
Approximation with Sampling

Daniel Khashabi

Summer 2013
Last Update: April 27, 2015

1 Introduction

In all of the learning problems, after the parametric modelling we need to devise a way to learn
the optimal parameters, using some training samplings, or some indirect rules, with respect to
some criterion, e.g. a defined loss-function. Usually this can be cast as maximizing (or minimizing,
with an additional negative sign) a function of parameters, training data, and the prior knowledge,
commonly known as MAP or maximum a posteriori.

L = log p(D|Θ)→ Θ∗ = max
Θ

log p(D|Θ)

Since the posterior distribution (or function, if not normalized) is usually a complicated function, it
is not straightforward to maximize it directly with respect to model parameters. One approach can
be approximating this function and finding the sub-optimal parameters. The other approach which
is mostly studied here, is statistical sampling methods, which take many samples of the model, to
simulate the behaviour of the model. These methods are usually slow, and exact asymptotically (if
they run long enough).

Before starting on learning based on sampling, we should first learn how to sample complicated
distributions. Usually it could be assumed that we know how to sample a uniform distribution,
and we aim at generalizing it to sampling other complicated distributions.

2 Sampling a proper distribution

In theory, there is an easy way to sample any distribution, by finding an invertible parametric form
which converts the variables in two distributions. Let’s say we know how to sample p(x), our goal
is to get the distribution p(z) by finding a parametric form for x→ z. We get the distribution p(z)
by the following conversion between two distributions,

p(x) = p(z)

∣∣∣∣
dz

dx

∣∣∣∣ .

In Figure 1 a probability distribution p(x), and its cumulative distribution P (X ≤ x) =
∫ x
−∞ p(x

′
)dx

′

is depicted. If we sample the y-axis uniformly, find the corresponding points in the CDF curve,

1

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PDF

CDF

Figure 1: A sample distribution, and its cumulative distribution.

𝑘𝑞(𝑥)

-8 -6 -4 -2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

𝑥0

𝑘𝑞(𝑥0)

𝑘𝑞(𝑥)

𝑝(𝑥)

𝑝(𝑥0)

)

Figure 2: A sample distribution, and its cumulative distribution.

and map them on the the x-axis, the corresponding points are distributed according to p(x). In
mathematical form, this can be explained in the following form,

p(x) = p(z)

∣∣∣∣
dz

dx

∣∣∣∣ , p(z) = 1⇒ z = h(x) = P (X ≤ x) =

∫ x

−∞
p(x

′
)dx

′ ⇒ x = h−1(z).

2.1 Rejection sampling

Since in many modelling problems, it is not easy to find an analytical for the CDF, we prefer to
find a way for sampling an arbitrary distribution, without the need for finding its CDF. One of
these methods is called rejection sampling.

Let’s say we want to sample a distribution p(x) which has a complicated form, and we can’t
find its CDF. IJn rejection sampling, we find another distribution q(x) which supports the target
distribution, i.e. p(x). In other words, for any x

′
in the domain of the distributions, q(x

′
) > p(x

′
).

Note that, in general q(x) doesn’t have to be a proper distribution, in the sense that the area under
it sum up to one, but it needs to be of the forms which is easy to sample from. Then kq(x), k ∈ R++

2

which is easy to sample from, and supports p(x) can be used. In Figure 2 a complicated target
distributionp(x) , and a supporting distribution kq(x) are shown.

The procedure for rejection sampling is as following: first we sample a point x0 from the dis-
tribution kq(x). Because k > 0, we know that kq(x) > 0. We create a uniform distributions
on [0, kq(x)], and sample a point from that. If the point is greater that p(x0) we accept it as a
sample of p(x), if not, we reject it. It can be shown that in long-run the accepted samples will have
distribution according to p(x) (proof?).
To decrease the ratio of the rejected samples it is necessary to choose the supporting distribution
kq(x) as close as possible to p(x), though it might need might be hard to find such a distribution
when handling high-dimensional distributions. Also it can be shown, roughly speaking, the prob-
ability of a sample being accepted diminishes exponentially with the number of the dimensions.
This makes rejection sampling very hard to use in high-dimensional problems, and with a very
complicated form, which are hard to visualize. There are a few works which aim at finding better
supporting distribution adaptively by using peace-wise exponential functions, or log-concave fami-
lies (see [2, 1])

Usually in probabilistic inference problems, we are dealing with a real ratio of the target distri-
bution p(x). In other words, if we assume that p(x) = 1

Z p̃(x), where Z =
∫
p(x)dx is a normalizing

constant, we usually only have p̃(x), and it is hard to normalize. Thus, there is a big motivation for
finding methods which can use the unnormalized function p̃(x), and give samples of p(x) without
directly having it.

