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1 Introduction

Our goal in study of passive supervised learning is to find a hypothesis h based on a set of examples
that has small error with respect to some target function.

One can improve generalization by controlling the complexity of the concept class H from which
we are choosing a hypothesis. One way to achieve this is via the ideas in VC dimension ∗∗. Here
we will introduce Rademacher complexity as another way of handling hypothesis space complexity,
and as a result, deriving generalization bounds. Here are some major differences our results will
have with those in the discussion of VC dimension:

• One observation in the dicusssion of VC dimension is that it is independent of the data
distribution. In other words, its guranttees hold for any data distribution; on the other hand,
the bound that it gives might not be tight for certains data distributions.

• The analysis of VC dimension bound apply to discrete problems (such as classification), and
it does not state anything about problems like regression.

2 Rademacher Averages/Complexities

Here we define Rademacher complexity which will be used in bounding risk functions.

Definition 2.1 (Rademacher Average). If H ⊂ F = {f : X → R} be a class of functions we are
exploring defined on domain X ⊂ X , and S = {xi}ni=1 be the set of samples generated by some
unknown distribution DX on the same domain X . Define σi to be uniform random variable on ±1,
for any i. The “empirica" Rademacher average or complexity is defined as following: ††

R̂S(H) = Eσ

[
sup
f∈H

∣∣∣∣∣ 1n
n∑
i=1

σif(xi)

∣∣∣∣∣ |{xi}ni=1

]
=

1

n
Eσ

[
sup
f∈H

∣∣∣∣∣
n∑
i=1

σif(xi)

∣∣∣∣∣ |{xi}ni=1

]
and the expectation of the above measure, with respect to the random samples {xi}ni=1, is called the
Rademacher average or complexity:

Rn(H) = ER̂S(H) = Eσ

[
sup
f∈H

∣∣∣∣∣ 1n
n∑
i=1

σif(xi)

∣∣∣∣∣
]

∗http://web.engr.illinois.edu/~khashab2/learn/vc.pdfhttp://web.engr.illinois.edu/~khashab2/learn/vc.pdf
†Implicit assumption: suppremum over the function class H is measurable.
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There is a similar definition without the absolutes, which have similar properties as above:

R̂a
S(H) =

1

n
Eσ

[
sup
f∈H

n∑
i=1

σif(xi) |{xi}ni=1

]

and

Ra
n(H) = ER̂a

S(H) =
1

n
Eσ

[
sup
f∈H

n∑
i=1

σif(xi)

]
Another way of writing the Rademacher complexiity is the following

R̂S(H) = Eσ

[
sup
f∈H

∣∣∣∣ fS .σn
∣∣∣∣ |{xi}ni=1

]

where fS = (f(x1), . . . , f(xn))>, and σ = (σ1, . . . , σn). The dot product fS .σ measures the cor-
relation between the function values, and the radnom noise vector. In overall, the Rademacher
complexity measures how well the function class H can correlate with random noise. The richer the
hypothesis class it, the better it will correclate with the random noise.

Here are some useful properties of the Rademacher averages.

Lemma 2.1. For any {xi}ni=1 and for any function class F and H, that map X → R:

1. If H ⊆ F then R̂S(H) ≤ R̂S(F).

2. For any function h : X → R, then R̂a
S(F + h) = R̂a

S(F).

3. If cvx(F) = {x→ Ef∼π [f(x)] , π ∈ ∆(F)} then R̂a
S(F) = R̂a

S(cvx(F)).

4. R̂a
S(F +H) = R̂a

S(F) + R̂a
S(H).

Proof of this proposition is included in Section 77.

Proof. We prove each proposition:

1.

R̂S(H) =
1

n
Eσ

[
sup
f∈H

∣∣∣∣∣
n∑
i=1

σif(xi)

∣∣∣∣∣ |{xi}ni=1

]
≤ 1

n
Eσ

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

σif(xi)

∣∣∣∣∣ |{xi}ni=1

]
= R̂S(F)

2.

R̂a
S(F + h) =

1

n
Eσ

[
sup
f∈F

n∑
i=1

σi (f(xi) + h(xi)) |{xi}ni=1

]

=
1

n
Eσ

[
sup
f∈F

n∑
i=1

σif(xi) +

n∑
i=1

σih(xi) |{xi}ni=1

]

=
1

n
Eσ

[
sup
f∈F

n∑
i=1

σif(xi) |{xi}ni=1

]
+ 0 = R̂a

S(F)
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3.

