
Variational Approximation

1 Introduction

The name “Variational” is a general name to call a very broad range of
optimization-based formulation of problems, which are mostly inspired from
“calculus of variations”. Thus one should NOT look at this method, as a
black-box algorithm; instead it has includes a very useful techniques for sim-
plifying very broad range of problems into tractable optimization problems.

Example 1 (Variational representation for solving linear systems). Prob-
lem: Let’s say we are given a vector y ∈ Rn and a positive-definite matrix
A ∈ Rn×n, and we want to solve the given linear system Ax = y.
Direct solution: The direct solution could be found from the matrix inver-
sion:

x∗ = A−1y

Equivalent variational solution: Assume the following cost function:

Jy(x) =
1

2
x>Ax− y>x.

The notation Jy(u) means that this cost function is a parametric form of
the observation y and the variable u. We can show that this cost function is
strictly convex and the minimum fix-point equals to x∗ = arg minx Jy(u) =
A−1y.
The above two solutions (direct and variational) are both equivalent. This
example shows how the prevalent problem of matrix inverse and linear sys-
tems can be posed as an optimization problem.

Not any variational problem has a unique answer. See the next example
for an instance.

Example 2 (Variational problems without unique answers). The following
question doesn’t have answer.

min
f

∫ 1

0

[
f +

((
∂f

∂x

)
− 1

)]
dx
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The following question has infinite number of answers:

min
f

∫ 1

0

[
1√

1 + f ′2
− 1√

2

]
dx

Example 3 (The shortest distance between two points in a line!).

2 Variational principle for probabilistic learning

Variational is a very useful approach to solving problems with intractable
posterior distribution via some approximations. The idea is to replace the
intractable posterior with a tractable approximation. Here I am going to
symbolically introduce the variational principle for learning probabilistic
models. First assume the simple graphical model in Figure 1, in which
we assume X ∈ Rn and Z ∈ Rm which are two random variables. Our
observations is X, and using that, we want to learn and infer about the
latent variable Z. Let’s also assume that we have a set of parameters θ. Note
that, this simple graphical model is just a symbolic representation of a our
main big graphical, and in practice we might have a set of observations and
latent variables. In probabilistic way we can show this inference as posterior
on latent variables, conditioned on observations p(Z|X,θ). We assume that
the main model is complicated that this posterior is intractable:

p(X,Z|θ) = p(Z|X,θ)p(X|θ). (1)

Z X

Figure 1: Symbolic connection between observation and latent variables.
The blue variable is observation.

In variational learning we are going to approximate the real posterior
distribution with a another distribution. Generally one can get an approx-
imation to another distribution, by assuming some independence assump-
tions which simplify it into multiplication of several simpler distributions
which are easier to work with.For the sake of emphasis on approximation, it
is common to denote this distribution with q(.) instead of p(.):

q(Z) =
m∏
i=1

q(Zi) (2)
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There is not general rule for decomposition of variables into disjoint distribu-
tions; for any problem one should consider the interaction between variables
and possibility of realistic decompositions in the distribution. Note that in
practice the approximate distributions q(z) is a parametric form of ω (varia-
tional parameters) which characterize this distribution; so it is more accurate
to denote it by qZ(z;ω), in which ω denote set of variational parameters.

Remark 1. Sometimes this method is called meanfield variational method;
this name is because of decomposition of q(.). Note that even without decom-
position assumptions here, one could follow all of the following derivations.
When using the final results in updating, decomposition will help us to find
easier update rules.

To approximate the true posterior p(.) using the decomposed distribution
q(.) we should find a measure of distance between two functions, and also is
practical in computational sense1.

Lemma 1. We have the following fact,

log p(X|θ) = L(qZ) + KL(qZ||pZ|X). (3)

In which we defined the following two notations; the first one is KL-divergence,

KL(qZ||pZ|X)
4
= Eq

[
log

q(Z)

p(Z|X,θ)

]
(4)

And the second one is the lower bound on the likelihood (to be shown)

L(q,θ)
4
=

∫
Rm

q(Z) log
p(X,Z|θ)

q(Z)
dZ (5)

Proof. Now using equation 1 we have,

log p(X|θ) = log p(X,Z|θ)− log p(Z|X,θ)

log p(X|θ) = log
p(X,Z|θ)

q(Z)
− log

p(Z|X,θ)

q(Z)
.

Multiplying two sides in q(Z) we have,

q(Z) log p(X|θ) = q(Z) log
p(X,Z|θ)

q(Z)
− q(z) log

p(Z|X,θ)

q(Z)∫
Rm

q(Z) log p(X|θ)dZ =

∫
Rm

q(Z) log
p(X,Z|θ)

q(Z)
dZ−

∫
Rm

q(Z) log
p(Z|X,θ)

q(Z)
dZ.

