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1 Introduction

In Support Vector Machines the goal is to find a separator between data which has the largest
margin, as it can be seen in the Figure |1} Note that, in the Perceptron algorithms, the goal is just
to find a separator for the data, although such separator might not be a large-margin separator.

In the following sections, we will start with the basic formulation of the SVM, and continue to
the more advanced representations of the model.

2 Simple classification using Support Vector Machines

Suppose we choose a group of data points, which could reasonably separate information regions.
These data points that lie close to separation regions, selected among all the input data, are
commonly called “support vectors”. Assume that we have group of data {x;,y;}that could be
separated by a hyperplane. Thus we can write the following statements about the separating
hyperplanes,
{ B.xi+ Bo>+1, ify;=+1
B.x;+ 6y < -1, ify; =—1.

Equivalently we could write the above separating equations as follows:

yi- (B.x; + Bo) > 1, Vi.

In the above formulation, Sy is the bias weight. To continue with simpler formulation, we do the
following reformulations:

{ﬂ —[8, B

X; [Xi, +1]
Now we will and the problem becomes,

In this formulation, 1 is the size of the margin. Instead of fixing this value, we can optimize over
it:



Figure 1: Max-margin scheme for support vector classification.
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Since only 3 is important, and to reduce the number of the parameters, we can set v = Ik Then
the previous program could be written in the following form:

ming b |8 "

This is the optimality criterion for separation of two hyperplanes. The minimization criterion,
minﬁ%H B||?, maximizes the coefficient vector, 3, while preserving the separation constraints.

One other interpretation for the above optimization criterion is as it follows. Consider the
Figure 1} and the two data points on the margin of each area, (x1,y; = +1) and (x2,y2 = —1). For
these two data points we have,

B'Xl = +1, if Y1 = +1 2
{ B.xo=-1, ify, = —1. B.(x1 2) [x1 2| 3
Here is a nice interpretation: In order to maximize the separating margin ||x; — x2|| between data
points, it suffices to minimize ||3| or minimize ||3]|? H

The formulation in the Equation [1] is called hard-margin SVM, and it is the primal form. The
objective is a quadratic function, and linear constraints, and therefore we have a quadratic opti-
mization (and hence a convex problem). Would it be enough to use a standard quadratic solver
to solve the SVM problem? Indeed one can use quadratic solver for SVM, but many early studies
showed that, since SVM problem is a special case of general quadratic programs, adhoc solutions
to SVM, usually give better and faster solutions to SVM, than general solvers. Here we will derive
multiple direct solutions to the problem.

YUsing ||3]? is just for simplicity and ease of notation



One can optimize the constrained program in the Equation [I] using Lagrange multilpiers. Now
first form the Lagrangian, with Lagrange multilpiers {\; > 0} added, as following:

LB = 3181 = YN (wiBx: ). @

Note that we wish to find saddle point of £(3,A):

m};\ixn}gm L(B,A)

The complementary slackness condition says that essentially:
Ai (yiBx; —1) =0, Vi
In other words:
o If y;3.x; > 0, then essentially A\; = 0.
o If \; > 0, then essentially y;3.x; = 1. Such points are called support vectors.
The above Lagrange function satisfies the necessary conditions,

Vl=0 = B"=> \iyiXi,
)\z’ 2 07
)\,yl,@x, -1 Z 0,
)\i {)\Zyzﬂxl — 1} =0.

By replacing 8* into the Lagrangian, one can find the dual problem which essentially has the same
solution as the main problem,

. 1
LB A) =D Ni— 5 > Xidjyiys (xix;)
i i,J

The full dual program is the following:

maxy, >, Ai — 5 2, Midjviys (xiX;) 3)
subject to: > . Ay =0, A\ >0
Now it suffices to solve the dual problem for \; > 0, and find the coeflicient vector 8* =
> Aiyix;. For prediction on new points, we can now do sign (8*.x).