2.2 Sampling for approximating integrals

Let’s say we want to approximate the following integration,

∫
f(z)p(z)dz which is equivalent to

the following expectation, Ep [f] . We can use sample mean as an estimator of the statistical mean,
and we can approximate the above expectation by sampling from p(x),

Ep [f] ≈ 1

L

L∑

i=1

f(zi), xi ∼ p(x).

Note that in general this trick could be used for approximating any integration with a proper choice
of p(x). Also it can easily verified that sample mean is an unbiased estimator the statistical mean.

Let’s say we don’t know how to sample p(x) and we want to approximate Ep [f] . We choose a
distribution q(x) which we know how to sample from, and change the expectation using it,

Ep [f] =

∫
f(z)p(z)dz =

∫
f(z)

p(z)

q(z)
q(z)dz ≈ 1

L

L∑

i=1

f(zi)
p(zi)

q(zi)
, zi ∼ q(z)

This let’s us sample from q(x) for approximating the value of the sample expectation. This trick
is usually called importance sampling. Practical usage of this trick demands careful considerations.
One important point is that, to get realistic answers, q(x) must be non-zero (or not very small)
wherever p(x)f(x) is not zero. This trick has many interesting applications; for example one can

3

use use this trick to calculate expectation of events happening when their probability is very small,
e.g. calculating “bit error rate” in a communication system [4].

Let’s consider the case where we don’t have the distribution p(x) but we only have a positive
ratio of that. In other words, if p(z) = 1

Z p̃(x), we only have 1
Z p̃(x) and calculation of the normalizing

constant is too costly that we don’t want to do it. We can simplify the previous formulations as
following,

Ep [f] =

∫
f(z)p(z)dz =

1

Zp

∫
f(z)p̃(z)dz =

1

Zp

∫
f(z)

p̃(z)

q(z)
q(z)dz =

1

Zp

L∑

i=1

f(zi)
p̃(zi)

q(zi)
, zi ∼ q(z)

A similar thing can be done to find an estimation of the normalizing constant,

1 = Ep [1] =

∫
p(z)dz =

1

Zp

∫
p̃(z)dz =

1

Zp

∫
p̃(z)

q(z)
q(z)dz =

1

Zp

L∑

i=1

p̃(zi)

q(zi)
, zi ∼ q(z)

⇒ Zp =
L∑

i=1

p̃(zi)

q(zi)
, zi ∼ q(z)

Now using the above unbiased estimations, the estimation for the expectation is as following,

⇒ Ep [f] =

∑L
i=1 f(zi) p̃(z

i)
q(zi)

∑L
i=1

p̃(zi)
q(zi)

, zi ∼ q(z).

This estimator is biased estimator of the target expectation (proof?), it is not always the case that
the ratio of any two unbiased estimators is biased estimator (example?).

2.3 Gibbs sampling

Let’s say we want to sample from a multivariate distribution p(x, y). Since sampling jointly sample
from (x, y) we can sample for each variable, from the marginal distributions,

{
xt ∼ p(x|yt−1)

yt ∼ p(y|xt)

In general this can be applied to any distribution with any number of the variables. More details
on convergence proof and properties could be found at [7, 6]. The idea of Gibbs sampling in
statistics is very similar to “coordinate descent” optimization of multivariate objective functions in
optimization(more?).

2.4 Markov Chain Monte Carlo(MCMC)

MCMC methods implicitly create makov chains which have the stationary distributions the same
as that of the target distribution. At each step a new sample x(i) is proposed using a transition
distribution, P(x, x

′
),

x(i−1) P−→ x(i).

4

There are many other names used to call this function, e.g. Jumping Distribution, Proposal Distri-
bution, Candidate Generating Distribution.

One of the families of MCMCs is Metopolis-Hastings methods which introduced in [5, 3]. Let’s
say we want to sample from p(x) = 1

Z p̃(x), and let’s assume that we don’t have the normalization
constant Z. We define a transition distribution,

q(z2|z1) = Pr(z1 → z2).

