPotsu is accumulated into higher accuracy. After many iterations, the performance
of multi-class AdaBoost is enhanced.

21

4.1.3 Substantial computation cost

Feature selection on multi-class AdaBoost is very time consuming. Having N image sets, N Potsu binary
learners we would have for each mPotsu. The computational time on training an mPotsu is equivalent to
time cost on training N binary Potsu learners individually. The AdaBoost algorithm searches over the whole
feature set exhaustively in each iteration. For instance, if the size of each face image is 27 ∗ 28, and these
images are convolved with 40 Gabor wavelet kernels in feature extraction to make magnitude responses, the
total number of Gabor wavelet features is 27 ∗ 28 ∗ 40 = 30240, so by having 800 face images in dataset,
With a 2.8 GHz CPU, the training on a single mPotsu needs 11 seconds. One iteration in AdaBoost training
takes 11 ∗ 30240 = 332640 seconds which is roughly 93 hours. To select 200 features, it needs 200 iterations.
The AdaBoost training takes 93 ∗ 200 = 18600 hours, i.e. 775 days [1]. The whole computational time is
extremely long, and it makes feature selection hardly being accomplished with current computing facility.

22

4.2 Principal feature analysis based on PCA (principal component analysis)

In pattern recognition and general classification problems, methods such as principal component analysis
(PCA), independent component analysis (ICA) and Fisher linear discriminate analysis (LDA) have been
extensively used. These methods find a mapping between the original feature space to a lower dimensional
feature space.
In some applications it might be desired to pick a subset of the original features rather then find a mapping
that uses all of the original features. The benefits of finding this subset of features could be in cost of
computations of unnecessary features, cost of sensors (in physical measurement systems).
The optimality properties of PCA have attracted research on PCA based variable selection methods [62, 63,
64, 65]. But these methods have the disadvantage of either being too computationally expensive, or choosing
a subset of features with redundant information. This report investigates a computationally efficient method
that exploits the structure of the principal components of a feature set to find a subset of the original feature
vector. The chosen subset of features is shown empirically to maintain some of the optimal properties of
PCA. The following is a brief review of the existing PCA based feature selection methods.
By a linear transform, a random vector X ∈ <n with zero mean and covariance matrix

∑
x can be mapped

to a lower dimension random vector Y ∈ <q , q < n :

Y = ATq X (12)

ATq Aq = Iq (13)

Where Iq is the q × q identity matrix.
For the PCA technique, Aq is a n×q matrix whose columns are the q orthonormal eigenvectors corresponding
to the first q dominant eigenvalues of the covariance matrix

∑
x. One of the important properties of this

technique is the maximization of the ”spread” of the points in the lower dimensional space which means
that the points in the mapped space are kept as far apart as possible, retaining the variation in the original
space. We can see the minimization of the mean square error between the predicted data to the original
data as well. Now we are aiming to choose a subset of the original variables/features of the random vector
X. The linear transform of X can be viewed as follows:(

Iq
0(n−q)×q

)
Any permutation of the rows of Aq as another matrix is acceptable. Without loss of generality, we can
rewrite the corresponding covariance matrix of X as follows:(

{
∑

11}q×q {
∑

12}q×(n−q)
{
∑

21}(n−q)×q {
∑

22}(n−q)×(n−q)

)
This method is very appealing since it satisfies well-defined properties. The drawback of this method is in
the complexity of finding the subset to check all combinations of subsets of features so as to find one which
satisfies the properties. It is not computationally feasible to find this subset for a large feature vector. In
order to minimize the mean square prediction error, we are supposed to minimize the below trace:

∑
22|1

=
∑
22

−
∑
21

−1∑
11

∑
12

(14)

And the retained variability of a subset can be measured using the following equation:

Retained V ariability = (1−
trace(

∑
22|1)∑n

i=1 σ
2
i

) (15)

where σi is the standard deviation of the i− th feature.
Another method, proposed in [63], uses the principal components as the basis for the feature selection. A
high absolute value of the i − th coefficient of one of the principal components implies that the xi element
of X is very dominant in that axes/PC. By choosing the variables corresponding to the highest coefficients

23

of each of the first q PCs, the same projection as that computed by PCA is approximated. This method
helps reduce the redundancy of informations, also is a very intuitive and computationally feasible method.
However, because it considers each PC independently, variables with similar information content might be
chosen.
In PFA (principal feature analysis), it exploits the information that can be inferred by the PC coefficients
to obtain the optimal subset of features, despite the basis PCA, all of the PCs are used together to gain
a better insight on the structure of our original features so variables can be chosen without redundancy of
information.

4.2.1 Concepts of principal feature analysis (PFA) [2]

Consider vector X built from the main feature vector to be a zero mean n-dimensional vector,
∑

to be the
covariance matrix of X and A to be a matrix whose columns are the orthonormal eigenvectors of the matrix∑

: ∑
= AΛATAndATA = In (16)

Λ =

λ1

. 0
0 .

λn

where Λ is a diagonal matrix whose diagonal elements are the eigenvalues of

∑
, λ1 ≥ λ2 ≥, ...,≥ λn. Let

Aq be the first q columns of Aq and let V1, V2, ..., Vn ∈ <q be the rows of the matrix Aq. Each vector Vi
represents the projection of the i− th feature (variable) of the vector X to the lower dimensional space, that
is, the q elements of Vi correspond to the weights of the i − th feature on each axis of the subspace. The
key observation is that features that are highly correlated or have high mutual information will have similar
absolute value weight vectors Vi (it is shown tha changing the sign has no statistical significance [63]). On
the two extreme sides, two independent variables have maximally separated weight vectors, whereas two fully
correlated variables have identical weight vectors (up to a change of sign). To find the best subset we can use
the structure of the rows Vi to find the first subsets of features that are highly correlated and follow to choose
one feature from each subset. The chosen features represent each group optimally in terms of high spread
in the lower dimension, reconstruction and insensitivity to noise. The algorithm can be summarized in the
following five steps illustrated in table 7. For more clarification it should be noted that the clustering is the
representation of the features in the lower dimensional space, and not of the projection of the measurements
to that space (as in [64]).The complexity of the algorithm is of the order of performing PCA, because the
K −Means algorithm is applied on just n q−dimensional vectors.

24

Algorithm 7 Explanation of principal feature analysis step-by-step

1: Compute the sample covariance matrix, or use the true covariance matrix if it is
available. In some cases it is preferred to use the correlation matrix instead of the
covariance matrix [63]. The correlation matrix is defined as
the n× n matrix whose i, j − th entry is as shown in equation 17:

ρi,j =
E[XiXj]

E[X2
i]E[X2

j]
(17)

2: Compute the Principal components and eigenvalues of the
Covariance/Correlation matrix as defined in equation 16.

3: Choose the subspace dimension q and construct the matrix Aq from A. This can
be chosen by deciding how much of the variability of the data is desired to be
retained. The retained variability is the ratio between the sum of the first q
eigenvalues and the sum of all eigenvalues, so it can be computed as follows:

Retained V ariability =

∑q
i=1 λi∑n
i=1 λi

× 100% (18)

4: Cluster the vectors |V1|, |V2|, ..., |Vn| ∈ <q to p ≥ q clusters using K-Means
algorithm. The distance measure used for the K −Means algorithm is the
Euclidean distance. Choosing p greater than q is usually necessary if the same
variability as the PCA is desired (usually 1− 5 additional dimensions are needed).

5: For each cluster, find the corresponding vector Vi which is closest to the mean of
the cluster. Choose the corresponding feature, xi , as a principal feature. This
step will yield the choice of p features. The reason for choosing the vector
nearest to the mean is twofold. This feature can be thought of as the central
feature of that cluster, the one most dominant in it, and which holds the least
redundant information of features in other clusters. Thus it satisfies both of the
properties we wanted to achieve, large ”spread” in the lower dimensional space,
and good representation of the original data.

