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1 VC-dimension

Let F be class of functions defined from X to {−1, 1} ∗∗. Let X = (X1, . . . , Xn) be a set of samples.
Given F , define the following:

SF (X) , {h(X1), . . . , h(Xn)}

Definition 1.1 (Growth Function).

ΠF (n) , max
S:|S|=n

|SF (X)|

By the above definitions we know,

ΠF (n) ≤ |F|
ΠF (n) ≤ |2n|

Definition 1.2 (Shattering). A hypothesis class F shatters a finite set S ⊂ X , iff |SF (S)| = 2|S|

In an informal language, shattering means that you have to be able to separate all +/- labelings
of the same set of points, given the function class.

We want to bound Rademacher average using a function of VC-dimension.

Lemma 1.1. Let F be a class of functions defined on X to {+1,−1}, then,

Rn(F) ≤
√

2 log 2ΠF (n)

n

If the function space is symmetric, i.e. given f ∈ F then −f ∈ F :

Rn(F) ≤
√

2 log ΠF (n)

n

Proof. Proof with finite class lemma. �

Definition 1.3 (VC-dimension). The Vapnik-Chervonenkis dimension of a class F on a set
X, is the cardinality of the largest set shattered by F , that is, the largest n such that there exists a
set S ⊂ X, and |S| = n that F shatters the set S. We denote VC-dimension with dV C(F).
∗ The output being mapped to ±1 is just for simplicity and holds for any binary functions.

1



Example 1.2. Here we provide a couple of example hypothesis families with their corresponding
VC-dimension.

• H is axis parallel rectangles, X is R2.
VC Dimension 4

• H is axis-parallel rectangles, X is R3.
VC Dimension 6
Hint: first show that it can shatter the 6 points (1,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,0),(0,0,1). If
we draw a bounding box for these points, then by excluding/including each point by moving
a face of the box, we can get any labeling for the points. For 7 points, consider the bounding
box. If the bounding rectangle has at least one point in its interior, then we cannot accomplish
the labeling where the interior point is labeled - and the rest are labeled +.

• H is axis-parallel rectangles, X is Rd.
VC Dimension 2d

• H is the union of 2 intervals, X is R.
VC Dimension 4.

• H is 1{a sin(x) > 0}, X is R.
VC Dimension 1.

• H is 1{sin(x+ a) > 0}, X is R.
VC Dimension 2.

• H is half-spaces in Rn.
VC dimension n+ 1.

Proposition 1.1. A finite concept class C has VC dimension at most log |C|. The different number
of ways d points can be labeled with ± is 2d.

We will use the following lemma to find another bound:

Lemma 1.3. For any d ≤ n, we have

k∑
i=1

(
n

i

)
≤
(en
k

)k
Proof. (

k

n

)k k∑
i=1

(
n

i

)
≤

k∑
i=1

(
k

n

)i(n
i

)

≤
n∑
i=1

(
n

i

)(
k

n

)i
× 1n−i

≤
(

1 +
k

n

)n
≤ ek
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⇒
k∑
i=1

(
n

i

)
≤
(en
k

)k
�

Now using the above lemma, we find a bound on the growth function.

Lemma 1.4 (Sauer’s lemma). Let F be a class of functions, mapping from X to a binary space,
with dV C(F) = d. Then,

ΠF (n) ≤
d∑
i=0

(
n

i

)
in addition, for any n ≥ d

ΠF (n) ≤
(en
d

)d
Proof. The second part of the lemma is trivial based Lemma 1.31.3. The proof of the first part is by
induction on d+ n. �

Example 1.5. For a class of real-valued functions F on R, we define

Rn(F) , sup
zn∈Zn

Rn(F(zn))

For each of the following function classes, prove the Rademacher averages, without relying on the
VC-theory,

• F1 the collection of indicators of all semi-infinite intervals of the form (−∞, t], t ∈ R.

Rn(F1) ≤ 2

√
log(n+ 1)

n
, ∀n

• F2 is the collection of indicators of all closed intervals of the form [s, t] for −∞ < s < t < +∞.

Rn(F2) ≤ 2

√
2 log(n) + log 2

n
, ∀n

• F3 is the collection of indicators of all subsets of R that can be represented as unions of no
more than k disjoint intervals from F2.