R̂a
S(cvx(F)) =

1

n
Eσ

[
sup

π∈∆(F)

n∑
i=1

σiEf∈π [f(xi)] |{xi}ni=1

]

=
1

n
Eσ

[
sup

π∈∆(F)
Ef∈π

[
n∑
i=1

σif(xi)

]
|{xi}ni=1

]
(swap only in the corners of the convex set)

=
1

n
Eσ

[
sup
f∈F

n∑
i=1

σif(xi) |{xi}ni=1

]
= R̂a

S(F)

4.

R̂a
S(F +H) =

1

n
Eσ

[
sup

f∈F ,h∈H

n∑
i=1

σi (f(xi) + h(xi)) |{xi}ni=1

]

=
1

n
Eσ

[
sup
f∈F

n∑
i=1

σif(xi) + sup
h∈H

n∑
i=1

σih(xi) |{xi}ni=1

]
= R̂a

S(F) + R̂a
S(H)

�

Lemma 2.2. Given real-valued CDF function F (x), and F being class of indicator functions on
half-intervals which define the empirical CDF function:

F̂S(x) =
1

n

n∑
i=1

1{Xi≤x}

we can show that,

ES
[
sup
x∈R

∣∣∣F̂S(x)− F (x)
∣∣∣] ≤ 2Rn(F)

with S = (X1 = x1, ..., Xn = xn).

Proof. The trick that is commonly used for this is converting expectation to empirical mean by
introducing fake/ghost samples S′ and symmetrization:

ES
[
sup
x∈R

∣∣∣F̂S(x)− F (x)
∣∣∣] = ES

[
sup
x∈R

∣∣∣F̂S(x)− ES′
[
F̂S′(x)

]∣∣∣] ≤ ES,S′
[
sup
x∈R

∣∣∣F̂S(x)− F̂S′(x)
∣∣∣]

= ES,S′
[

1

n

n∑
i=1

[
1{Xi≤x} − 1{X′i≤x}

]]
d
= ES,S′,σ

[
1

n

n∑
i=1

σi

[
1{Xi≤x} − 1{X̄i≤x}

]]

≤ 2ES,σ sup
x∈R

∣∣∣∣∣ 1n
n∑
i=1

σi1{Xi≤x}

∣∣∣∣∣ = 2Rn(F), for F = half-intervals

�

It turns out that this observation is general for any loss function. The following bounding
technique could be generalized to any loss function.
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Lemma 2.3. Given a class functions H = {f : X → R} defined on domain X ⊂ X , we have the
following general bound on the Rademacher average:

ES

[
sup
f∈H

∣∣∣Ef − ÊSf
∣∣∣] ≤ 2Rn(H)

with S = (x1, ..., xn) and ÊSf = 1
n

∑n
i=1 f(xi).

Proof. The steps for the previous proof hold for this proof, with some minor changes. Again, we
convert expectation to empirical mean by introducing fake/ghost samples S′ and symmetrization:

ES

[
sup
f∈H

∣∣∣Ef − ÊSf
∣∣∣] = ES

[
sup
f∈H

∣∣∣ES′ÊS′f − ÊSf
∣∣∣]

= ES,S′
[

sup
f∈H

∣∣∣ÊS′f − ÊSf
∣∣∣] = ES,S′,σ

[
1

n

n∑
i=1

σi
[
f(xi)− f(x′i)

]]

≤ 2ES,σ sup
x∈R

∣∣∣∣∣ 1n
n∑
i=1

σif(xi)

∣∣∣∣∣ = 2Rn(F)

�

With the following lemma we show how to generalize Rademacher averages using Lipchitz maps.

Lemma 2.4 (Ledoux-Talagrand contraction). Let f : R+ → R+ be a convex and increasing
function. Also let φi(x) : R → R, s.t. it satisfies φi(0) = 0 with Lipchitz constant L (for any
x, y ∈ R⇒ |φi(x)− φi(y)| ≤ L |x− y| ). For any T ⊂ Rn,

Eσf

(
1

2
sup
t∈T

∣∣∣∣∣
n∑
i=1

σiφi(ti)

∣∣∣∣∣
)
≤ Eσf

(
L. sup

t∈T

∣∣∣∣∣
n∑
i=1

σiti

∣∣∣∣∣
)

Proof. Proof with definition of Rademacher average and properties of convex functions. �

The above lemma will result the following bound:

Corollary 2.5. Let F be a class of functions with domain X and φ(.) be a L-Lipchitz map from R to
R with φ(0) = 0. The composition of the map on the functions is defined as φ ◦F = {φ ◦ f |f ∈ F}.
Then

Rn(φ ◦ F) ≤ 2LRn(F)

Proof. In the previous lemma, take the convex increasing function be the identity function. �

2.1 Rademacher complexity of linear class

Here we analyze the Rademacher complexity of the following linear classes. These results will come
handy in analyzing the generalization bounds of many forthcoming problems which involve linear
models.