Now let’s assume that we want to do classification on a non-linear space. Something important
to notice is that, the input variables enter to the optimization via inner product. We can use this
fact, and project the variables x into another space, which has inner product. More specifically we
define the function:

P X — F,

Using this function, we replace the variable “x”, with the new high-dimension variable “® (x)”.
Now we define notion of kernel which appears in different occasions, and gets a more practical in-
terpretations. We define a kernel as k(x;,x;) = (® (x;), ® (x;)). To get more intuition into kernels



and convince ourselves about usefulness of this definition let’s go back and see the formulations
based on new feature space, ® (x). The dual formulation and the prediction formulations are,

k(x;,x;)

—_—
maxy, > ; A — % Z@j Aidiyiy; (P (xi) @ (x5)),
subject to: > . Aiy; =0, A; >0,

The above formulation of problem, shows how in new formulation the inner product of variables
appear in conjunction with each other which we call it kernel. Now we can interpret the prediction,
as linear combination of kernels, defined by a subset of input data:

f(x) = sign (B".® (x))

= sign EZ: Aiyi (P (x;) P (x))

k(xq,x)
= sign (Z /\iyik(xiyx)> :
i
Remark 1. The definition of the standard SVM, has two important main points:
o Max-margin criterion
e Projection of features into arbitrary space (the kernel trick)

Example 1 (Gaussian Kernel). The following is the definition of a Gaussian kernel:

e —)?

ka(u,v) = exp < 552

) = (6.0

It can be shown that, for the above Gaussian kernel, the projection function ¢(u) is of infinite
dimension!

Example 2 (Polynomial Kernel). The following is the definition of a Polynomial kernel:
ku,v) = (1+ wv)t,  for any d (4)

Exercise 1. Given the following kernels

{K@c,x') = $(a).6(a")
K'(z,2") = ¢'(x).¢'(2')
Prove that:

e For any constant c, it is a valid kernel.

e For any constant ¢, cK is a valid kernel.

o K x K' is a valid kernel.

o K + K' is a valid kernel.

The polynomial kernel (defined in the Equation 1 a valid kernel.

4



2.1 A simple gurantee

Here we give a simple error gurantee based on the number of support vectors. Suppose hg is the
hypothesis returned by some algorithm, learned on dataset S. Then leave-one-out error of the
algorithm on data S is defined by averaging the error of the algorithm on instance z, when it is
trained on the rest of the instances S\ {z}:

. 1 &
Rigo = — > 1 {hg\ iy () # vi}
=1

Lemma 1. The expected leave-one-out error on m instances is an unbiased estimate of the ex-
pected generalization error over over m — 1 instances.

ESNDW [Rloo} = ES’NDT”*1 [RS/]

proof sketch. Distribute the expectation over the sum and decompose it into two independent ex-
pectations. ]

Lemma 2. Let hg be the hypotheis returned by SVM algorithm when trained on S dataset of size
m and let #gv be the number of support vectors in this resut. Then

#sv

Eg.pm-1|Rs] <

proof sketch. 1f a point x is not support vector then hg and hg\f;) should be the same; in other
words hg\ (3 Wil gave a correct prediction on x. If a point z is a support vector then hg\ (1 might
make a mistake on x. Replacing these results in the definition of leave-one-out error, using the
previous lemma and followed by expectation we get the desired result. O

3 Soft SVM

Instead of having hard margins, in many cases we may want to compromise a little, to get more
generalization power. So we impose slack variables £ > 0 which imposes more flexibility on the

separation margins,
Bx; >+1-&, ify;=+1
Bx; <—-1+&, ifyi=-1

Also, we want to punish the algorithm whenever there is a non-zero slack:
1 2
3 18l*+C Z &
K3

In other words, we let the algorithm to make a few mistakes, but pay for its cost. Similar to the
Equation 2] one could solve the above program. The same problem could be written in the following
form:

1
min 3 B + C' 3 masx (0,1 - :Bxi) )
i
Define the hinge loss to be the following:

d(a) = (1 —a)y =max{0,1 —a}



One other interpretation of this model is that, we penalize margin violations with a hinge loss;
as long as y;3.x; > 1 the model is not penalized. When y;8.x; < 1, it is penalized with weight C.