Rn(F3) ≤ 2

√
k log(ne/k)

n
, ∀n ≥ k

Example 1.6. The sup-norm for any space of functions is defined as

||f || , sup
z∈Z
|f(z)|

Given F the class of positive-valued functions on Z and ε > 0, the ε− net of F with respect to the
sup-norm is any f ∈ F , such that,

||f − fj ||∞ = sup
z∈Z
|f(z)− fj(z)| ≤ ε,
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for at least one of the functions in F ′ = {f1, . . . , fk}, which are not necessarily in F . The ε-covering
number of F w.r.t. to the sup-norm, or the cardinality of a minimal ε − net of F , is denoted by
N∞(F , ε). If F does not accept ε-net N∞(F , ε) = ∞. The logarithm of the ε-covering number, is
usually called ε-number of F and denoted by H∞(F , ε).

1. For F the family of uniformly-bounded functions (i.e. ∃L > 0 s.t. ∀f ∈ F ⇒ ||f ||∞ ≤ L).
Show that,

Rn(F) ≤ inf
ε>0

(
ε+ 2L

√
logN∞(F , ε)

n

)

2. Let

Z =

(z(1), . . . , z(d)) ∈ Rd : ||z||1 =
d∑
j=1

z(j) ≤ 1

 ,

and F consisting of functions of the form f(z) = fw(z) = 〈w, z〉, for all w ∈ Rd with ||w||∞ =
max1≤j≤d

∣∣w(j)
∣∣ ≤ 1.

Show that

N∞(F , ε) ≤
(

2

ε

)d
and prove that,

Rn(F) = O

(√
d log n

n

)
.

3. Suppose F is such that H∞(F , ε) ≤ Cε−
1
α for some constant C > 0 and α > 0. For example,

• the class of functions F all differentiable f : [0, 1] → [0, 1] with |f ′| ≤ 1, then the above
bound holds with α = 1.

Prove that
Rn(F) ≤ Cn−

α
2α+1 , C > 0

Lemma 1.7 (Holder’s inequality). Consider f and g are two measurable real-valued functions
defined on a measurable space. Let p, q ∈ [1,+∞], and 1/p+ 1/q = 1. Then,

||fg||1 ≤ ||f ||p||g||q

The theorem also holds in the extremal cases, when p =∞, q = 1.

Lemma 1.8. For non-negative random variable Z, if we know,

P(Z ≥ t) ≤ Ce−2nt2 ,

for some universal constant C > 0 and C < +∞, one can show that,

E [Z] ≤
√

ln(Ce)

2n
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Proof. Proof in the Section 44. �

Example 1.9. Let X be real-valued random variable with CDF F (x) = P (X ≤ x). If X1, . . . , Xn

are i.i.d. copies of X, the empirical CDF is,

F̂ (x) =
1

n

n∑
i=1

1{Xi≤x}.

1. Using the Rademacher complexity techniques prove that

E
[
sup
x∈R

∣∣∣F̂n(x)− Fn(x)
∣∣∣] ≤ C√

n
, C > 0

2. If C = 1, prove Massart ’s inequality,

P
(

sup
x∈R

∣∣∣F̂n(x)− Fn(x)
∣∣∣ > t

)
≤ 2e−2nt

2
, ∀t > 0.

Note: it can be shown C = 1 is optimal.

Lemma 1.10. For non-negative random variable Z, if we know,

P(Z ≥ t) ≤ Ce−2nt2 ,

for some universal constant C > 0 and C < +∞, one can show that,

E [Z] ≤
√

ln(Ce)

2n

Proof. Proof in the Section 44. �

Example 1.11. Let X be real-valued random variable with CDF F (x) = P (X ≤ x). If X1, . . . , Xn

are i.i.d. copies of X, the empirical CDF is,

F̂ (x) =
1

n

n∑
i=1

1{Xi≤x}.

1. Using the Rademacher complexity techniques prove that

E
[
sup
x∈R

∣∣∣F̂n(x)− Fn(x)
∣∣∣] ≤ C√

n
, C > 0

2. If C = 1, prove Massart ’s inequality,

P
(

sup
x∈R

∣∣∣F̂n(x)− Fn(x)
∣∣∣ > t

)
≤ 2e−2nt

2
, ∀t > 0.