1In practical sense, this is more important! This is the reason for long domination of
the bloodthirsty quadratic error!!
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Note that in the left part of the above equation p(X|θ) is not a function of
z and thus,

∫
Rm q(Z) log pX(X|θ)dZ = log p(X|θ). Note that,

KL(qZ||pZ|X)
4
= −

∫
Rm

q(Z) log
p(Z|X,θ)

q(Z)
dZ (6)

=

∫
Rm

q(Z) log
q(Z)

p(Z|X,θ)
dz (7)

= Eq
[
log

q(Z)

p(Z|X,θ)

]
(8)

Putting the results together we have,

log p(X|θ) = L(qZ) + KL(qZ||pZ|X). (9)

The equation (3) is shown in Figure (2). Now in equation 3 note that
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Figure 2: Representation of equation 3.

left side of the equation is not a function of q(.). The training consists of
increasing the overall likelihood we are doing a two step procedure similar
to EM algorithm:

1. Initialize θ, and variational parameters of q(.).

2. Repeat until convergence

(a) E-step:

q(t+1) = arg max
q
L(q(t), θ(t)) = arg min

q
KL(qZ||pZ|X) (10)
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(b) M-step:
θ(t+1) = arg max

θ
L(q(t+1), θ(t)) (11)

Visualization of these two steps is shown in Figure 3.
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Figure 3: Steps in variational learning; the above part is E-step and the
other is M-step.

Remark 2. Basically we are doing coordinate ascent optimization, i.e.
given one multivariable objective function, fix all of the variables but one,
and maximize with respect to that variable.

3 Yet another justification

Lemma 2. The L(q,θ) is a lower bound on the likelihood distribution. In
other words,

p(X|θ) ≥ exp [L(q,θ)]
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Proof. I use Jensen’s inequality here to show that L(q,θ) a lower bound for
the original likelihood:

ln p(X|θ) = ln

∫
Rm

p(X,Z|θ)dZ

= ln

∫
Rm

q(Z)
p(X,Z|θ)

q(Z)
dZ

≥
∫
Rm

q(Z) ln
p(X,Z|θ)

q(Z)
dZ = L(q,θ)

This shows that exp [L(q,θ)] a lower bound for likelihood p(X|θ):

⇒ p(X|θ) ≥ exp [L(q,θ)]

Corollary 1. Maximizing L(q,θ) (lower bound) will result in maximizing
the likelihood p(X|θ). For this reason, L(q,θ) is sometimes called ELBO
(Evidence Lower Bound).

Another useful point in the above result is that, one could use the lower
bound on likelihood as a good measure of convergence, instead of main
likelihood, in case it has a complicated form.

Remark 3. However through lots of examples people have shown effective-
ness of maximizing lower bound on the likelihood (instead of maximizing
likelihood itself), indeed it is a serious question that when this argument is
true and when is not. This topic of some ongoing research in community.

Proposition 1 (Convexity of the lower bound). The ELBO bound is convex
with respect to each of the q(Zi) (proof?).

4 More simplification of updates for mean-field
family

Let’s consider the equation 5,

L(q,θ) =

∫
Rm

q(Z) log
p(X,Z|θ)

q(Z)
dZ

=

∫
Rm

q(Z) log p(X,Z|θ)dZ−
∫
Rm

q(Z) log q(Z)dZ
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Remark 4. The second term in the above final relation is information en-
tropy of q(Z).

L(q,θ) = Eq [log p(X,Z|θ)− log q(Z)]

= Eq

[
log p(X,Z|θ)− log

m∏
k=1

q(Zk)

]

= Eq [log p(X,Z|θ)]−
m∑
k=1

Eq [log q(Zk)]

Now lets say we want to optimize the above expression with respect to
one term in approximate posterior, say q(Zj); thus, we try to take the
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corresponding term out of the whole equation,

L(q,θ) = Eq(Z) [log p(X,Z|θ)]−
m∑
k=1

Eq(Zk) [log q(Zk)]

= Eq(Zj)

[
E∏m

i=1
i 6=j

q(Zi) [log p(X,Z|θ)]

]
−

m∑
k=1

Eq(Zk) [log q(Zk)]

= Eq(Zj)

[
E∏m

i=1
i 6=j

q(Zi) [log p(X,Z|θ)]

]
− Eq(Zj) [log q(Zj)]−

m∑
k=1
k 6=j

Eq(Zk) [log q(Zk)]

= Eq(Zj)

[
log

(
exp

{
E∏m

i=1
i 6=j

q(Zi) [log p(X,Z|θ)]

})]
− Eq(Zj) [log q(Zj)]−

m∑
k=1
k 6=j

Eq(Zk) [log q(Zk)]

= Eq(Zj)

[
log

(
exp

{
E∏m

i=1
i 6=j

q(Zi) [log p(X,Z|θ)]

