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1 Introduction

A = UDV >

where columns of U and V are orthonormal and matrix D is diagonal with positive real values.
The diagonal elements of D are called singular values. The m rows of U are called left-singular
vectors and d rows of V are called right-singular vectors.

The SVD of A gives the best rank k approximation to A with respect to squared-norm, for any
k.

Remark 1. SVD is defined for all matrices, whereas the more commonly used Eigenvector De-
composition requires the matrix A be square and certain other conditions on the matrix to ensure
orthogonality of the eigenvectors.

• The left-singular vectors of A are eigenvectors of AA>.

• The right-singular vectors of A are eigenvectors of A>A.

• The non-zero singular values of A (found on the diagonal entries of D) are the square roots
of the non-zero eigenvalues of both A>A and AA>.

Lemma 1. Suppose v1,v2, . . . ,vr are left singular vectors as a result of SVD. It can be shown that
these vectors satisfy the following maximizations:
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Figure 3.2: The SVD decomposition of an n× d matrix.

3.3 Best Rank k Approximations

Let A be an n× d matrix and let

A =
r∑

i=1

σiuiv
T
i

be the SVD of A. For k ∈ {1, 2, . . . , r}, let

Ak =
k∑

i=1

σiuiv
T
i

be the sum truncated after k terms. It is clear that Ak has rank k. It is also the case
that Ak is the best rank k approximation to A, where error is measured in Frobenius norm.

To show that Ak is the best rank k approximation to A when error is measured by
the Frobenius norm, we first show that the rows of A−Ak are the projections of the rows
of A onto the subspace Vk spanned by the first k singular vectors of A. This implies that
||A− Ak||2F equals the sum of squared distances of the rows of A to the subspace Vk.

Lemma 3.5 Let Vk be the subspace spanned by the first k singular vectors of A. The
rows of Ak are the projections of the rows of A onto the subspace Vk.

Proof: Let a be an arbitrary row vector. Since the vi are orthonormal, the projection

of the vector a onto Vk is given by
k∑

i=1

(a · vi)vi
T . Thus, the matrix whose rows are the

projections of the rows of A onto Vk is given by
k∑

i=1

Aviv
T
i . This last expression simplifies

to
k∑

i=1

Avivi
T =

k∑

i=1

σiuivi
T = Ak.
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v1 = arg max
|v|=1

|Av|

v2 = arg max
|v|=1
v⊥v1

|Av|

v3 = arg max
|v|=1
v⊥v1
v⊥v2

|Av|

...

vr = arg max
|v|=1
v⊥v1
...

v⊥vr−1

|Av|

It can be shown that σ1(A) = |Av1| is the diagonal element of D (or the first singular value).
Similarly for other singular values. The lemma gets translated into the following Theorem.

Theorem 1. For 1 ≤ k ≤ r, let Vk be the subspace spanned by v1,v2, . . . ,vk. For each k, Vk is
the best-fit k-dimensional subspace for matrix A.

Lemma 2. For any matrix A, the sum of squares of the singular values equals the square of the
Frobenius norm. That is, ∑

i

σi
2(A) =

∑

i,j

a2i,j = ‖A‖2F

Lemma 3. It can be shown the following relation between the singular values and right/left-singular
vectors:

ui =
1

σi(A)
Avi

Theorem 2. The left-singular vectors are pairwise orthogonal.

Theorem 3. For any matrix B of rank at most k:

‖A−Ak‖F ≤ ‖A−B‖F

Lemma 4.
‖A−Ak‖22 = σ2k+1

Example 1 (Interpreting an SVD on reviews’ matrix). Suppose matrix A is matrix of costumer-
restaurant ratings (rows being persons and columns being restaurants).
Left singular vectors, ui have size “the number of people”, and can be seen as the orthogonal direc-
tions of reviews by people. Specifically, the first left singular vector, corresponds to the most popular
direction/pattern of reviews by people.
Similarly, right singular vectors, vi have size “the number of restaurants”, and can be seen as the
orthogonal directions of reviews given to restaurants. For example, the first right singular vector,
corresponds to the most popular direction of reviews to restaurants.
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The singular values show the popularity of directions/review patterns. If σ1 � σ2 it shows that
there is a consensus in the reviews by people for restaurants. If σ1 ≈ σ2 � σ3, it shows that there
is two major scoring patterns. The bigger the singular gap σ1− σ2 is, the more consensus exists in
the reviews.
The definition of ”consensus” here is delicate. The consensus here is defined based on the “direc-
tionality” of the reviews. In other words, SVD does not care whether the reviews are big or small
(or positive or negative). Instead it values the consensus in terms how coherent the reviews are in
one specific direction (in customer-restaurant space).