Note: it can be shown C = 1 is optimal.
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Theorem 1.12. Let F be class of function defined on space X mapped to Y , from an unknown
distribution PXY . Then given i.i.d. samples {(Xi, Yi)}ni=1, then with probability at least 1− δ:

P(h(X) 6= Y ) ≤ P̂(h(xi) 6= yi) + 4Rn(F) +

√
1/δ

2n

≤ P̂(h(xi) 6= yi) + 4

√
2d log(en)− 2d log d

n
+

√
1/δ

2n

This could be genelized to all of the samples,

P(h(X) 6= Y ) ≤ P̂(h(X) 6= Y ) +O

(√
d log n+ log 1/δ

n

)

2 Exercise Problems

1. Which of the following procedures is sufficient and necessary and most efficient for proving
that the VC dimension of a learner is N?

(a) Show that the classifier can shatter all possible dichotomies with N points.

(b) Show that the classifier can shatter a subset of all possible dichotomies with N points.

(c) Show that the classifier can shatter all possible dichotomies with N points and that it
cannot shatter any of the dichotomies with N+1 points.

(d) Show that the classifier can shatter all possible dichotomies with N points and that it
cannot shatter one of the dichotomies with N+1 points.

(e) Show that the classifier can shatter a subset of all possible dichotomies with N points
and that it cannot shatter one of the dichotomies with N+1 points.

2. Find the VC-dimension of the following: f(w>w + θ) , where f is an arbitrary increasing
non-linear function (w, x ∈ Rd and θ ∈ R )

3. For the concept class in the previous question, find the minimum number of training instances
(sample complexity) necessary to learn a hypothesis with error at most ε with probability at
least 1− δ.

3 Bibliographical notes

References

[1] Maxim Raginsky. Lecture notes: Ece 299: Statistical learning theory. Tutorial, 2011.
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4 Proofs

4.1 Proof of lemma 1.101.10

Proof. To prove this we use the fact that, the variance of a non-negative random variable is non-
negative. Thus,

E [Z]2 ≤ E
[
Z2
]
.

Using this fact,

E [Z]2 ≤ E
[
Z2
]

=

∫ +∞

0
P
(
Z2 ≥ t

)
dt

≤
∫ z

0
1dt+

∫ +∞

z
P
(
Z ≥

√
t
)
dt

≤ z +

∫ +∞

z
Ce−2ntdt

= z +
C

2n
e−2nz

⇒ E [Z] ≤

√
inf
z∈R+

{
z +

C

2n
e−2nz

}
Now, since this bound holds for any z ∈ R+, we minimize it with respect to z to find a tighter
bound.

∂

∂z

(
z +

C

2n
e−2nz

)
= 1 +

C

2n
(−2n)e−2nz = 0

⇒ z =
1

2n
lnC ⇒ E [Z] ≤

√
ln e× C

2n

�

5 Answers

Here answers to some of the questions are included. The answers are mostly by the authors, and
might be buggy. Therefore, read cautiously!

5.1 Answers to example 1.51.5

To answer this we use generalization of the finite class lemma. We use Lemma ?? to prove each
of the following cases. In fact, the only thing that we need to do, is to count the number of the
distinct values in F(Zn).

1. For the class of functions of the form 1 {X ≥ t}, the possible configuration of the values is
shown
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n+ 1 cases :



0 0 0 . . . 0 0
0 0 0 . . . 0 1
0 0 0 . . . 1 1
...

...
...

...
...

1 1 1 . . . 1 1

Just plugging-in in the Lemma ??, it gives us,

Rn(F1) ≤ 2

√
log |F(Zn)|

n
= 2

√
log(n+ 1)

n
, ∀n

2. Now consider the class of the functions of the form, 1 {s ≥ X ≥ t}. Now, we want to count
the number of distinct values could be produced by this function. This class consists of binary
strings of lengths n, with consecutive sequence of 1’s, and the rest being zero. For example,

0, 0, 0, . . . , 0, 0, 0,

k consecutive 1’s︷ ︸︸ ︷
1, 1, 1, . . . , 1, 1, 1, 0, 0, 0, . . . , 0, 0, 0︸ ︷︷ ︸

length n

The number of distinct such binary sequences could easily be counted. The count equals to
the number of the ways we can put two separating partitions between object (and before the
first object, and after the last object), which equals to

(
n
2

)
, plus one for everything being zero.