25

5 Conclusions

In this report, we summarized a general review of what we have studied in our summer intern-ship. As
mentioned before, in order to do analysis on various parts of face, it is mandatory to recognize and track
features on face. In order to reach to such goal we first developed the idea of correlation-based tracking, with
two extensions, which was not sufficient for our project’s demands. Thus, we moved on another algorithm,
namely Active Appearance Model which makes a dynamic model of face. Based the available resources,
we derived and implemented the algorithm for our own set of images. The preliminary results of AAM
implementation were herald of a fast enough facial feature tracking algorithm.
Simultaneously with facial feature tracking, we worked on some methods for extracting facial features, the
most important of which was employment of the Gabor wavelet. At the rest of the feature extraction
trend, due to curse of dimensionality in the number of the features, we moved on selecting an optimum and
discriminative set of features.

As a future work, we will continue working on various refinements in different parts of this project. At
the rest of our trend, one of the fundamental aims is employing Multi-Kernel Multi-Class Relevance Vector
Machine, for adaptive generation and recognition of facial commands. As explained before the term facial
commands is different from gestures or expressions on face, instead a combination of both during time. Thus,
we will include the time parameter in our model.

6 Acknowledgement

The authors are delighted to acknowledge their supervisors Mr. Mahdi Kalayeh and Dr. Hamid Sheikhzadeh
for their inspiring ideas, comments and guidances on this multifarious project. The authors also acknowledge
the research-aimed non-commercial source code releases in [66], [67] and [68]; some parts of each of the
implementations were used in part, in our own implementation.

References

[1] M. Zhou, H. Wei, I. Bland, A. Worrall, D. Spence, X. Wang, P. Wen, and F. Liu, “Multi-class adaboost
learning of facial feature selection through grid computing,” in Cybernetic Intelligent Systems (CIS),
2010 IEEE 9th International Conference on. IEEE, pp. 1–6.

[2] Y. Lu, I. Cohen, X. Zhou, and Q. Tian, “Feature selection using principal feature analysis,” in Proceed-
ings of the 15th international conference on Multimedia. ACM, 2007, pp. 301–304.

[3] M. Maghami, B. Araabi, R. Zoroofi, and M. Shiva, “Facial expression recognition using conspicuous
features selection and comparison of the performance of different classifiers,” IEEE International Con-
ference on Signal Processing and Communications, 2007. ICSPC 2007.

[4] I. Matthews and S. Baker, “Active appearance models revisited,” International Journal of Computer
Vision, vol. 60, no. 2, pp. 135–164, 2004.

[5] T. Cootes, G. Edwards, and C. Taylor, “Active appearance models,” Computer VisionECCV98, pp.
484–498, 1998.

[6] G. Edwards, T. Cootes, and C. Taylor, “Face recognition using active appearance models,” Computer
VisionECCV98, pp. 581–595, 1998.

[7] G. Edwards, C. Taylor, and T. Cootes, “Interpreting face images using active appearance models,” in
Automatic Face and Gesture Recognition, 1998. Proceedings. Third IEEE International Conference on.
IEEE, 1998, pp. 300–305.

[8] T. Cootes, G. Edwards, and C. Taylor, “Active appearance models,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 23, no. 6, pp. 681–685, 2001.

26

[9] F. De la Torre, J. Campoy, Z. Ambadar, and J. Cohn, “Temporal segmentation of facial behavior,”
2007.

[10] F. Zhou, F. De la Torre, and J. Cohn, “Unsupervised discovery of facial events,” in Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 2574–2581.

[11] M. Zhou, L. Liang, J. Sun, and Y. Wang, “Aam based face tracking with temporal matching and face
segmentation,” Proceedings of CVPR’10, 2010.

