Posterior Regularization

1 Introduction

One of the key challenges in probabilistic structured learning, is the in-
tractability of the posterior distribution, for fast inference. There are nu-
merous methods proposed to approximate the posterior, so as to make it
easy to work with. Posterior Regularization is one of the proposed methods
to approximate joint distribution between a set of structured variables, and
taking the constrains into account. In [I] there is a comprehensive review
of the method and previous ideas is mentioned.

2 Modelling the problem

In Posterior Regularization, we are dealing with a doing inference over
posterior probability, with considering constraints, as indirect supervision.
In this context we define X as input observation variables, and Y as la-
tent variables, which we want to make predictions about. One example
problem could be POS tagging as an example of structured prediction, in
which we see input sentences x, and output tags y. We assume having
generative model defined using p(Y) as prior knowledge on latent vari-
ables, likelihood to be p(X|Y), and marginal-likelihood or evidence to be
L(0) = Inp(X;0) = In [y, p(Y)p(X|Y)dY. However one can use this

probabilistic modelling to learn in discriminative way.

3 Approximating the posterior

Now we want to use ¢(Y) to approximate the real intractable posterior,
p(Y|X;#). In fact, ¢(Y) is a simpler parametric distribution with parameter
~ which is easy to work with E To approximate the true posterior p(.)
using the decomposed distribution ¢(.) we should find a measure of distance

IThus the right way is to denote it by q(Y;7), but it is common to drop the parameters.



between two functions, and also is practical in computational sense. One of
the famous distance measure between functions is called Kullback-Leibler
divergence or in short, KL-divergence.

Lemma 1. We have

£(0) = log p(X:0) = T(q.0) + KL (a(¥)|p(Y|X;0)). (1)
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Proof. Now the Bayes rule we have,

log p(X;0) = log p(X,Y;0) —log p(Y|X;0)
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Multiplying two sides in ¢('Y) we have,
p(X,Y;0) p(Y[X;0)
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. B (X, Y;0) '
/q(y) log p(X;0)dY = /q(Y) log WdY_ /q(Y) log WdY.

Note that in the left part of the above equation px(x) is not a function of
Y and thus, [¢(Y)logpx(X]|0)dY = log p(X]). Also note that,
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= L(0) = J(q,0) + KL (¢(Y)|[p(Y|X;0)) .



Lemma 2. For any given observation and latent variables we have the fol-
lowing inequality:

L) = T(g,0)

Proof. 1 use Jensen’s inequality here to show that J(q, ) a lower bound for
the original likelihood:

L(0) =Inp(X;0) = ln/p(X,Y;H)dY

N p(X,Y;0)
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This shows that exp [J (¢, 0)] a lower bound for likelihood p(X;6):
= p(X[0) > exp [T (q,0)] or L(6) = T(q,0).
O

Corollary 1. Mazimizing J(q,0) (lower bound) will result in mazximizing
the likelihood p(X;0). For this reason, J(q,0) is sometimes called ELBO
(Evidence Lower Bound).

4 Posterior Regularization

We define the following to be the objective function to be maximized:

3)

J(0,q) = L(0) — KL (¢(Y)[|p(Y[X;0))
Eq[o(X,Y)] <b

Remark 1. Having the above inequality lets us to define the the equation
, since KL-divergence is always a positive value.

We define a set of constraints in the output space as following:
Q = {a(Y)[Eq [¢(X,Y)] < b}

Note that in the definition of the constraints E, [¢(X,Y)] is a function of X
which means that we define our constraints over input observations, to follow
the structure defined by inequality and in the feature function ¢(X,Y). This
definition can encode hard and soft constraints in itself.



5 Relaxed form

To cut some slack on objective function and the constraint function, one
could define extra slack variables:

6 Learning and inference over the regularized pos-
terior

Without considering the constraints, we can show that training consists of
a two step procedure similar to EM algorithm:

1. Initialize 0, and variational parameters of ¢(.).
2. Repeat until convergence

(a) E-step: ¢ = argmax,J(¢®, 6"
(b) M-step: #+D) = argmaxy J (¢, 6®)

It is worthy to mention that minimizing the objective function is equiv-
alent to maximizing the KL-divergence.

By considering the constraint, the above procedure is limited to those
q(.)s that satisfy the constraint set Q. One way to do so, it to constrain the
“E-step” to Q:

E-step(modifiede): gt = arg maé(j(q(t), G(t))
q€

Instead of applying such a constraint which is hard to calculate, we can use
the dual form of the “E-step” and the constraint inequality.

Theorem 1. Consider the following problem:

{maxq,gKL (a(Y)|Ip(Y|X;0))

(4)
Eq[0(X,Y)] —b <¢

With 6 as constant parameters. The primal solution ¢*(Y) is unique since
KL-divergence is strictly convex:
Y[X;6) exp {—A\.6(X, Y)}

Z (%)

(YY) = »(



in which Z(\*) = [p(Y|X;0)exp{- .¢(X,Y)}dY is the normalizing

function. The dual for the above program is as following:

max [=b A —InZ(\) — €||A]|g]

in which ||.||s is dual norm for ||.| s .

The proof can be found at [1].

7 Bibliographical notes

I used Jiayu Zhou’s notes (http://www.public.asu.edu/~jzhou29/slides/
PR_Notes.pdf) in writing this document.
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