Then,

|F(Zn)| =
(
n

2

)
+ 1⇒ log |F(Zn)| = n(n+ 1)

2
+ 1 ≤ 2n2

Rn(F2) ≤ 2

√
log(2n2)

n
≤ 2

√
2 log(n) + log 2

n

3. We use the Sour’s lemma. The number of distinct subsets of size at most k elements, among
n elements, equal to,

k∑
i=1

(
n

i

)
which, based on Lemma 1.31.3, is upper-bounded by

(
en
k

)k. Using the finite class lemma, this
gives us the following Rademacher bound,

Rn(F3) ≤ 2

√
k log(ne/k)

n
, ∀n ≥ k

5.2 Answer to example 1.61.6

5.2.1 First part:

We start with the definition of the Rademacher complexity, and bound it from above. We use the
property given in the problem that, for any function f ∈ F , there exits a function fj ∈ F ′ such that
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supz∈Z |f(z)− fj(z)| ≤ ε. Given an arbitrary f ∈ F ,∣∣∣∣∣ 1n
n∑
i=1

σif(Zi)

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

σi (f(Zi)− fj(Zi) + fj(Zi))

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

σi (f(Zi)− fj(Zi))

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

σifj(Zi)

∣∣∣∣∣
≤ ε+ max

1≤j≤k

∣∣∣∣∣ 1n
n∑
i=1

σifj(Zi)

∣∣∣∣∣
For a given set of samples Zn,

Rn(F(Zn)) = E sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

σif(Zi)

∣∣∣∣∣
≤ E

{
ε+ max

1≤j≤k

∣∣∣∣∣ 1n
n∑
i=1

σifj(Zi)

∣∣∣∣∣
}

= ε+ E max
1≤j≤k

∣∣∣∣∣ 1n
n∑
i=1

σifj(Zi)

∣∣∣∣∣
≤ ε+ 2L

√
logN∞(F(Zn), ε)

n

To be more accurate, the last bound above is, ε + 2(L + ε)

√
logN∞(F(Zn),ε)

n . Since the covering
functions aren’t necessarily bounded by L (but bounded by L + ε instead). But for any set of
covering function fj which is |fj(z)| > L, we can limit it to ±L, and it will still be a covering:

f ′(z) =


L fj(z) > L

−L fj(z) < −L
0 otherwise

This will bound the covering functions to L and will give the desired bound. The Rademacher
average over the whole class,

Rn(F) = sup
zn∈Zn

Rn(F(zn)) ≤ ε+ 2L

√
logN∞(F , ε)

n

Now we can tighten the bound for an arbitrary value of ε > 0s,

Rn(F) ≤ inf
ε∈R+

{
ε+ 2L

√
logN∞(F , ε)

n

}
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5.2.2 Second part:

Before starting the proof, we state Holder’s inequality without proof. We will use this theorem
during the proof.

We show that one can find a family of functions G with size (2/ε)n such that for any functions
f ∈ F , there exists g ∈ G, and ||f − g||∞ ≤ ε. To show this, it is enough to show it for special case
of G, though there might be better answers. For that, we define the following class functions:

G(ε) =
{
〈w.z〉|z ∈ Z, w ∈ W(ε)d

}
,

in which W(ε) = {±εk|k ∈ [1, ..., 1/ε]}. Based on the above definition,

∀w ∈ [−1, 1], ∃w′ ∈ W, s.t. |w − w′| ≤ ε

⇒ ∀w ∈ [−1, 1]d, ∃w′ ∈ Wd, s.t. ||w − w′||∞ = max
1≤j≤d

|w − w′| ≤ ε

Also note that, |G(ε)| = (2/ε)d. Now, for any arbitrary function f ∈ F , we choose the function
g ∈ G which has smallest ||f − g||∞. For this function, for a given z ∈ Z,

∀z ∈ Z |f(z)− g(z)| ≤ |w.z − w′.z|
≤ |w − w′|∞|z|1 (Holder’s inequality)

≤ ε× 1⇒ ||f − g||∞ = sup
z∈Z
|f(z)− g(z)| ≤ ε

⇒ ∀f ∈ F , ∃g ∈ G, s.t. ||f − g||∞ ≤ ε

This end our proof that, N∞(F , ε) ≤ (2/ε)d.