The steps of the algorithm are shown in Algorithm 1.

Algorithm 1: Metropolis-Hastings algorithm

Start with random samples z0, s.t. p(z0) > 0.
repeat

genrate random sample, z∗ from proposal distribution, z∗ ∼ q(Z|zt−1), given the sandom
sample of the previous iteration zt.

Calculate: α(z∗, zt+1) = min
{

1, p̃(z∗)q(zt−1|z∗)
p̃(zt−1)q(z∗|zt−1)

}
.

α(z∗, zt+1) =

{
≥ 1 : Accept the sample: zt = z∗

< 1 : Accept the sample with probability of α.

until TERMINATION-CONDITION ;

To get a good approximation of the samples found from the above method, it is necessary to
throw away the samples until a time burn-in period k where the samples xk+1, xk+2, . . . get closer to
realistic samples of the target distribution, or the markov chain gets close enough to its stationary
distribution.

Why running the algorithm 1 will result in convergence (detailed balance)? Suppose we are
going from state x to state y and (without loss of generality) p(x)q(y|x) > p(y)q(x|y):

{
p(y|x) = q(y|x)α(y|x) = q(y|x) p(y)q(x|y)

p(x)q(y|x) = q(x|y) p(y)
p(x)

p(x|y) = q(x|y)α(x|y) = q(x|y)
⇒ p(y|x)p(x) = p(x|y)p(y)

2.4.1 Objective function

It can be shown that Metropolis-Hastings algorithm finds l1-projection of q(x|y) onto the space of
reversible Markov chains with stationary distribution p(x).

min
Q∈R(p)

∑

x

∑

y 6=x
|p(x)q(y|x)− p(y)Q(x|y)|

2.4.2 Convergence

Definition 1. The conductance of a cut S, S̄ is defined as

Φ(S) =

∑
i∈S,j∈S̄ aij

min
{
a(S), a(S̄)

}

Where a(S) ,
∑

i,j∈S aij. The conductance of a graph (also known as Cheeger constant) is defined
as Φ(G) = minS⊆V Φ(S), or equivalently,

Φ(G) = min
S⊆V,0≤a(S)≤a(V)/2

∑
i∈S,j∈S̄ aij

a(S)

5

Theorem 1. The ε-mixing time of a random walk on an undirected graph is

O

(
ln (1/qmin)

Φ2ε2

)

where qmin is the minimum stationary probability of any state.

Example 1 (Mixing on a line graph). We have a line with N nodes, with self-loops at the two
ends.

1. What is the stationary distribution of this walk? The transition matrix P is a all zeros, except
subdiagonal and superdiagonal elements are all 0.5. Also P11 = Pnn = 0.5 (self-loops). We
show tat the stationary distribution is uniform:

π =

(
1

n
,

1

n
, . . . ,

1

n

)

It is easy to verify that: πP =
(

1
n ,

1
n , . . . ,

1
n

)
which proves the result.

2. What is the (normalized) conductance Φ = min|S|≤N/2 Φ(S) of this graph?

Φ = min
|S|≤N/2

1
n ×

1
2

minπ(S)
≤ O

(
1

n

)

3. What is the bound on the mixing time on this graph?

Tmax ≤
2

ε
√
πmin

Φ2
≤ O(n2 log

n√
ε
)

4. Show that for ε = 1/10, the mixing time is Ω(N2). To show this we use the fact that the
largest hitting time on this graph h1,N is Ω(N2) (since the mixing time needs to hold for any
initialization of the masses, specifically when all mass is assigned to one of vertices at the
ends). This shows that the bound on the mixing time is tight up to a logarithmic factor.

Example 2 (Sampling independent sets). G is an n-node graph. We want to sample independent
set S proportional exp |S|.

1. Consider the following algorithm:

(a) X0 is an arbitrary initial independent set of G(V,E)

(b) To compute Xi+1, the ith independent set:

i. Randomly sample v ∈ V .

ii. If v ∈ Xi then Xi+1 ← Xi \ {v}.
iii. If v /∈ Xi then Xi+1 ← Xi ∪ {v}, if Xi+1 still remains an independent set.

iv. Otherwise Xi+1 = Xi.