Similar to the previous case, we can form the Lagrangian, form the dual and find the updates
of the model.

1
LB.EXm = SIBIP+CY & =D Ni{l—yiBxi—&} =D _mi&i
We first remove the primal variables from the above Lagrangian:

VeL=0=Ni+n=C
By replacing the above equalities in the Lagrangian, we get the following:

maxy, > ; Ai — %Ez] AiAjyiys (Xi-X;)

subject to:
ZZ‘ Aiyi =0
Ai+n=C

And we can easily eliminate 7; and end up with the following program:

(maXAi i — %Zu AiAjyiys (Xi-X;)

subject to:
2Ny =0 (6)
Ai >0
o<\ <O

How different is the dual of the soft-SVM (Equation [6)) from dual of the hard-SVM (Equation
3)? The only difference is that, there is an upper bound C' on the dual variables. The interpretation
is that, we cannot put too much weight any point.

Remark 2. If C is bigger than the biggest X\;, then the soft-SVM is equivalent to the hard-SVM.
Remark 3. This form of SVM is usually known as C-SVM.

4 Kernels and Hilbert spaces

Theorem 1 (Mercer’s theorem). Suppose K is a continuous symmetric non-negative definite ker-
nel. Then there is a set of orthonormal basis {goi € L*(X, P)} consisting of eigenfunctions of Tk,
i.e. Tip; = \jpj, such that the corresponding sequence of eigenvalues {\;} is nonnegative. The
etgenfunctions corresponding to non-zero eigenvalues are continuous on X and K have the repre-
sentation

K(s,t) = Xjoj(s)@(t), Vst €X
j=1

where the convergence is absolute and uniform.



4.1 Reproducing Kernel Hilbert Spaces(RKHS)

The RKHS property says that, projecting any function in Lx(X) will produce exact the same
function:

(f K(z,.))k = <Z CjK(xj")aK(mv K
—Zc] (x5,.), K(x,.)k
= ZCJ (zj,z) = f(x)

Another representation of RKHS is based on the eigen functions spanning the space of the kernels.
Any function f € Lx(X) can be represented as,

f(=) :Z (@i, @ ZCZZ)‘J pj(xi) iz chl j ej(wi) oj(x Zda%

Example 3. Let X be a compact (i.e. closed and bounded) subset of R, and let K : X x X - R

be Mercer kernel defined over X. With a fized probability distribution P on X, consider the Hilbert
space L*(X, P) of functions g : X — R, where,

/ng(x)P(dx) < 00
with the norm defined as,
(9.6 = [ @)/ @)Pldo) =B [o(X)g/(X)]
Also consider the operator Tk
[Tr ] (x /Kwt P(dt), VreX

which maps a function?? .
For a given kernel K, define L (X) to be the set of all functions such that,

E:C] (), @

Using Mercer’s reproducing kernel theorem, prove that,

1. Let J = {j € N: \j > 0}, and for each j € J define the function ¢ = ¢j\/A;. Then {@ZJj}jeJ
is an orthonormal system in the RKHS Hy, i.e. (Vj,Vr) = Ojk, for all j,k € J.

2. Let F be the unit ball of Hg, and let X1, Xo, ..., Xy be drawn i.i.d. from P. Then

ER, (F(X")) <




Figure 2: Decision Boundaries

5 Exercise Problems

Consider a dataset with 3 points in 1D:

{(+7 0)7 (_7 _1)7 (_7 +1)}

1. Are the classes =+ linearly separable?

. . . . T
2. Consider mapping each point to 3D using new feature vectors ®(z) = [1, V2, x2] . Are the
classes now linearly separable? If so, find a separating hyperplane.

3. Consider the formulation of the soft-margin primal SVM, for a given training data:

D= {(Xl7y’b) ‘ X; € ]Rp) Yi € {_17 1}}?:1

N I B .
arg min {2HW|| + C;&}
>0, Yi=1,..,n
Also remember the hard-margin primal SVM o; = 0,Vi. And remember that we can derive

the dual formulation and replace each x.x’" with a kernel function k(x,x’).