2 Power Method

Consider an arbitrary matrix B. The power iteration algorithm starts with a vector x0, and gives
an approximation to the dominant eigenvector, if converges at all (otherwise a random vector).
Given the initialization x0, the updates of the algorithm are the followings:

xk+1 =
Bxk
‖Bxk‖

The convergence is guaranteed under the following two conditions:

• B has an eigenvalue strictly greater in magnitude than its other eigenvalues.

• The starting vector x0 has a nonzero component in the direction of an dominant eigenvector.

The next lemma explains how the Power Iterations is useful for SVD.

Lemma 5. Given a matrix B = AA>, the power iteration algorithm on converges to u1, the first
singular vector of A, if converges at all.

Proof. Consider an SVD of A:

A =
∑

i

σiuiv
>
i

Then for B we have:

B = AA> =

(∑

i

σiuiv
>
i

)(∑

i

σiuiv
>
i

)>
=
∑

i,j

σiσjuiu
>
i

Repeating the multiplication:

B2 =


∑

i,j

σiσjuiu
>
i




∑

i,j

σiσjuiu
>
i


 =

∑

i,j

σ2i σ
2
jui

(
u>i uj

)
u>j =

∑

i

σ4i uiu
>
i

Since u>i uj = 0, for i 6= j. Similarly we have:

Bk =
∑

i

σ2ii uiu
>
i
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If σ1 > σ2, as k grows we have the following convergence:

Bk → σ2k1 u1u
>
1

By proper normalization of the rank-1 matrix u1u
>
1 and a little algebra, we can find u1. However

the issue with the above method is that we need to handle the matrix u1u
>
1 which can be very

large in practice. The trick is that, instead of computing

Bk → σ2k1 u1u
>
1

we choose a random point x0 =
∑

i αiui and calculate Bkx0.

Bkx0 → σ2k1 u1u
>
1

(∑

i

αiui

)
= α1σ

2k
1 u1

Which gives u1, after a normalization over a vector. Note that starting from a random vector
calculation of powers need a “matrix × vector” operation, which computationally is a moderate
operation.

Example 2. We show a sample run of power iteration. Suppose:

A =




+1 +2
−1 +2
+1 −2
−1 −2




and we are starting from x = [11]> and k = 3. We repeat the power method for three steps:

1. x0 = [1, 1]>

2. for k = {1, 2, 3}

3. xk = Axk−1/‖Axk−1‖

The results are:

x0 = [1, 1]> → x1 = [0.24, 0.97]> → x2 = [0.06, 0.99]> → x3 = [0.01, 0.99]>

We will see that the direct calculations will give u = [0, 1]> which is very close to x3.
We can computing the exact values directly:

B = A>A =

[
4 0
0 16

]

We find the solutions to Bv = λv. The eigenvalues and eigenvectors of B are:

[u1,u2] =

[
1 0
0 1

]

[λ1, λ2] = [16, 4]
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The eigenvectors of A>A are the right singular vectors of A. Also the singular values equal to the
eigenvalues. Since vi = 1

σi(A)
Aui, the two other left singular vectors are:

[v1,v2] =




−0.5 −0.5
−0.5 +0.5
+0.5 −0.5
+0.5 +0.5




Lemma 6. For any given A, u1 is the first singular vector of A> (suppose σ1 > σ2)

Proof.

2.1 Further topics

2.1.1 Missing data in SVD

Consider the matrix of reviews in example 1. If some people refuse to give reviews for some
restaurants, we will have some missing values in our matrix. The question is, how to handle the
missing values when doing SVD.
In many practical applications, the missing values are replaced with zeros. But still there seems to
be a need for methods which give grantees on the results, while being practical and fast.
One other trick is using regularizer (say an l2 regularizer) in the objective function. In other words,
instead of using SVD directly which minimizes the Frobenius norm type object, we can augment
the objective with a regularizer and minimize it directly (say with gradient descent). In this
description, this corresponds to minimizing the components of the norm which can be measured,
i.e. those which have known values. The regularization term can be seen as a Bayesian prior on the
components of the feature vectors, with the SVD calculating the maximum likelihood estimator,
subject to this prior and the known values.

3 Bibliographical notes
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