[12] T. Cootes and C. Taylor, “Statistical models of appearance for computer vision,” Imaging Science and
Biomedical Engineering, University of Manchester, Tech. Rep., 2004.

[13] S. Baker and I. Matthews, “Lucas-kanade 20 years on: A unifying framework,” International Journal
of Computer Vision, vol. 56, no. 3, pp. 221–255, 2004.

[14] ——, “Equivalence and efficiency of image alignment algorithms,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, CVPR 2001., vol. 1. IEEE, 2001,
pp. I–1090.

[15] G. Fanelli, “Facial features tracking using active appearance models,” Master’s thesis, Linkpings uni-
versitet/Institutionen fr systemteknik, 2006.

[16] C. Chen and C. Wang, “3d active appearance model for aligning faces in 2d images,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2008. IEEE, pp. 3133–3139.

[17] I. Matthews, J. Xiao, and S. Baker, “2d vs. 3d deformable face models: Representational power, con-
struction, and real-time fitting,” International journal of computer vision, vol. 75, no. 1, pp. 93–113,
2007.

[18] J. Xiao, S. Baker, I. Matthews, and T. Kanade, “Real-time combined 2d+ 3d active appearance models,”
in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2. Citeseer,
2004.

[19] Y. Sun, M. Reale, and L. Yin, “Recognizing partial facial action units based on 3d dynamic range data
for facial expression recognition,” in IEEE 8th International Conference on Automatic Face & Gesture
Recognition, FG’08. IEEE.

[20] M. Cordea, E. Petriu, and D. Petriu, “Three-dimensional head tracking and facial expression recovery
using an anthropometric muscle-based active appearance model,” IEEE Transactions on Instrumenta-
tion and Measurement, vol. 57, no. 8, pp. 1578–1588, 2008.

[21] R. Gross, I. Matthews, and S. Baker, “Active appearance models with occlusion,” Image and Vision
Computing, vol. 24, no. 6, pp. 593–604, 2006.

[22] J. M. Buenaposada, E. Muñoz, and L. Baumela, “Efficient illumination independent appearance-based
face tracking,” Image Vision Comput., 2009.

[23] H. Lee and D. Kim, “Tensor-based active appearance model,” Signal Processing Letters, IEEE, vol. 15,
pp. 565–568, 2008.

[24] R. Gross, I. Matthews, and S. Baker, “Generic vs. person specific active appearance models,” Image
and Vision Computing, vol. 23, no. 12, pp. 1080–1093, 2005.

[25] Y. Cheon and D. Kim, “Natural facial expression recognition using differential-aam and manifold learn-
ing,” Pattern Recognition, vol. 42, no. 7, pp. 1340–1350, 2009.

[26] M. Roberts, T. Cootes, and J. Adams, “Robust active appearance models with iteratively rescaled
kernels,” in Proc. British Machine Vision Conference, vol. 1, 2007, pp. 302–311.

[27] J. Saragih and R. Goecke, “A nonlinear discriminative approach to aam fitting,” in Computer Vision,
2007. ICCV 2007. IEEE 11th International Conference on. IEEE, 2007, pp. 1–8.

27

[28] S. Zhu and J. Zhao, “Using a robust active appearance model for face processing,” in 2009 International
Joint Conference on Artificial Intelligence. IEEE, 2009, pp. 465–468.

[29] Y. Aidarous, S. Le Gallou, A. Sattar, and R. Seguier, “Face alignment using active appearance model
optimized by simplex,” in International Conference on Computer Vision Theory and Applications. Cite-
seer, 2007.

[30] A. Sattar, Y. Aidarous, S. Le Gallou, and R. Seguier, “Face alignment by 2.5 d active appearance model
optimized by simplex,” ICVS, Bielefeld University, Germany, 2007.

[31] J. Liebelt, J. Xiao, and J. Yang, “Robust aam fitting by fusion of images and disparity data,” in
Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, vol. 2. IEEE,
2006, pp. 2483–2490.