Mach each of the followings with a decision boundary in Figure [2}

(a) A soft-margin linear SVM with C' = 0.1.



(b) A soft-margin linear SVM with C = 10.

)
(c) A hard-margin kernel SVM with kernel k(u, v) = w.v + (u.v)?.
(d)

)

d) A hard-margin kernel SVM with kernel k(u,v) = exp (—%[u — v||?).
(e) A hard-margin kernel SVM with kernel k(u,v) = exp (—4[lu — v||?).

4. Define a class variable y; € {—1, +1} which denotes the class of z; and let w = (w1, w2, w3) .
The max-margin SVM classifier solves the following problem

in 2 w2
arg min — ||w
& w,b 2
yi(w-o(x3)—b)>1, Vi=1,..,n

Using the method of Lagrange multipliers show that the solution is w = (0,0, —2)T, b=1
and the margin is 1/||w]|.

5. What happens if we change the constraints to
yi(w-o(xi) —b) 2 8,621

Solution:
1. No.

2. The points are mapped to (1,0,0), (1,—-+v/2,1), (1,4/2,1), respectively. The points are now
separable in 3-dimensional space. A separating hyperplane is given by the weight vector
(0,0,1).

3. —
4. First notice that all of the three points are support vectors. Therefore:
1 )
a —|w
rgmin o f|w

yi(w-o(x;)—b) =1, Vi=1,2,3

L(w,a) = g Iwl? = 3 o (gl 6x0) )~ 1)

i=1,2,3
OL(w, ) Z
= - azyzd)(xl) =0
ow i=1,2,3
OL(w, ) Z
= a;y; =0
9b i=1.2,3



Therefore:

wy+a; —ay—az3 =0
w2+\f2a2—\f2a3:0
w3 +ag —az3 =0

a1 — Qg — g3 = 0
which would give us the desired result.

5. —

6 Bibliographical notes

Some intuitions are from David Forsyth’s and Feng Liang’s classes at UTUC. |[Peter Bartlett’s class
notes| provided a very good summary of the main points.

7 Some Answers

7.1 Answer to example
7.1.1 First part:

The answer is inspired from the formulation in [I]. Based on the definitions we have
(W), ve@)) e = (Vi) V(@) )

:< L[ K, t)e, () P(d1), )\kgpk(x)> projections
K

= /@j(t)wk(t)P(dt) RKHS property
X

T Ok,j @;:orthonormal

7.1.2 Second part:

We consider the ball of K:
Fr={f etk ||fllx <1}
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Here I am just reviewing the procedure introduced for finding the risk for this,

1 n
Ry (Fa(X"™) = sup —Egn o f(X;)
Flfl <A T Z

1 n
= sup  —Eon |}y o0i(f, Kx;)k
Flfll<a ™ Z

1 n
= sup B <f,ZaiKXi>
i=1 K

FflR<A T

n
E UiKXZ-
i=1

A
- *}Egn
n

K

A | — 9
=1

n

= Z <KXNKX¢>K

i=1

(10)

(11)

(12)

(13)

Now we first simplify (Kx,, Kx,) and plug in the results in the above bound. But before that,

we use the result we found in the previous part. Previously we proved that, (s,1;)

can use this result:
(Wi, Vi) = VAN (@i 05) i = 0ij = (00, 0j) g =

Using this result, we simplify (Kx,, Kx,) in Equation

n “+oo
> (Kx, K Z <Z A (Xi)p(X), Z/\Wk(Xi)W(X)>
i=1 i=1 k=1 K
n  +o0o +o0o
= 33D e (X)er(X0) (0(X), (X)) ¢
i=1 j=1 k=1
_ Sele AjAk X5
= ;;; \/WQO] ( z) 7.k
n -4oo

=D Nw(X))

i=1 j=1

Now we plug this result in the bound we found in Equation (7, with A = 1 (the unit ball).

n oo

ZZ)‘J%

i=1 j=1

Ry (Fa(X™))

3\'—‘

11

,], we

(14)



Now we take expectation with respect to samples,

ER,(FA(X")) <

Which gives the desired result.
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