
Online Learning: Fundamental Algorithms

Daniel Khashabi

Summer 2014
Last Update: October 20, 2016

1 Introduction

The Learning Theory 1, is somewhat least practical part of Machine Learning, which is most
about the theoretical guarantees in learning concepts, in different conditions and scenarios. These
guarantees are usually expressed in the form of probabilistic concentration of some measure, around
some optimal value which is unknown and need to discovered. These bounds are functions of
problem specifications, for example,

• The number of samples: the more samples we have, there is a better chance of learning.

• The easiness of the underlying distribution need to be learned.

• The generalization power (or flexibility) of the family of the functions which is being used to
approximate the target distribution.

To begin with let’s start with a simple example. Suppose we have a sequence of binary obser-
vations:

y1, . . . , yn,∀yi ∈ {0, 1}

Consider the following tasks:

• Estimation: One task is to model this binary sequence. We want to take the easy way
and model it with Binomial distribution, with parameter p. We call a good parameter for
our model p̂ that models the original sequence is called the Estimation problem. Suppose
someone tells us that the original sequence is sampled i.i.d. from a Bernoulli distribution with
parameter p∗. In this case we can create an averaging estimation p̂ = 1

n

∑n
i=1 yi and have the

following bound on our estimation:

|p− p∗| < ε(n, δ) with probability at least 1− δ (1)

where ε(n, δ) is proportional to 1√
n

. In general, we are looking for finding tighter estimations

(i.e. ε(n, δ) getting smaller with faster rate).
In finding the above bound, we assumed that the original samples are from a Bernoulli
distribution. One challenge in real world is that, we don’t know from which distribution

1Some people that are on the statistics side usually call it, Statistical Learning Theory, and others at the compu-
tational side, call it Computational Learning Theory. I was fortunate to work with people from the both sides, and
these notes will include both computational and statistical tastes of the problems.

1

the data is coming from, and therefore finding bounds on estimations is not very trivial.
Estimation in real problems means, learning the best model which describes the model, which
is our first problem in the learning theory.

• Batch prediction: Suppose, given a model for the sequence we want to predict the next
coming number yn+1 ∈ {0, 1}. What is the best prediction and how do we define it? A good
measure is to compare the number of the mistakes our prediction might make, relative to the
total number of the mistakes that the best algorithm could make in retrospect.

Rn =
1

n

∑
i

1{ŷi 6= yi} −min
y′i

Eyi∼P1{y
′
i 6= yi} (2)

The above value is usually called Regret. The second term miny′i Eyi∼P1{y
′
i 6= yi} is the

minimum achievable expected loss, on observations sampled from the distribution P. Without
making any assumptions about P, evaluating miny′i Eyi∼P1{y

′
i 6= yi} is almost impossible.

Let’s say the data is coming from a Bernoulli distributions with parameter p∗ (i.e. P =
Ber(p∗)) and we are using our previous estimate p̂n = 1

n

∑n
i=1 yi. In this case, the expected

error by the best estimation is (why?):

min
y′i

Eyi∼Ber(p∗)1{y′i 6= yi} −min{p∗, 1− p∗}

The best estimator for yn+1 (minimizer of the regret) is the majority vote (why?):

yn+1 = 1{p̂n > 0.5}

If p∗ = p̂, our prediction is exact. But with limited data we have the bound 1 on estimation of
p̂, which means that we can find a similar bound on our prediction. Again, like the estimation,
one challenge is that, we don’t know if the data is coming from a Binomial distribution or
not, which adds further complication.

• Online prediction: This scenario is very similar to the previous case, but instead of having
all the data together, we ate getting one by one up to the i-th instance, and we are suppose
to make the best prediction for the (i + 1)-th label and then see the real value. This is
called online learning since we learn the model by seeing the data sequentially, and at each
observation we make prediction based on previous observations and past predictions. What
is the best best prediction? Again we resort to the Regret in Equation 2. At each step j ≤ n
we use choose the yj+1 which minimizes Rj . Like the previous type, the best prediction is
via majority vote up to step j:

yj+1 = 1{p̂j > 0.5}, where p̂j =
1

j

j∑
i=1

yi

Although the answer to online and batch prediction in this example were very similar, in
more complicated problems their answers can be very different.

Remark 1. Consider the strong Law of Large numbers, which says there exists a predictor, without
any assumptions on the generative process of data, such that

lim sup
n→∞

Rn → 0, a.s.

although it does not say anything about this magical method!

2

2 Several early algorithms

2.1 The halving algorithm

Consider this form of the problem. Define an expert to be a function which scores the input. Note
that an expert is not necessary a good predictor!

Suppose we have n experts, and we want to choose the best one. Here we present a relatively
naive algorithm for that, which is based on sequential halving of the search space.

At the beginning suppose there is at least one perfect expert (an expert which does not make
any mistake on any of the instances). Consider the following algorithm:

For each instance, run all the experts, and choose the output label predicted by the majority
of the experts, and remove the experts which don’t make the majority prediction.

This algorithm would make log n mistakes until it finds the best expert. It can easily proved by
observing that, at each step we remove almost half of the experts. To be more exact, we remove at
least 25% of the remaining experts (why?). why?