})
− log q(Zj)

]
−

m∑
k=1
k 6=j

Eq(Zk) [log q(Zk)]

= Eq(Zj)

log

exp

{
E∏m

i=1
i 6=j

qZi
[log p(X,Z|θ)]

}
q(Zj)

−
m∑
k=1
k 6=j

Eq(Zk) [log q(Zk)]

= −KL

(
q(Zj)|| exp

{
E∏m

i=1
i 6=j

q(Zi) [log p(X,Z|θ)]

})
−

m∑
k=1
k 6=j

Eq(Zk) [log q(Zk)]

Now only the left term is a function of q(Zj); to maximize L(q,θ) with
respect to q(Zj), we should minimize the KL-divergence, which results in
the following,

q(Zj) ∝ exp
{
Eq(Z−j) [log p(X,Z|θ)]

}
(12)

where q(Z−j) stands for
∏m
i=1
i 6=j

q(Zi).

Remark 5. There is a very good similarities between Gibbs sampling and
mean-field variational learning. In Gibbs sampling we sample from condi-
tionals (function of only one variable); this is similar to coordinate ascent
updates in variational learning.
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5 Examples

5.1 Dirichlet Process Mixture

Just as a brief reminder, the DPM model is defined in the following form:

G|α,G0 ∼ DP(α,G0)

ηn|G ∼ G
Xn|ηn ∼ p(xn|ηn)

We can concatenate the component parameters which are the same and
represent the with η∗1:

(η1, . . . , ηn)→ (η∗1, . . . , η
∗
K)

In order to apply the variational updates we use the stick-breaking repre-
sentation of the DP:{

Vi ∼ Beta(1, α)

η∗i ∼ G0

⇒ πi(v) = vi

i−1∏
j=1

(1− vj)

⇒ G =

+∞∑
i=1

πi(v)δη∗i

The sampling procedure could be explained in the following way:

1. Vi ∼ Beta(1, α), i = 1, 2, 3, . . .

2. η∗i ∼ G0, i = 1, 2, 3, . . .

3. For example data n = 1, . . . , N

(a) Zn|{v1, v2, ...} ∼ Multi(πi(v))

(b) Xn|zn ∼ p(xn|η∗zn)

The only assumption that we make is on the distributional form of
p(xn|zn, {η∗i }) and p(η∗i |λ):

p(η∗i |λ) = h(η∗i ) exp{λ>1 η∗i + λ2 (−a(η∗i ))− a(λ)} (13)

p(xn|zn, {η∗i }) =
∞∏
i=1

(
h(xn) exp{η∗i

>xn − a(η∗i )}
)1{zn=i}

(14)

In the next step we derive the variational updates for DPM.
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Example 4 (Variational updates for DPM). First consider the full likelihood
based on the graphical model of the DPM base on stick-breaking representa-
tion:

p(X,Z, η∗, V ) = p(X|Z, η∗)p(Z|V )p(η∗|λ)p(V |α) (15)

In this distribution we are assuming that X is the only variable observed
and we want to estimate the latent parameters of the model Z, η∗, V . Also
remember that based on the stick-breaking construction we have:

p(Zn|V ) = VZn

i<Zn∏
i=1

(1− Vi) (16)

=
+∞∏
i=1

(1− Vi)1{Zn>i}V 1{Zn=i}
i (17)

It is easy to show that the Equation 16 follows from the Equation 17.

p(Zn|V ) =
+∞∏
i=1

(1− Vi)1{Zn>i}V 1{Zn=i}
i (18)

Vi ∼ Beta(1, α)⇒ p(V |α) ∝ (1− Vi)α−1 (19)

We approximate each of these latent variables with a distribution which
which we denote with q(.) (to emphasize that it is an approximation):

• Zt → qφn(zn), n = 1 . . . N

• η∗t → qτt(η
∗
t ), t = 1 . . . T

• Vt → qγt(vt), t = 1 . . . T

Note that each of these approximate family of distributions are character-
ized by some hyperparameters. For example Z which is approximated via
qφn(zn)(the first item) which is characterized via φn as the parameters of
the distribution. Thus inference on the model, basically means finding these
latent parameters.

To make the computations tractable, a truncated stick breaking process is
assumed. In other words, let’s say we perform the stick-breaking for T times,
until all of the stick gets used. This means that in the last breaking step, we
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use the whole remaining stick, i.e. q(vT ) = 1. The joint distribution of the
hyperparameters is

q(Z, η∗, V ) =
T−1∏
t=1

qγt(vt)
T∏
t=1

qτt(η∗t )

N∏
n=1

qφn(zn). (20)

Now let’s find the updates for V :

ln q(vt) = Eq−vt [log p(X,Z, η∗, V )] + C

where q−vt means the joint approximate distribution in Equation 20, except
for the t-th term of V . We can replace p(X,Z, η∗, V ) with its definition in
Equation 15 and keep only the terms which contain Vt.

ln q(vt) = Eq−vt [ln p(X,Z, η∗, V )] + C

= Eq−vt [log p(X|V ) + ln p(V |α)] .