Define the following classes:

H1 = {x→ 〈x,w〉 : ‖w‖1 ≤ 1} , H2 = {x→ 〈x,w〉 : ‖w‖2 ≤ 1}
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Lemma 2.6. Let S = (x1, . . . , xn), then

Rn(H2 ◦ S) ≤
maxi ‖xi‖2√

n

Proof.

Ra
n(H) =

1

n
Eσ

[
sup

w:‖w‖2≤1

n∑
i=1

σi 〈xi,w〉

]

=
1

n
Eσ

[
sup

w:‖w‖2≤1

〈
w,

n∑
i=1

σixi

〉]

≤ 1

n
Eσ

[∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
2

]
Due to Jensen inequality:

Eσ

[∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
2

]
≤ 1

n

√√√√√Eσ

∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
2

2


Since the Rademacher random variables are independent of each other, we have:

1

n

√√√√√Eσ

∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
2

2

 =
1

n

√√√√√Eσ

∑
i,j

σiσj 〈xi,xj〉


=

1

n

√ ∑
i,j,i6=j

〈xi,xj〉Eσ [σiσj ] +
∑
i

〈xi,xi〉Eσ
[
σ2
i

]
=

1

n

√∑
i

‖xi‖2

≤ 1

n

√
nmax

i
‖xi‖2 =

maxi ‖xi‖√
n

�

Lemma 2.7. Let S = (x1, . . . , xn), then

Ra
n(H1 ◦ S) ≤ max

i
‖xi‖∞

2 log 2n

n

Proof.

Ra
n(H) =

1

n
Eσ

[
sup

w:‖w‖1≤1

n∑
i=1

σi 〈xi,w〉

]

=
1

n
Eσ

[
sup

w:‖w‖1≤1

〈
w,

n∑
i=1

σixi

〉]

≤ 1

n
Eσ

[∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
∞

]
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The last step is done via the finite class lemma (see Lemma 4.14.1). �

3 Generalization bounds

Here is the main theorem, which contains the generalization bounds via Rademacher complexity:

Theorem 3.1. Let F be a class of functions, defined on domain X and mapping to [0, 1]. For some
δ ∈ (0, 1), and for any f ∈ F :

Ef(X) ≤ Enf(X) + 2Rn(F) +

√
log 1/δ

2n
, with probability at least 1− δ

Also for any f ∈ F :

Ef(X) ≤ 1

n

n∑
i=1

f(xi) + 2RS(F) + 5

√
log 2/δ

2n
, with probability at least 1− δ

Similar results can be found with slightly different definition of the Radmacher average:

Theorem 3.2. Let F be a class of functions, defined on domain X and mapping to [0, 1]. For some
δ ∈ (0, 1), and for any f ∈ F :

Ef(X) ≤ Enf(X) + 2Ra
n(F) +

√
log 1/δ

2n
, with probability at least 1− δ

Also for any f ∈ F :

Ef(X) ≤ 1

n

n∑
i=1

f(xi) + 2Ra
S(F) + 3

√
log 2/δ

2n
, with probability at least 1− δ

A side note before jumpin into the proof: usually in practice the set F is a composition of input
space X , hypothesis functions H and the loss family ` whcih measures the quality of the learning:

F = ` ◦ H ◦ S

For example for SVM, H is space of linear classifiers, and ` is margin based (hard/soft) loss.
Another issue worhty to point out is that, here we assumed that the range of the function F is

bounded inside [0, 1]. However if the function is ranged between [0, c], a c coefficient would appear

before
√

log 2/δ
2n (easy to verify through the proof).

Proof. For a sample set S = (x1, x2, ..., xn), define the following function

ΦS(F) = sup
f∈F

E [f ]− 1

n

∑
xi∈S

f(xi)


Proof uses the McDiarmid’s bound on the function ΦS(F); define the sample set S′ to be exactly
the same as S, except one differing sample.