[32] X. Liu, “Generic face alignment using boosted appearance model,” in in Proc. IEEE Computer Vision
and Pattern Recognition, 2007, pp. 1079–1088.

[33] F. Kahraman, M. Gokmen, S. Darkner, and R. Larsen, “An active illumination and appearance (aia)
model for face alignment,” in 2007 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 2007, pp. 1–7.

[34] J. Saragih, S. Lucey, and J. Cohn, “Face alignment through subspace constrained mean-shifts,” in
Computer Vision, 2009 IEEE 12th International Conference on. IEEE, 2009, pp. 1034–1041.

[35] D. Pizarro, J. Peyras, and A. Bartoli, “Light-invariant fitting of active appearance models,” in IEEE
Conference on Computer Vision and Pattern Recognition, CVPR. IEEE, 2008.

[36] H. Wu, X. Liu, and G. Doretto, “Face alignment via boosted ranking model,” 2008.

[37] Y. Wang, S. Lucey, and J. Cohn, “Enforcing convexity for improved alignment with constrained local
models,” in Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE,
2008, pp. 1–8.

[38] A. Sattar, Y. Aidarous, and R. Seguier, “Gagm-aam: a genetic optimization with gaussian mixtures for
active appearance models,” in Image Processing, 2008. ICIP 2008. 15th IEEE International Conference
on. IEEE, 2008, pp. 3220–3223.

[39] A. Asthana, J. Saragih, M. Wagner, and R. Goecke, “Evaluating aam fitting methods for facial expres-
sion recognition,” in 3rd International Conference on Affective Computing and Intelligent Interaction
and Workshops, ACII 2009. IEEE.

[40] X. Liu, “Video-based face model fitting using adaptive active appearance model,” Image and Vision
Computing, vol. 28, no. 7, pp. 1162–1172, 2010.

[41] G. Papandreou and P. Maragos, “Adaptive and constrained algorithms for inverse compositional active
appearance model fitting,” 2008.

[42] J. Saragih and R. Goecke, “Iterative error bound minimisation for aam alignment,” Pattern Recognition,
vol. 2, pp. 1192–1195, 2006.

[43] M. Storer, P. Roth, M. Urschler, H. Bischof, and J. Birchbauer, “Active appearance model fitting under
occlusion using fast-robust pca,” in Proc. International Conference on Computer Vision Theory and
Applications (VISAPP), vol. 1. Citeseer, 2009, pp. 130–137.

[44] D. Kim, J. Kim, S. Cho, Y. Jang, S. Chung, and B. Kim, “Progressive aam based robust face alignment,”
in Proc. of world academy of science, engineering and technology, vol. 21. Citeseer, 2007, pp. 488–492.

[45] J. Saragih and R. Göcke, “Learning aam fitting through simulation,” Pattern Recognition, vol. 42,
no. 11, pp. 2628–2636, 2009.

28

[46] T. Cootes and C. Taylor, “An algorithm for tuning an active appearance model to new data,” in Proc.
British Machine Vision Conference, vol. 3. Sl]:[sn], 2006, pp. 919–928.

[47] J. Daugman, “High confidence visual recognition of persons by a test of statistical independence,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 15, no. 11, pp. 1148–1161, 1993.

[48] M. Lades, J. Vorbruggen, J. Buhmann, J. Lange, C. von der Malsburg, R. Wurtz, and W. Konen, “Dis-
tortion invariant object recognition in the dynamic link architecture,” Computers, IEEE Transactions
on, vol. 42, no. 3, pp. 300–311, 1993.

[49] N. Petkov, “Biologically motivated computationally intensive approaches to image pattern recognition,”
Future Generation Computer Systems, vol. 11, no. 4-5, pp. 451–465, 1995.

[50] N. Campbell and B. Thomas, “Automatic selection of gabor filters for pixel classification,” in Image
Processing and Its Applications, 1997., Sixth International Conference on, vol. 2. IET, 1997, pp.
761–765.