Then we can continue to simplify it using Equation 18 and Equation 19.

ln q(vt) = Eq−vt [ln p(X|V ) + ln p(V |α)]

= Eq−vt

[
ln

N∏
n=1

+∞∏
i=1

(1− Vi)1{Zn>i}V 1{Zn=i}
i + ln(1− Vt)α−1

]

=
N∑
n=1

Eq−vt [1 {Zn > t}]× ln(1− Vt)

+
N∑
n=1

Eq−vt [1 {Zn = t}]× lnVt + (α− 1) ln(1− Vt)

Also note that,

Eq−vt [1 {zn > t}] = q(zn > t) =
T∑

i=t+1

φn,i

Eq−vt [1 {zn = i}] = q(zn = t) = φn,i

which gives us,

ln q(vt) =
N∑
n=1

T∑
i=t+1

φn,i × ln(1− Vt) +
N∑
n=1

φn,t lnVt + (α− 1) ln(1− Vt)

(21)

(22)
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What is the distributional form of q(vt)? Suppose it has Beta distribution,

Vt ∼ Beta (γt,1, γt,2)

Then,
ln q(vt) = (γt,1 − 1) lnVt + (γt,2 − 1) ln(1− Vt) + C.

This matches the form of Equation 21. Note that we never made any as-
sumption on the distributional form of q(vt), but it naturally came out. Com-
paring this with Equation 21, we will end up with the following,{

γt,1 = 1 +
∑

n φn,t

γt,2 = α+
∑

n

∑T
j=t+1 φn,j

(23)

Now let’s derive the factor which contains η∗:

ln q(η∗t ) = Eq−η∗t [ln p(X,Z, η∗, V )] + C

We replace the full likelihood from Equation 15 and only keep the terms
which contain η∗t :

ln q(η∗t ) = Eq−η∗t [ln p(X|Z, η∗) + ln p(η∗|λ)] + C

Based on the assumption on the prior we have,

ln p(η∗|λ) = lnh(η∗) + λ>1 η
∗ + λ2 (−a(η∗))− a(λ)

⇒ Eq−η∗t [ln p(η∗|λ)] = Eq−η∗t lnh(η∗) + λ>1 Eq−η∗t η
∗ + λ2Eq−η∗t (−a(η∗)) + C

= lnh(η∗t ) + λ>1 η
∗
t − λ2a(η∗t ) + C

And,

Eq−η∗t [ln p(X|Z, η∗)] = Eq−η∗t

[
ln

N∏
n=1

p(xn|zn, η∗)1{zn=t}

]

=

N∑
n=1

Eq−η∗t [1{zn = t}]
(
η∗t
>xn − a(η∗t ) + C

)
=

N∑
n=1

φn,t

(
η∗t
>xn − a(η∗t ) + C

)
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Next we plug-in the distributions

ln q(η∗t ) =
N∑
n=1

φn,t

(
η∗t
>xn − a(η∗t ) + C

)
+ lnh(η∗t ) + λ>1 η

∗
t − λ2a(η∗t ) + C

=

(
λ1 +

N∑
n=1

φn,txn

)>
η∗t +

(
λ2 +

N∑
n=1

φn,t

)
(−a(η∗t )) + lnh(η∗t ) + C

This matches the prior distribution over η∗ in the Equation 13, with the
following parameters: {

τt,1 = λ1 +
∑

n φn,txn

τt,2 = λ2 +
∑

n φn,t
(24)

The last update is for the parameters of the distribution corresponding
to Z:

ln q(zn = t) = Eq−η∗t [ln p(X,Z, η∗, V )] + C

Then we replace the definition of the full likelihood in Equation 15 and keep
the factors that contain zn:

ln q(zn = t) = Eq−zn [ln p(X|Z, η∗) + ln p(Z|V )] + C

Next we simplify each term in the above equation:

Eq−zn [ln p(X|Z, η∗)] = Eq−zn

[
ln

+∞∏
i=1

(
h(xn) exp{η∗i

>xn − a(η∗i )}
)1{zn=i}

]

= Eq−zn

[
+∞∑
i=1

1{zn = i} ln
(
h(xn) exp{η∗i

>xn − a(η∗i )}
)]

= E [η∗t ]
>Xn − Ea(η∗t ) + C

And,

Eq−z [ln p(Zn = t|V )] = Eq

[
lnVt

t−1∏
i=1

(1− Vi)

]

= Eq lnVt + Eq ln
t−1∑
i=1

ln(1− Vi)
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which would give the following update rule:{
φn,t ∝ exp(St)