ΦS(F)− ΦS′(F) ≤ sup
f∈F

 1

n

∑
xi∈S′

f(xi)−
1

n

∑
xi∈S

f(xi)

 = sup
f∈F

f(xj)− f(x′j)

n
≤ 1

n
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We used the fact that supremum of diffence is bigger than the difference of supremums. Also we
implicitly assumed that the function is bounded between 0 and 1. Hence we proved that

|ΦS(F)− ΦS′(F)| ≤ 1

Using the boundedness property of Φ(.) and using the McDiarmid’s inequality we have:

ΦS(F) ≤ ES [ΦS(F)] +

√
log 2/δ

2n
, with probably at least 1− δ/2

Note that using Lemma 2.32.3 we know:

ES [ΦS(F)] ≤ 2Rn(H)

which would give us the first inequality (with δ/2 replaced with δ). To get the second inequaly, we
apply the McDiarmid bound on the Rademacher definition:

Rn(H) ≤ R̂S(H) +

√
log 2/δ

2n
, with probably at least 1− δ/2

Combine this with the previous result and we will the 2nd inequality the in the defintion of the
theorem. �

3.1 Concentration bounds for binary classification

We start with a few examples, and then move to more general theorems.
Example 3.3. Let f : X→ {0, 1}, and let (X,Y ) ∈ X×{0, 1} be n random i.i.d. samplings from the
joint distribution PXY . Consider the empirical risk defined as,

Ln(f) =
1

n

n∑
i=1

1 {f(Xi) 6= Yi}

1. Prove that for any f ∈ F ,

L(f) ≤ Ln(f) +

√
2L(f) log(1/δ)

n
+

2 log(1/δ)

3n
(1)

probability at least 1− δ.
Hint: Use Berinstein’s inequality.

2. Use the result of the previous part to show that, for any f ∈ F ,

L(f) ≤ Ln(f) +

√
2Ln(f) log(1/δ)

n
+

4 log(1/δ)

n

with probability at least 1− δ. Use this to prove that if the ERM solution predicts every test
data correctly, i.e., if Ln(f̂n) = 0, then,

L(f̂n) ≤ 4 log(|F| /δ)
n

with probability at least 1 − δ. This bound also holds with the relationship between X and
Y is deterministic.
Hint: Use the fact that, for any a, b, c ∈ R+ and a ≤ b+ c

√
a, then we have a ≤ b+ c2 + c

√
b.
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Lemma 3.4 (Berinstein’s inequality). If U1, ..., Un are n i.i.d. Bernoulli random variables with
parameter p, then,

P

(
1

n

n∑
i=1

Ui < p− ε

)
≤ exp

(
− nε2

2p+ 2ε/3

)
(2)

3.2 Generalization bound for hard SVM using Rademacher complexity

Here we prove generalization bound for hard SVM. ‡‡. We will resort to Thereom 3.23.2 whcih con-
tains the generalization bounds based on the definition of the Rademacher average. For SVM, the
hypothesis space is a class of ilnear predictors:

H =
{
〈w,x〉 : ∀w ∈ Rd

}
with hinge loss `(x, y;w) = max {0, 1− y 〈w,x〉} as the loss functin. Define

F = ` ◦ H ◦ S = {`(x1, y1;w), `(x2, y2;w), . . . , `(xn, yn;w)}

since the hinge loss is 1-Lipchitz, and assuming that ‖x‖ ≤ R, ‖w‖ ≤ B, using Lemma 2.52.5 we have:

Rn(F) ≤ BR/
√
n

In general for any ρ-Lipchitz function, Rn(F) ≤ ρBR/
√
n. Plugging this into Theorem 3.23.2 we get

the following risk bound for SVM:

Ef(X) ≤ Enf(X) + 2BR/
√
n+

√
log 1/δ

2n
, with probability at least 1− δ

So how should we interpret this? Suppose we make the assumption that we know the minimize of
the empirical risk, which we denote with w∗ which has zero empirical risk. Also B = ‖w∗‖, H can
simply be the set of linear classifier which have norm smaller than B. Then the risk bound can be
refined to

Ef(X) ≤ L̂+
2R ‖w∗‖√

n
+ (1 +R ‖w∗‖)

√
log 1/δ

2n
, with probability at least 1− δ

And note that F is (1+B ‖w∗‖)-Lipchitz. With risk bound, one can show that the sample complexity
of hard-SVM R2‖w∗‖2

ε2
.

In practice w∗ is not known. One way to fix this, is to use the doubling trick on the weight
vector size bound B. Suppose Bi = 2i, H be all the linear models with weight norm less than Bi,
δi = 2/. For each i we can write an inequaliy for the risk. A union bound over all of the inequalities
would give a unified bound which holds for all ws.