[51] L. Shen and L. Bai, “Adaboost gabor feature selection for classification,” in Proc. of Image and Vision
Computing NewZealand. Citeseer, 2004, pp. 77–83.

[52] S. Li and Z. Zhang, “Floatboost learning and statistical face detection,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 26, no. 9, pp. 1112–1123, 2004.

[53] G. Tourassi, E. Frederick, M. Markey, and C. Floyd Jr, “Application of the mutual information criterion
for feature selection in computer-aided diagnosis,” Medical Physics, vol. 28, p. 2394, 2001.

[54] F. Fleuret, “Fast binary feature selection with conditional mutual information,” The Journal of Machine
Learning Research, vol. 5, pp. 1531–1555, 2004.

[55] A. Pentland, B. Moghaddam, and T. Starner, “View-based and modular eigenspaces for face recogni-
tion,” in Computer Vision and Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer
Society Conference on. IEEE, 1994, pp. 84–91.

[56] Y. Freund and R. Schapire, “A desicion-theoretic generalization of on-line learning and an application
to boosting,” in Computational learning theory. Springer, 1995, pp. 23–37.

[57] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” 2001.

[58] M. Zhou and H. Wei, “Constructing weak learner and performance evaluation in adaboost,” in Compu-
tational Intelligence and Software Engineering, 2009. CiSE 2009. International Conference on. IEEE,
pp. 1–4.

[59] S. Gallant, “Perceptron-based learning algorithms,” Neural Networks, IEEE Transactions on, vol. 1,
no. 2, pp. 179–191, 1990.

[60] N. Otsu, “A tlreshold selection method from gray-level histograms,” Automatica, vol. 11, pp. 285–296,
1975.

[61] D. Tax and R. Duin, “Using two-class classifiers for multiclass classification,” in Pattern Recognition,
2002. Proceedings. 16th International Conference on, vol. 2. IEEE, 2002, pp. 124–127.

[62] G. McCabe, “Principal variables,” Technometrics, pp. 137–144, 1984.

[63] I. Jolliffe, “Principal component analysis,” Encyclopedia of Statistics in Behavioral Science, 2002.

[64] W. Krzanowski, “Selection of variables to preserve multivariate data structure, using principal compo-
nents,” Applied Statistics, pp. 22–33, 1987.

[65] ——, “A stopping rule for structure-preserving variable selection,” Statistics and Computing, vol. 6,
no. 1, pp. 51–56, 1996.

29

[66] L. van der Maaten, “Basic matlab implementation of the aam,” Online available on:
http://homepage.tudelft.nl/19j49/Active appearance models.html.

[67] M. Stegmann, B. Ersboll, and R. Larsen, “Fame-a flexible appearance modeling environment,” IEEE
Transactions on Medical Imaging,, vol. 22, no. 10, pp. 1319–1331, 2003.

[68] R. Stapenhurst, “A demo to illustrate the behaviour of adaboost,” Online available on:
http://www.mathworks.com/matlabcentral/fileexchange/29245-boosting-demo&watching=29245.

30

Figure 20: Facial feature tracking by AAM.

31

	Introduction
	Facial Feature Tracking
	Correlation-based facial feature tracking
	Basic model
	Hierarchical correlation tracking

	Active Appearance Model
	Shape model
	Appearance model
	Shape deformation
	Model fitting procedure
	Cutting-edge trends in AAM

	Facial features extraction
	Gabor wavelet based feature extraction
	Feature points selection based feature extraction

	Feature selection
	Conventional AdaBoost classifier
	Multi-Class AdaBoost feature selectionzhou2010multi
	Multi-Class weak learner
	Substantial computation cost

	Principal feature analysis based on PCA (principal component analysis)
	Concepts of principal feature analysis (PFA) lu2007feature

	Conclusions
	Acknowledgement