St = Eq lnVt +
∑t−1

i=1 Eq ln(1− Vi) + Eq [η∗t ]
>Xn − Eqα(η∗t )

(25)

The overall algorithm is looping over the Equations 23, 24, and 25.
Since we have assumed the independence between different terms of the

posterior distribution we have induces many local optima in the parameter
space of the problem. Thus the initialization of the model might play a
very important role in training the model. Testing the model with many
different random initialization seems to be a reasonable approach. But how
to control the convergence to good answer? Remember the goal was to choose
the parameters which maximize the posterior. Evaluating the exact posterior
is complicated; instead we can evaluate the lower-bound on it:

L ≥ expEq
[
ln
p

q

]
= exp {Eq [ln p]− Eq [ln q]}

6 On minimization of divergence measures

Back to the variational M-step in Equation 11, it is just a mapping, from
distribution p(.) to a (tractable) family of distributions q(.). In addition to
the KL-divergence, this mapping could be done via many other divergence
measures between functions, to see examples and some properties see the
Wiki pages for KL-divergence, Bregman divergence or f -divergence.

There is a nice discussion of divergence minimization in [Altun and Smola(2006)].
Here we briefly mention some of the important results.

7 Energy minimization justifications

[TBW]

8 Variational learning with exponential family

Let us first review some properties about the exponential families. If you
are already familiar with the exponential family, skip the definition.

Definition 1 (exponential families). We want to define a probability dis-
tribution on X domain. Assume the vector of sufficient estimators φ(x) =

14

http://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
http://en.wikipedia.org/wiki/Bregman_divergence
http://en.wikipedia.org/wiki/F-divergence


[φ(x)1, . . . , φ(x)d]
> in in which φi(x) : X → R is a function defined for

any j = 1, . . . , d. This can correspond to the all nodes and connections in
a Graphical model. In addition assume the vector of canonical parameters
θ = [θ1, . . . , θd]

>, in which θi ∈ R. Now define the distribution as following,

pθ(x) = h(x) exp
(
θ>φ(x)−A(θ)

)
where h(x) is an arbitrary function of x. Usually this is h(x) = 1. A(θ) is
the cumulative generating function, and is defines as A(θ) = log

∫
x∈X h(x) exp

(
θ>φ(x)

)
ν(dx),

where ν(.) is the measure defined on X . Note that the normalizing function
for the distribution is defined as Z(θ) =

∫
x∈X h(x) exp

(
θ>φ(x)

)
ν(dx) =

logA(θ).

The distribution is called minimal if the set of sufficient estimators are
linearly independent. In other words, there is no θ ∈ Rn for which θ>φ(x) =
0 for all x ∈ X . If the distribution is not regular, it is called over-complete.
The distribution is called regular if for any vector coefficients the distribu-
tion is normalizable(a valid distribution). In other words, if we define the
set Ω = {θ ∈ Rn| |A(θ)| < +∞}.

This family of distributions has different properties, some of which we
are listing here. Many important distributions lie in the exponential family,
for example Gaussian, Multinomial and Bernoulli. There is a rich table for
transformation of many distributions can be found on the Wiki. In addition
to the parametric distributions mentioned in the Wiki, it can be shown that
any joint probability distribution on discrete random variables can be trans-
formed into the exponential form.

The cumulative generating function has very important properties. The
first derivative of commutative generating function is the expectation of the
vector of the sufficient statistics,

∇θA(θ) = Ep(φ(x)). (26)

This property is very useful since we can compute the integral of expecta-
tion, by differentiation. There is a similar relation for the second derivative,

∇2
θA(θ) = Varp(φ(x)).

The sufficiency is a statistical property, and it means that “having the values
of the sufficient statistics, we don’t need the data points to do inference”.
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In other words, after learning model, we can just through away the training
data points. This is helpful because usually the dimension of the data points
are much higher than the number of the sufficient statistics. Also if you
consider the joint distribution of IID variables (likelihood), pθ(x1, . . . ,xn) =∏n
i=1 h(xi) exp

(
θ>
∑n

i=1 φ(xi)− nA(θ)
)
. This shows the only information

visible from the training random variables is the summation
∑n

i=1 φ(xi).
Thus, have the value of this summation is enough for inference using this
exponential model. The exact definition of sufficiency can be explained using
the FisherNeyman factorization theorem (see Wiki).

Continuing the previous note, let’s find the maximum likelihood estimation
of the parameter vector θ using the likelihood of the IID random variable
observations,

θML = arg max
θ

pθ(x1, . . . ,xn).

