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1 Introduction

A=UDV'T

where columns of U and V are orthonormal and matrix D is diagonal with positive real values.
The diagonal elements of D are called singular values. The m rows of U are called left-singular
vectors and d rows of V are called right-singular vectors.

The SVD of A gives the best rank k approximation to A with respect to squared-norm, for any
k.

Remark 1. SVD is defined for all matrices, whereas the more commonly used Eigenvector De-
composition requires the matriz A be square and certain other conditions on the matriz to ensure
orthogonality of the eigenvectors.

e The left-singular vectors of A are eigenvectors of AAT.
e The right-singular vectors of A are eigenvectors of AT A.

e The non-zero singular values of A (found on the diagonal entries of D) are the square roots
of the non-zero eigenvalues of both AT A and AAT.

Lemma 1. Suppose vi,va, ..., v, are left singular vectors as a result of SVD. It can be shown that
these vectors satisfy the following mazimizations:
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It can be shown that o1(A) = |Avy] is the diagonal element of D (or the first singular value).
Similarly for other singular values. The lemma gets translated into the following Theorem.

Theorem 1. For 1 < k < r, let Vi be the subspace spanned by vi,va,...,Vvi. For each k, V} is
the best-fit k-dimensional subspace for matrix A.

Lemma 2. For any matriz A, the sum of squares of the singular values equals the square of the

Frobenius norm. That is,
2
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Lemma 3. It can be shown the following relation between the singular values and right/left-singular

vectors: 1
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Theorem 2. The left-singular vectors are pairwise orthogonal.

Theorem 3. For any matriz B of rank at most k:
A= Aillp < |A = Bllp

Lemma 4.
2
|A— Axll5 = Ul%Jrl

Example 1 (Interpreting an SVD on reviews’ matrix). Suppose matriz A is matriz of costumer-
restaurant ratings (rows being persons and columns being restaurants).

Left singular vectors, u; have size “the number of people”, and can be seen as the orthogonal direc-
tions of reviews by people. Specifically, the first left singular vector, corresponds to the most popular
direction/pattern of reviews by people.

Similarly, right singular vectors, v; have size “the number of restaurants”, and can be seen as the
orthogonal directions of reviews given to restaurants. For example, the first right singular vector,
corresponds to the most popular direction of reviews to restaurants.



The singular values show the popularity of directions/review patterns. If o1 > oo it shows that
there is a consensus in the reviews by people for restaurants. If o1 = g9 > 03, it shows that there
18 two magor scoring patterns. The bigger the singular gap o1 — o9 s, the more consensus exists in
the reviews.

The definition of ”“consensus” here is delicate. The consensus here is defined based on the “direc-
tionality” of the reviews. In other words, SVD does not care whether the reviews are big or small
(or positive or negative). Instead it values the consensus in terms how coherent the reviews are in
one specific direction (in customer-restaurant space).

2 Power Method

Consider an arbitrary matrix B. The power iteration algorithm starts with a vector xg, and gives
an approximation to the dominant eigenvector, if converges at all (otherwise a random vector).
Given the initialization xg, the updates of the algorithm are the followings:

Bx;,
X = —
T By

The convergence is guaranteed under the following two conditions:
e B has an eigenvalue strictly greater in magnitude than its other eigenvalues.
e The starting vector xg has a nonzero component in the direction of an dominant eigenvector.
The next lemma explains how the Power Iterations is useful for SVD.

Lemma 5. Given a matrizc B = AAT, the power iteration algorithm on converges to uy, the first
singular vector of A, if converges at all.

Proof. Consider an SVD of A:

A= Z v,
i
Then for B we have:
-
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Repeating the multiplication:
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Since uZTuj = 0, for ¢ # j. Similarly we have:
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If o1 > 09, as k grows we have the following convergence:

k 2k T
B — Ul u1u1

By proper normalization of the rank-1 matrix u1u1T and a little algebra, we can find u;. However
the issue with the above method is that we need to handle the matrix uju; which can be very
large in practice. The trick is that, instead of computing

k 2k T
B — 01 u1u1

we choose a random point xg = ), a;u; and calculate BFx,.

B*xy — oFuju] ( g aiui> = ajotfuy
i

Which gives u;, after a normalization over a vector. Note that starting from a random vector
calculation of powers need a “matrix x vector” operation, which computationally is a moderate
operation. O

Example 2. We show a sample run of power iteration. Suppose:

+1 42
-1 42
A= +1 -2
-1 -2

and we are starting from x = [ll]T and k = 3. We repeat the power method for three steps:
1.z =[1,1]T
2. for k=1{1,2,3}
3. xp = Axg_1/||Axk_1]]
The results are:
zo=[1,1]" = 1 =[0.24,0.97]" — 29 =[0.06,0.99] " — 23 = [0.01,0.99] "

We will see that the direct calculations will give w = [0,1]T which is very close to x3.
We can computing the exact values directly:

4 0
AT A —
B=A A—[O 16}

We find the solutions to Bv = Av. The eigenvalues and eigenvectors of B are:

[ur, up] = [(1) (1)]

[A1, Ao] = [16,4]



The eigenvectors of AT A are the right singular vectors of A. Also the singular values equal to the

etgenvalues. Since v; = ﬁAui, the two other left singular vectors are:

-0.5 —-0.5

V1, vo] = —-0.5 +0.5
’ +0.5 —0.5
+0.5 +0.5

Lemma 6. For any given A, uy is the first singular vector of AT (suppose a1 > 03)

Proof. O

2.1 Further topics
2.1.1 Missing data in SVD

Consider the matrix of reviews in example If some people refuse to give reviews for some
restaurants, we will have some missing values in our matrix. The question is, how to handle the
missing values when doing SVD.

In many practical applications, the missing values are replaced with zeros. But still there seems to
be a need for methods which give grantees on the results, while being practical and fast.

One other trick is using regularizer (say an ls regularizer) in the objective function. In other words,
instead of using SVD directly which minimizes the Frobenius norm type object, we can augment
the objective with a regularizer and minimize it directly (say with gradient descent). In this
description, this corresponds to minimizing the components of the norm which can be measured,
i.e. those which have known values. The regularization term can be seen as a Bayesian prior on the
components of the feature vectors, with the SVD calculating the maximum likelihood estimator,
subject to this prior and the known values.
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