6

First we claim that this algorithm visits any state, where state being an independent set.
Assuming that the graph is not disconnected, any state (independent set) could be reached via
another state (independent set) by addition/deletion of a node. More generally, to get from
I to I ′, remove all vertices of I and then add all vertices of I ′ (irreducible).

Also, this sampling strategy is uniform over the state of the problem (the set of independent
sets). First, the only source of randomness is in choosing v with probability 1

|V | . Given a
v ∈ V , everything is deterministic.

Fix v ∈ V , and consider the state Xi+1.

• If v ∈ Xi+1, we have transition to Xi+1 essentially from Xi = Xi+1 \ {v} by adding v.

• If v /∈ Xi+1 and adding v to Xi+1 would not break any constraints, we must have come
to Xi+1 from Xi = Xi+1 ∪ {v} by removing the vertex v.

• If v /∈ Xi+1 and adding v to Xi+1 would not break any constraints, we have come to
Xi+1 via its self-loop.

First note that the Markov chain has nonzero self-loop probability, it is aperiodic.
Given the above three transitions for three different states, and given the fact that for any fixed

v ∈ V the transition is done from three different states, the contribution of each v over different
states is uniform, which basically means that PXi,Xi+1 = 1

|V | .
Given the uniform distribution over states, irreduciblity and aperiodicity, MCMC is expected to

converge to the right distribution.

Example 3 (Sampling matchings). Matchings are edge independent sets for graphs. Formally, for
any graph G(V,E), an edge subset is a matching if any distinct pair of do not share an endpoint.
A matching M is said to be perfect if |M | = |V | since it matches all the vertices. Consider the
problem of uniformly sampling a perfect matching for a dense bipartite graph.
Here we explain how to sample perfect matchings with uniform probability. We fix a bipartite graph
G(V 1, V 2, E) with |V 1| = |V 2| = N , and minimum degree at least N/2. Let Mk denote the set of
distinct matchings of size k in G. Thus, MN denote the set of the perfect matchings of the dense
bipartite graph G. We can consider the following types of transitions closed within the space:

• Reduce: For a graph M ∈ Mk and an edge uv ∈ E, remove it E ← E \ {uv}. The
resulting graph belongs to M ∈Mk−1.

• Augment: For a graph M ∈ Mk and two vertices u and v unmatched in M , add uv as
en edge E ← E ∪ {uv}. The resulting graph belongs to M ∈Mk+1.

• Swap: For a graph M ∈ Mk with an edge uv ∈ E and vertex w unmatched in M ,
E ← E ∪ {uw} \ {uv}. The resulting graph belongs to M ∈Mk

A Markov chain in state Mk+1 ∪Mk is defined as follow:

7

With probability 1/2, stay at the current state; otherwise uniformly choose a random edge,
and if any one of the Reduce, Augment and Swap is applicable, apply the transformation;
otherwise stay at the current state.

This Markov chain is time-reversible, and the stationary distribution is the uniform distribution
over the set of the perfect matchings. Since each transition of the Markov chain has the same
associated probability of 1

N2 . Also any M ∈Mk+1∪Mk can be transformed to any M ′ ∈Mk+1∪Mk

by a suitable sequence of augmentations, reductions, and swaps. So the Markov chain will eventually
return a near-uniform matching.

Now we suppose that the edges are weighted. Specifically, for any edge (i, j) ∈ E we have
wij ∈ R+. The joint probability distribution of the matchings can be written as:

µ(σ) =
1

Z
exp

{∑

i

wiσ(i)

}
,

where σ : V 1→ V 2 is a mapping which encodes the matching.
We know:

µ(σ) =
exp

{∑
iwiσ(i)

}
∑

σ exp
{∑

iwiσ(i)

} ≥
exp

{∑
iwiσ(i)

}
∑

σ exp {
∑

iw
∗}
≥ 1

N ! exp {Nw∗}
,

where w∗ = maxi,j wij.
Suppose we are in matching defined by σ. For two fixed vertices i, i′ ∈ V (i 6= i′), define the

new matching σ′ in the following form:

σ′(i) = σ(i′), σ′(i′) = σ(i)

The probability of transition from σ to σ′

R = min

{
1,
µ(σ)

µ(σ)

}

= min



1,

exp
{∑

j wjσ(j)

}

exp
{∑

j wjσ′(j)