Putting the derivative of the joint distribution with respect to parameters to
zero, we find the maximum-likeli estimation, ∇θA(θ) = 1

n

∑n
i=1 φ(xi). Us-

ing our previous findings, we see that Ep(φ(x)) = 1
n

∑n
i=1 φ(xi) which says

that the expected value of the sufficient statistic matches its average found
using IID samples (by having enough data). This is very useful since in
finding the expected value of the sufficient statistics by averaging their val-
ues from the training data, there is no need for parameter estimation for the
original distribution.

Another very important property is the convexity of A(θ) with respect to
θ. In other words,

A(βθ1 + (1− β)θ2) < βA(θ1) + (1− β)A(θ2),∀β ∈ (0, 1),θ1 6= θ2

This is easy to prove; just observe that the second derivative (Hessian) of
A(θ) equals to is the covariance function of the sufficient estimators, and is
a positive-semi-definite matrix(if you don’t know why see Wiki).

Another nice property of the exponential family is the conjugacy. This
means that, if we choose an exponential prior distribution in a Bayesian
model with an exponential likelihood, the posterior distribution will be in the
same exponential family.

Proof. This is easy to show; say the output observation is x with parameter
vector of θ with exponential distribution,

p(x|η) = h(x) exp
(
θ(η)>φ(x)−A(θ(η))

)
,

16

http://en.wikipedia.org/wiki/Sufficient_statistic
http://en.wikipedia.org/wiki/Covariance_matrix#Which_matrices_are_covariance_matrices.3F


which is the definition we used for the exponential family with the difference
that the vector of parameters is function of another random variable η. The
prior over the η we define to be,

pλ(η) = g(η) exp
(
θ(η)>λ−B(λ)

)
.

Let’s assume we have a matrix of observation X = [x1, . . . ,xn], and the
likelihood for the random IID observation variables is,

p(X|η) =
n∏
i=1

h(xi) exp

(
θ(η)>

n∑
i=1

φ(xi)− nA(θ(η))

)
.

Using the Bayes formula we know that posterior equals to p(η|X;λ) ∝
p(X|η)p(η;λ)(Note that here I am assuming that η is a vector of random
variables(not constant) but λ is a vector of parameters; that’s why I write
p(η;λ) instead of p(η|λ)). Using the Bayes formula, the posterior is follow-
ing,

p(η|X;λ) ∝ exp

(
θ(η)>

(
λ +

n∑
i=1

φ(xi)

)
− (nA(θ(η)) +B(λ))

)
.

The exponential distribution also arises naturally from the maximum en-
tropy principle. The maximum entropy procedure consists of seeking the
probability distribution which maximizes information entropy, subject to the
constraints of the information. If we constrain the expected values of the suf-
ficient statistics to be mean of the empirical mean of them under the sampled
data, the resulting distribution which maximizes the entropy is the exponen-
tial family. To make the statement more accurate, let’s express it in terms
of formula. Given iid random variables, x1, . . . ,xn ∼ p∗, where p∗ is the un-
derlying unknown distribution. Define a set of functions {φi(.) : X → R}di=1,
and consider the empirical mean of the sampled data under these functions,

µ̂j =
1

n

n∑
i=1

φj(xi), ∀j ∈ {1, . . . , d}

The problem is that we are looking for a distribution, p(.) which has the same
set of expected values for the defined functions as their empirical distribution,
i.e.

Ep [φj(x)] =

∫
X
φj(x)p(x)ν(dx) =

1

n

n∑
i=1

φj(xi) = µ̂j ,
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and at the same time maximizes the entropy under this distribution,

E =

∫
X
−p(x) log p(x)ν(dx).

This constrained optimization will result in the parametric form of the ex-
ponential family of distributions defined here.

Looking at the update rule at equation 12, one might suspect that we
probably can devise easier updates for each q(Zi), when they are from ex-
ponential families. In fact, having only a few moments of exponents in
exponential families are sufficient estimators of this family of distributions.
Let’s say 1 has the following general form in exponential families,

p(X,Z|θ) = f(χ, ν) exp
{
η(X,Z)Tχ− ν A(η(X,Z))

}
ln p(X,Z|θ) = ln f(χ, ν) + η(X,Z)Tχ− ν A(η(X,Z))

Eq(Z−j) ln p(X,Z|θ) = ln f(χ, ν) + Eq(Z−j)η(X,Z)Tχ− Eq(Z−j)ν A(η(X,Z))

then,

q(Zj) ∝ f(χ, ν) exp
{
Eq(Z−j)η(X,Z)Tχ

}
This shows that that choosing the approximating functions q(Z), from the
same exponential family of the conditional p(X,Z|θ) would crucially help in
E-step updates; we only need to calculate expectation of the exponent with
respect to approximating family. More on this property and more examples
at [Wainwright and Jordan(2008)].