4 Glivenko-Cantelli Theorem

The Glivenko-Cantelli guarantees uniform convergence bounds on empirical risk of the distributions.
Our characterization of GC is based on Rademacher and Finite Class lemma, though this is not
the only way to derive these results. First we introduce the finite class lemma which is a tool for
bounding Rademacher averages.
‡Details on basic formulations here: http://web.engr.illinois.edu/~khashab2/learn/svm.pdfhttp://web.engr.illinois.edu/~khashab2/learn/svm.pdf
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Lemma 4.1 (Finite Class Lemma (Massart)). Let A be some finite subset of Rn and {σi}mi=1

independent Rademacher random variables, and L = supa∈AA,

Rn(A) =
1

n
E

[
sup
a∈A

m∑
i=1

σixi

]
≤

2L
√

log |A|
n

Proof. Define,

µ = E

[
sup
a∈A

m∑
i=1

σixi

]
= m×Rn(A)

For any λ ∈ R+,

eλµ ≤ E

[
exp

(
λ sup
a∈A

m∑
i=1

σxi

)]
= E

[
sup
a∈A

exp

(
λ

m∑
i=1

σxi

)]
≤ E

[∑
a∈A

exp

(
λ

m∑
i=1

σxi

)]

=
∑
a∈A

E

[
exp

(
λ

m∑
i=1

σxi

)]
=
∑
a∈A

m∏
i=1

E [exp (λσxi)] =
∑
a∈A

m∏
i=1

exp (−λxi) + exp (λxi)

2

≤
∑
a∈A

m∏
i=1

exp
(
λ2xi

2/2
)
≤
∑
a∈A

m∏
i=1

exp
(
λ2L2/2

)
≤ |A|

m∏
i=1

exp
(
λ2L2/2

)
�

⇒ µ ≤ ln |A|
λ

+
λL2

2
.

Set λ =
√

2 ln|A|
L2 , and we will have, µ ≤ L

√
2 ln |A|

[More details: TBW]
The finite class lemma could be generalized to the class of binary-valued functions. Now define

F be class of binary valued functions,

F = {f : Z→ {0, 1}} .

In other words, given random samples {Zi}ni=1, and F(Zn) , {(f(Z1), . . . , f(Zn)) : f ∈ F},
We generalize the bound using the Rademacher bound for this class of functions,

Lemma 4.2 (Rademacher bound for binary-valued functions). For class of binary-valued functions
F ,

Rn (F (Zn)) ≤ 2

√
log |F(Zn)|

n

Proof. Proof in the Section 77. �

Theorem 4.3 (Glivenko-Cantelli). Let,

Fn(x) ,
n∑
i=1

1 {Xi ≤ x}
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if n→∞, then
sup
x
|Fn(x)− F (x)| a.s→ 0

for n big enough.

Proof. The proof consists of two main pars. First using the Rademacher for bounding the risk, and
the second, using the Finite-Class lemma for bounding the Rademacher average. [More details for
later] �

5 Bibliographical notes

The first use of Rademacher complexity for risk bounds is probably due to [11, 22].
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6 Appendix: Union bound for risk

Let’s assume we have proven the following bound for any f ∈ F ,

p(L(f)− Ln(f) ≥ a(δ)) ≤ δ, for any f ∈ F

which is equivalent to,

Ln(f) ≥ L(f) + b(δ) with probability at least 1− δ (3)

for some values a, b (functions of parameters). Then,

p(∃f ∈ F ∧ Ln(f) = 0 ∧ L(f) ≥ a) ≤ |F|δ

or, equivalently,

Ln(f) ≥ L(f) + b(δ/|F|) with probability at least 1− δ

Proof.

p(∃f ∈ F ∧ Ln(f) = 0 ∧ L(f) ≥ a) ≤ p (∪f∈F (Ln(f) = 0 ∧ L(f) ≥ a))

≤
∑
f∈F

p ((Ln(f) = 0 ∧ L(f) ≥ a))

≤ |F|δ

Now define δ′ = δ
|F| , and then using 33 we have

Ln(f) ≥ L(f) + b(δ′) = L(f) + b(δ/|F|) with probability at least 1− δ

which proves our desired statement. �

7 Proofs

7.1 Proof of lemma 4.24.2

Proof. Since each f is a binary-valued function, F ⊂ {0, 1}n. For any set of samples {Zi}ni=1, and
any function f ∈ F , we know, √√√√ n∑

i=1

|f(Zi)| ≤

√√√√ n∑
i=1

1 =
√
n

For a fixed set of random samples,{Zi}ni=1, the set F(Zn) , {(f(Z1), . . . , f(Zn)) : f ∈ F} is equiv-
alent to the set A, in Lemma 4.14.1, as N = |F(Zn)| ≤ 2n and L =

√
n. As such,

Rn (F (Zn)) ≤ 2

√
log |F(Zn)|

n

�
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8 Answers

Here answers to some of the questions are included. The answers are mostly by the authors, and
might be buggy. Therefore, read cautiously!