}





= min

{
1,

exp{wiσ(i) + wi′σ(i′)}
exp{wi′σ(i) + wiσ(i′)}

}

We then prove that:

P
(
σ → σ′

)
=

1

N2
min

{
1,

exp{wiσ(i) + wi′σ(i′)}
exp{wi′σ(i) + wiσ(i′)}

}
≥ 1

N2
min

{
1,

exp{0 + 0}
exp{w∗ + w∗}

}
≥ 1

N2

1

exp{2w∗}

Given the results above,

Φ = min
S

∑
σ∈S,σ′∈S′ µ(σ)P (σ → σ′)

µ(S)µ(Sc)

≥ 1

N2 exp{2w∗}
× 1

N ! exp {Nw∗}

8

where µ(S) ,
∑

σ∈S µ(σ).

We know that the T ≤
2 log 2

ε
√
πmin

Φ2 ≤ 2 log 2
ε
√
πmin
×N2N ! exp {w∗(N + 2)}

2.5 Notions from random walks

[Intro:TODO]

Example 4 (Cover time of n-node clique). 1. Cover time of n-node clique: Since there is a path
to from any node to another, the problem is exactly the same as coupon collector problem:

Coupon Collector Problem: A set of n urns each containing infinite number of coupons
with the same sign. Each time we choose a coupon from one urn. What is the expected
number of trials until we get at least one coupon from each urn?

Claim: The expected time to see each coupon at least once is O(n log n). Let T be the time
needed to collect all of the coupons and ti the time to collect ith new coupon, after i−1 unique
coupons are collected. We know: T =

∑
i ti. The probability of observing new coupon after

observing i− 1 is n−(i−1)
n . Therefore expectation of ti is 1/pi.

ET =
∑

i

Eti =
∑

i

1

pi
=
∑

i

n

n− (i− 1)
= n

∑

i

1

i
= n log n

2. A walk of length 2n log n on a n-node clique has probability at last 1−1/n of visiting all nodes.
For a fixed unseen element the probability of not seeing it after k iterations:

P (not seeing a fixed element for k trials) =

(
1− 1

n

)k
≤ exp

(
−k
n

)

⇒ P (Not seeing all elements untll k trials) =
⋃

i∈[n]

P (not seeing a fixed element for k trials)

≤ n exp

(
−k
n

)

If k = 2n log n:

⇒ P (Not seeing all elements untll 2n log n trials) ≤ n exp
(
log n−2

)
=

1

n

which concludes the proof.

Example 5. Does adding an edge to a grad reduce the cover time? No. We show this with an
example. Suppose we have n node. If we add edges and make it a line graph the cover time will be
O(n2). If we add further edges to make it a lollipop graph (Figure 3) the cover time will increase
to O(n3). Further addition of edges to make it a complete graph will reduce the cover time to
O(n log n).

9

x
y

n/2

︸ ︷︷ ︸

clique of
size n/2

Figure 1.1: Illustration that adding edges to a graph can either increase or decrease hitting
time.

Proof: In a random walk on an undirected graph starting in the steady state, the prob-
ability of traversing any edge in either direction is 1/(2m). This is because for any edge
(u, v), the probability of being at u (in the steady state) is du/(2m) and the probability
of selecting the edge (u, v) is 1/du. Hence, the probability of traversing the edge (u, v)
is 1/(2m) implying that the expected time between traversals of the edge (x, y) from x
to y is 2m. Thus, if we traverse edge (x, y), the expected time to traverse a path from
y back to x and then traverse the edge (x, y) again is 2m. But since a random walk is
a memory less process, we can drop the condition that we started by traversing the edge
(x, y). Hence the expected time from y to x and back to y is at most 2m. Note that
the path went from y to x and then may have returned to x several times before going
through the edge (x, y). Thus, the less than or equal sign in the statement of the lemma
since the path have gone from y to x to y without going through the edge (x, y).

Notice that the proof relied on the fact that there was an edge from x to y and thus
the theorem is not necessarily true for arbitrary x and y. When x and y are not con-
nected by an edge consider a path from x to y. The path is of length at most n. Consider
the time it takes to reach each vertex on the path in the order they appear. Since the
vertices on the path are connected by edges, the expected time to reach the next vertex
on the path is at most twice the number of edges in the graph by the above theorem.
Thus, the total expected time is Θ (n3). This result is asymptotically tight since the bound
is met by the graph of Figure 1.1 consisting of a clique of size n/2 and a path of length n/2.