8.1 Mean parametrization and marginal polytopes

Let’s assume the probability density p(.) (not necessarily in the exponential
family). Assume a set of local functions {φi(.) : X → R}i∈I , in which I is

a set of indices. Also a vector of mean parameters µ = [µ1, . . . , µd]
> which

are defined as following,

µj = Ep [φj(x)] =

∫
X
φj(x)p(x)ν(dx)

Now we define the whole space of realizable mean vectors by any families of
distributions P (not limited to exponential family) as marginal polytope,

M =
{
µ ∈ R|I||∃p(.) ∈ P s.t. Ep [φ(x)] = µ

}
18



If in the above definition we limit the family of the distributions P to the
exponential family E , since the exponential family is a strict the general
distributions, the resulting polytope M0 is a strict subset of the polytope
M,

M0 =
{
µ ∈ R|I||∃p(.) ∈ E s.t. Ep [φ(x)] = µ

}
⊂M. (27)

Proposition 2. The marginal polytopeM is a convex subset of R|I| (proof?).

Example 5 (A simple Gaussian MRF). Let’s assume φ(x) = [x, x2]>,
and the vector of means [µ1, µ2] realized under any arbitrary distribution
p(.) such that [µ1, µ2] =

[
Ep [x] , Ep

[
x2
]]

. The only constrain in such
realization is that V(x) = Ep

[
x2
]
− E2

p [x] = µ2 − µ2
1 ≥ 0

Example 6 (General Gaussian MRF). Assume a graph, on which each
vertex is associated with a continuous variable on R and the variables which
are connected by vertices are dependent based on a Gaussian distribution.
Let’s assume connection between all of the variables (a complete graph, kn).
It is more convenient to denote the sufficient statistics in a matrix instead of
a vector, since their pairwise interaction (a quadratic model) is important,

φ(x) =


1 x1 x2 . . . xn
x1 x2

1 x1x2 . . . x1xn
x2 x2x1 x2

2 . . . x2xn
...

...
...

. . .
...

xn x1xn x2xn . . . x2
n

 .

Given these local functions, we want to find the possible mean values such
that Ep [φ(x)] = µ. We show the corresponding mean matrix as follows,

U(µ) =


1 µ1 µ2 . . . µn
µ1 µ11 µ12 . . . µ1n

µ2 µ21 µ22 . . . µ2n
...

...
...

. . .
...

µn µ1n µ2n . . . µnn

 .

Now all of the constraints on the mean-space for this model could be found
by setting U(µ) be positive definite,

MGaussian-MRF =
{
µ ∈ Rn+(n2)|U(µ) � 0

}
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Figure 4: The marginal polytope for the Ising model in the example.

Example 7 (A simple Ising model). Let’s assume a very simple Ising mod-
els with only two random variables on a graph with two vertices which are
connected by an edge. Then the local functions are φ(x) = [x1, x2, x1x2]>.
Now we want to find the space of all [µ1, µ2, µ3] such that, [µ1, µ2, µ3] =
[E[x1],E[x2],E [x1x2]]. If we simplify this, E[x1] = 1×P(x1 = 1)+0×P(x1 =
0) = P(x1 = 1), similarly E[x2] = P(x2 = 1) and E[x1x2] = 1 × 1 × P(x1 =
1, x2 = 1) + 0 × 1 × . . . + . . . = P(x1 = 1, x2 = 1). Each of the individ-
ual probabilities can vary between zero and 1. Also the joint distribution
P(x1 = 1, x2 = 1) is strictly less than each of the other individual distribu-
tions. Thus the resulting polytope is depicted in Figure 4.

8.2 Convex dualities

Here want to provide another view of variational inference. Let us assume an
arbitrary function f(u) which is defined on u ∈ Rn. We show the conjugate
dual of f(.) by f∗(.) and define this function as following:

f∗(v) = sup
u∈Rn

{〈u, v〉 − f(u)}

for any v ∈ Rn. In general the above definition holds in any domain that the
Lebesgue measure holds (or on other words the inner product 〈u, v〉 makes
sense) and is not limited to real numbers.
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Remark 6. Re-using the same definition above we find the following,

(f∗)∗ (u) = sup
v∈Rn

{〈u, v〉 − f∗(v)}

gives the double conjugate dual of the function. In certain conditions, the
double conjugate dual of a function equals to itself. If the function f(.) is
well-behaved (i.e. convex and semi-continuous) then the double conjugate
dual of a function equals to itself:{

f∗(v) = supu∈Rn {〈u, v〉 − f(u)}
f(u) = supv∈Rn {〈u, v〉 − f∗(v)}

which shows the strong coupling between the functions and its conjugate dual.
If the function is concave the same duality holds with inf(.) operator, instead
of sup(.). {

f∗(v) = infu∈Rn {〈u, v〉 − f(u)}
f(u) = infv∈Rn {〈u, v〉 − f∗(v)}

This is called Fenchel’s duality theorem.