8.1 Answer to example 3.33.3

8.1.1 First part :

We first use the Bernstein’s inequality and simplify it. Consider the Equation 22 and take δ =

exp
(
− nε2

2p+2ε/3

)
. Then,

⇒ nε2 −
(

2

3
ln

1

δ

)
ε− 2p ln

1

δ
= 0

⇒ ε =

2
3 ln 1

δ ±
√(

2
3 ln 1

δ

)2
+ 8np ln 1

δ

2n

Based on the assumption of the inequality the ε ≥ 0 and we can choose the value with the + sign
in the about equation. Using this simplification, we can rewrite the Bernstein inequality in the
following equivalent form:

EU ≤ 1

n

n∑
i=1

Ui +

2
3 ln 1

δ +

√(
2
3 ln 1

δ

)2
+ 8np ln 1

δ

2n
, probability at least 1− δ

Now, for a specific f ∈ F , we can consider Ui = 1 {yi 6= f(xi)} as a Bernoulli distribution, with
the probability of success defined by p = EU = L(f). The empirical estimation is the Bernoulli
distribution is

1

n

n∑
i=1

Ui =
1

n

n∑
i=1

1 {Yi 6= f(Xi)} = Ln(f).

This we can rewrite the bound as:

L(f) ≤ Ln(f) +
ln 1

δ

3n
+

√(
2
3 ln 1

δ

)2
+ 8nL(f) ln 1

δ

2n
, probability at least 1− δ

Now we use the fact that,
√
a+
√
b ≥
√
a+ b

L(f) ≤ Ln(f) +
ln 1

δ

3n
+

√(
2
3 ln 1

δ

)2
+ 8nL(f) ln 1

δ

2n

≤ Ln(f) +
ln 1

δ

3n
+

√(
2
3 ln 1

δ

)2
+
√

8nL(f) ln 1
δ

2n

≤ Ln(f) +
2 ln 1

δ

3n
+

√
2L(f) ln 1

δ

n
, probability at least 1− δ

Which proves the desired result.
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8.1.2 Second part :

We use the hint on the bound which we found in the previous part, in Equation 11, with the following
definitions:

a = L(f), b = Ln(f) +
2 log(1/δ)

3n
, c =

√
2 log(1/δ)

n

This would imply the following inequality:

L(f) ≤ Ln(f) +
2 log(1/δ)

3n
+

(√
2 log(1/δ)

n

)2

+

(√
2 log(1/δ)

n

)√
Ln(f) +

2 log(1/δ)

3n

⇒ L(f) ≤ Ln(f) +
8 log(1/δ)

3n
+

√
2Ln(f) log(1/δ)

n
+

4

3

(
log(1/δ)

n

)2

We use the inequality
√
a+
√
b ≥
√
a+ b,

L(f) ≤Ln(f) +
8 log(1/δ)

3n
+

√
2Ln(f) log(1/δ)

n
+

4

3

(
log(1/δ)

n

)2

≤Ln(f) +
8 log(1/δ)

3n
+

√
2Ln(f) log(1/δ)

n
+

√
4

3

(
log(1/δ)

n

)2

≤Ln(f) +

(
2√
3

+
8

3

)
log(1/δ)

n
+

√
2Ln(f) log(1/δ)

n

=Ln(f) +
3.83 log(1/δ)

n
+

√
2Ln(f) log(1/δ)

n

≤Ln(f) +
4 log(1/δ)

n
+

√
2Ln(f) log(1/δ)

n

Which proves the desired result. Now using this bound, we prove the last part of the question.
Before that we state the union bound for risk.

Since this bound holds for any f ∈ F , this also holds for f̂ ∈ F . Based on the assumption of
the question, the risk for this function is zero. For a fixed f̂ ∈ F , if we have Ln(f̂) = 0,

L(f) ≤ 4 log(1/δ)

n

since f̂ is not known a priori and it can any function in the class of functions F , we need to use the
union bound, as in Equation 33:

L(f) ≤ 4 log(|F|/δ)
n
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