Now we use the result of the previous part, and plug-in N∞(F , ε),

Rn(F) ≤ inf
ε∈R+

{
ε+ 2

√
logN∞(F , ε)

n

}

≤ inf
ε∈R+

ε+ 2

√
d ln 2

ε

n


If we choose ε = 2

n ,

Rn(F) ≤ ε+ 2

√
d ln 2

ε

n
=

2

n
+ 2L

√
d lnn

n

Thus,

Rn(F) ≤ 2

n
+ 2

√
d lnn

n
≤ C2

√
d lnn

n
, for C2 big enough.

It can be shown that C2 = 4 satisfies the above property. Now we prove this. For any d ≥ 1, and
for any n ≥ 1, we have

2

n
≤ 2

√
1

n
≤ 2

√
d lnn

n
⇒ 2

n
+ 2

√
d lnn

n
≤ 4

√
d lnn

n
,
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⇒ Rn(F) ≤ 4

√
d lnn

n
.

Which proves,

Rn(F) = O

(√
d lnn

n

)

5.2.3 Third part:

Given the assumption, we know,
lnN∞(F , ε) ≤ Cε−

1
α .

By plugging this into the result of the first part,

Rn(F) ≤ inf
ε∈R+

{
ε+ 2L

√
logN∞(F , ε)

n

}

≤ inf
ε∈R+

ε+ 2L

√
Cε−

1
α

n


Now, choosing ε = n−

α
2α+1 ,

ε+ 2L

√
Cε−

1
α

n
= n−

α
2α+1 + 2L

√
Cn−

α
2α+1 =

(
1 + 2L

√
C
)
n−

α
2α+1

⇒ Rn(F) ≤ C ′n−
α

2α+1 for C ′ ≥ 1 + 2L
√
C

5.3 Answer to example 1.91.9

5.3.1 First part:

To prove this bound, we use the notion of the VC-dimension. We know,

ERn(F(Zn)) ≤ C
√
V (F)

n

We define F to be set of indicators on half-interval. It is easy to show that, the VC-dimension
for a class of functions consisting of half-intervals is one. Also, we can treat the CDF function,
as empirical risk for a set of half-interval functions. By this assumption, we know that, using the
symmetrization trick we can find the following bound (proof in Lemma ??):

E
[
sup
x∈R

∣∣∣F̂n(x)− Fn(x)
∣∣∣] ≤ 2ERn(F(Zn))

Using these facts, we can find the following bound,

E
[
sup
x∈R

∣∣∣F̂n(x)− Fn(x)
∣∣∣] ≤ 2ERn(F(Zn)) ≤ C√

n
, for some C > 0
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5.3.2 Second part:

To prove this, we first prove a lemma.
We use the Lemma 1.101.10. Defining Z = supx∈R

∣∣∣F̂n(x)− Fn(x)
∣∣∣, we know that,

E [Z] ≤
√

ln (e× 2)

2n
≤
√

2 ln (e)

2n
=

1√
n
.

5.4 Answer to example 1.111.11

5.4.1 First part:

To prove this bound, we use the notion of the VC-dimension. We know,

ERn(F(Zn)) ≤ C
√
V (F)

n

We define F to be set of indicators on half-interval. It is easy to show that, the VC-dimension
for a class of functions consisting of half-intervals is one. Also, we can treat the CDF function,
as empirical risk for a set of half-interval functions. By this assumption, we know that, using the
symmetrization trick we can find the following bound (proof in Lemma ??):

E
[
sup
x∈R

∣∣∣F̂n(x)− Fn(x)
∣∣∣] ≤ 2ERn(F(Zn))

Using these facts, we can find the following bound,

E
[
sup
x∈R

∣∣∣F̂n(x)− Fn(x)
∣∣∣] ≤ 2ERn(F(Zn)) ≤ C√

n
, for some C > 0

5.4.2 Second part:

We use the Lemma 1.101.10. Defining Z = supx∈R

∣∣∣F̂n(x)− Fn(x)
∣∣∣, we know that,

E [Z] ≤
√

ln (e× 2)

2n
≤
√

2 ln (e)

2n
=

1√
n
.
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