Commute time

The commute time, commute(x, y), is the expected time of a random walk starting at
x reaching y and then returning to x. Think of going from home to office and returning
home.

Theorem 1.5 Given an undirected graph, consider the electrical network where each edge
of the graph is replaced by a one ohm resistor. Given vertices x and y, the commute time,

11

Figure 3: Lollipop graph has O(n3) cover time.

2.5.1 Hitting time

[hittingTimeIntro:TODO]

Example 6 (Hitting time in a clique). Hitting time for two (adjacent) nodes in n-node clique.
Let’s denote the hitting time with h. Since in a clique every two nodes are connected to each other
the each times for any pair of nodes are the same.

h =
1

d
× 1 +

d− 1

d
(1 + h)⇒ h = d = n− 1

Example 7 (Hitting time in a cycle). Hitting time of of two adjacent nodes u and v on a n-node
cycle. Claim: Let’s denote the hitting time of two nodes with distance d with H(d). The hitting
time is H(d) = d(n− d). To prove this without loss generality, suppose n is even. Then:

H
(n

2

)
= 0.5

(
H
(n

2
− 1
)

+ 1
)

+ 0.5
(
H
(n

2
+ 1
)

+ 1
)

= H
(n

2
− 1
)

+ 1, (1)

since H(d) = H(n− d).

⇒ H
(n

2

)
= H

(n
2
− 1
)

+ 1

Similarly:

H
(n

2
− 1
)

= 0.5
(
H
(n

2
− 2
)

+ 1
)

+ 0.5
(
H
(n

2

)
+ 1
)

Combining it with Eq. 1 we get:

H
(n

2
− 1
)

= 0.5
(
H
(n

2
− 2
)

+ 1
)

+ 0.5
(
H
(n

2
− 1
)

+ 2
)

⇒ 2H
(n

2
− 1
)

= H
(n

2
− 2
)

+H
(n

2
− 1
)

+ 3

⇒ H
(n

2
− 1
)

= H
(n

2
− 2
)

+ 3

H
(n

2
− 2
)

= 0.5
(
H
(n

2
− 3
)

+ 1
)

+ 0.5
(
H
(n

2
− 1
)

+ 1
)

⇒ H
(n

2
− 2
)

= 0.5
(
H
(n

2
− 3
)

+ 1
)

+ 0.5
(
H
(n

2
− 2
)

+ 4
)

⇒ H
(n

2
− 2
)

= H
(n

2
− 3
)

+ 5

10

Similarly we can prove (with induction) that:

H
(n

2
− i
)

= H
(n

2
− i− 1

)
+ 2i+ 1

The hitting time for two adjacent vertices is:

H (1) = 2n− 1 ,

since H (0) = 0.

3 Bibliographical notes

More proofs on properties of MCMC could be found at [3].

References

[1] W.R. Gilks, NG Best, and KKC Tan. Adaptive rejection metropolis sampling within gibbs
sampling. Applied Statistics, pages 455–472, 1995.

[2] W.R. Gilks and P. Wild. Adaptive rejection sampling for gibbs sampling. Applied Statistics,
pages 337–348, 1992.

[3] W.K. Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57(1):97–109, 1970.

[4] M. Jeruchim. Techniques for estimating the bit error rate in the simulation of digital commu-
nication systems. Selected Areas in Communications, IEEE Journal on, 2(1):153–170, 1984.

[5] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equation of
state calculations by fast computing machines. The journal of chemical physics, 21:1087, 1953.

[6] A.E. Raftery and S. Lewis. How many iterations in the gibbs sampler. Bayesian statistics,
4(2):763–773, 1992.

[7] A.F.M. Smith and G.O. Roberts. Bayesian computation via the gibbs sampler and related
markov chain monte carlo methods. Journal of the Royal Statistical Society. Series B (Method-
ological), pages 3–23, 1993.

11

	Introduction
	Sampling a proper distribution
	Rejection sampling
	Sampling for approximating integrals
	Gibbs sampling
	Markov Chain Monte Carlo(MCMC)
	Objective function
	Convergence

	Notions from random walks
	Hitting time

	Bibliographical notes