The reason for introducing these dualities is that, sometimes the opti-
mization procedure is harder than optimization in its conjugate dual form
(or vice versa). Thus we can use these conjugate dualities to find easier
optimization schemes, as it will be shown.

Proposition 3. The conjugate dual function is always a convex function
(proof?).

8.3 The log-partition function and conjugate duality

Let’s instead of the general functions f(.), assume the log-partition function
(cummulant function).

A∗(µ) = sup
µ∈Ω

{
θ>µ−A(µ)

}
.

As in the Equation 26 we have shown that ∇θA(θ) = Ep(φ(x)). We can
consider ∇θA(θ) : Ω → M as a function which maps from the parameter
space to the mean space, and we call this a forward mapping. Thus, because
A(θ) is defined for the exponential family, this forward mapping, maps all
possible parameters to all possible means by these parameters in the expo-
nential family which we calledM0 in Equation 27. Thus the mapping using
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∇θA(θ) : Ω covers the wholeM0 which is a strict subset ofM. Thus, there
might be some elements in µ ∈ M \M0 which are not realizable by any
parameter in the exponential family. If we limit the domain to M0 it is
easy to show that the mapping is one-to-one if the exponentials are minimal
(easy to show by contradiction).

Proposition 4. The mapping ∇θA(θ) : Ω→M0 is one-to-one if and only
if the exponential distribution is minimal.

The backward mapping is defined in the similar way to the forward map-
ping; For minimal exponential family, for any µ ∈M0, there exists a θ ∈ Ω
such that Epθ(φ(x)) = µ. Note that among non-exponential families there
might be some other other distributions that have the same mean µ, but all
of them have less entropy that the exponential one, since the exponential
family has the maximum entropy, given the means as constrains.

For any µ ∈ M0, let θ be the corresponding parameter based on the
equation Epθ(φ(x)) = µ. We can show that the dual function takes the
following form,

A∗(µ) =

{
−H(pθ), µ ∈M0

+∞ otherwise

in which H(pθ) is the entropy of the distribution pθ. This property is very
useful when using the maximum-entropy rule for model-selection, since it
gives the direct connection to the entropy of the model. At the same time,
given the parameters of the model, calculating the double-conjugate (the
cumlant itself) will give the corresponding vector of means which is as if
inference given a model. This explanation should prove the importance
of the variational conjugate dualities and their usefulness in inference and
model-selection problems.

Example 8 (Conjugate duality on a Bernoulli distribution). The Bernoulli
distribution PMF is defined as p(x) = βx(1 − β)1−x, over random variable
x ∈ {0, 1} where β is the probability of success in one toss. By a little
modification we can change the representation to exponential form:

p(x) = βx(1− β)1−x

= exp
{

log
[
βx(1− β)1−x]}

= exp (x log β + (1− x) log(1− β))

∝ exp (xθ) , A(θ) = log(1 + exp(θ))
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where θ = log β
1+β . We define A∗(µ) = supµ∈R {θµ− log(1 + exp(θ))} ..

Simplifying this equation for any µ ∈ (0, 1) we find the that A∗(µ) = µ logµ+
(1 − µ) log(1 − µ) which is the entropy for the Bernoulli distribution as
mentioned before.

9 Belief Propagation vs. Mean-field approxima-
tion

Here is a general tip for when to use BP and when the MF:

• Use MF: When you have an intractable models, which consists of sev-
eral tractable models, which have a weak coherence with each other.

• Use BP: When you have intractable model, with a lot of coherence
between the substructures. Often adding global structures on models,
creates strong coherence between the subgraphs of a graphical model.

And some pros and cons:

• Mean-field method, usually are applicable to simpler models, with less
internal correlation, and it is basically doing coordinate-descent on the
variables of the problem. Typically it is fast, and it always converges,
though it might converge to a wrong answer.

• BP could be applied to harder problems, but there is no guarantee for
convergence and correctness. But since could be applied to a (almost)
any configuration, it gives a lot of flexibility in designing the graph.

Note that, when the problem has a peaked unimodal posterior (unique op-
timal answer), the answer are very close to each other. In a good model it
usually ends up having peaked near-gaussian posterior.

10 Bibliographical notes

In preparation of this part I have used [Bishop(2006)]. At some visualiza-
tions I’ve also been inspired by Julia Hockenmaier’s slides 2. Some examples
and ideas are also inspired from the lecture notesat [Cevher(2008)]. An im-
portant relevant paper is [Wainwright and Jordan(2008)] which has given
the inspiration in many of the notations and examples. David Burkett’s

2http://courses.engr.illinois.edu/cs598jhm/

23



ACL tutorial had very good visualizations and points, for a tutorial. Some
examples are from David Fosyth’s optimization course. Thanks to Jin Wang
for discussing the derivation of VB for DPM.
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