Now consider the case when there is not a perfect expert. We can do the same strategy as we
had before, but once we cross off all of the experts start over. how? If the number of mistakes
the best expert makes in the hindside is OPT , this algorithm would make O((OPT+1) log n) how? .

2.2 Weighted Majority algorithm

Here instead of crossing off experts, we use a weighted strategy; instead of removing an expert, we
halve its weight by half. For decision, choose the prediction, which has the biggest weight.

Theorem 1. The weighted majority algorithm has mistake bound 2.4(m + log n), where n is the
number of the mistakes, and m is the number of the mistake the best expert has made so far.

Proof. Define the following two variables:{
M = #number of the mistakes made so far.

W = #total weight.

First, we know that the initial value of the W is n. At each mistake, the total weight W drops by
at least %25. proof? So after M mistakes, the total weight is at most n(3/4)M . Also the weight of
the best expert is (1/2)m. Then:

(1/2)m ≤ n(3/4)M ⇒M ≤ 2.4(m+ lg n)

3

Exercise 1. Define an alternative strategy for the weighted majority algorithm and prove that its
mistake bound is O(m + log n), where n is the number of the experts, and m is the number of the
mistakes the best expert makes in the hind sight. Just like before we choose the expert with the
maximum weight, but instead of halving the weights of all the wrong experts, we apply the halving,
only if the weight of the expert is at least 1/4 of the average weight of all the experts.

Proof. Just like the example we showed, define the following variables:
M = #number of the mistakes made so far.

Wbegin = #total weight at the begining of the interval.

Wend = #total weight at the end of the interval.W (t) = #total weight at time t.

First observation is that, the weight of each expert is at least the W (t)/(8n). The reason is that,
the weight of each expert gets halved only if its weight is more than W (t)/(8n). Therefore no
weight goes bellow W (t)/(8n). Since this holds for all of the weights, essentially this also holds for
the weight of the best expert.

Since the weight of the best expert gets halved for m times, the weight of the best expert is
lower bounded by

(
1
2

)m
Wstart/(8n).

Another observation is that, at each mistake at most W/4 of the total weight is fixed, and at
least W/2−W/4 = W/4 gets cut in half. why? In other words,

Wend =

(
7

8

)M
Wstart(

1

2

)m
Wstart/(8n) ≤

(
7

8

)M
Wstart

Which would give us the desired bound.

Can we make better? yes! If make the strategy randomized, it will give us an improved bound.
more examples here: link

2.3 Randomized Weighted Majority algorithm

In the randomized strategy, instead of choosing the decision with maximum weight, we use the
weights as probability distribution and choose the label randomly with respect to the weight dis-
tribution. Also, let’s make the strategy a little more complicated, by multiplying (or dividing) by
1− ε (instead of 1/2).

Theorem 2. The (expected) mistake bound of the randomized weighted majority algorithm is:

M ≤
m ln 1

1−ε + lnn

ε

The followings are special cases for different values of ε:

ε = 1/2→M ≤ 1.39m+ 2 log n

ε = 1/2→M ≤ 1.15m+ 4 log n

ε = 1/2→M ≤ 1.07m+ 8 log n

4

http://www.cs.cmu.edu/~arielpro/15896/docs/soln1.pdf

Proof. Suppose at time t, αt is the fraction of the weights (of the experts) that have made mistake.
So, we remove εαt of the total weight at step t:

W (T) = n
T∏
t=1

(1− εαt)

lnW (T) = lnn+
T∑
t=1

ln(1− εαt) ≤ lnn+ ε
T∑
t=1

αt

Note that:

M = E [# of mistakes] =
T∑
t=1

αt

lnW (T) ≤ lnn− εM

If the best expert makes m mistake up to time T , we know that:

(1− ε)m ≤W (T)⇒ m log(1− ε) ≤ lnW (T)

⇒ m ln(1− ε) ≤ lnn− εM

⇒M ≤ 1

ε
[−m ln(1− ε) + lnn] ≈ (1 + ε/2)m+

1

ε
lnn (3)

Remark 2. The bound in the Equation 3 could be written in the following form: how?

E [# of mistakes] ≤ (1 + ε)OPT + ε−1 log n

To make tighter bound (and assuming that we know OPT , and OPT ≥ logn), we set ε = (logn/OPT)1/2.
With simplification how? it can be shown that

E [# of mistakes]

T
≤ OPT

T
+O

(√
log n

T

)

As it can be seen, as T → +∞, the regret goes to zero. Algorithms with this property are usually
called “no-regret” algorithms.

more examples here: link

http : //www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859−f11/www/notes/lecture16.pdf

http : //cseweb.ucsd.edu/ yfreund/papers/gameslong.pdf

5

https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=multiplicative%20weights%20algorithm

2.4 Sleeping expert’s problem

http : //www.cs.cornell.edu/w8/ yogi/v/research/publications/kleinberg−niculescumizil−sharma−colt2008.pdf

Proposition 1. An online learning algorithm is lazy if it changes its state only when it makes a
mistake. We can show that for any deterministic online learning algorithm A achieving a mistake
bound M with respect to a concept class C, there exists a lazy algorithm A′ that also achieves M
with respect to C.

Recall the definition: Algorithm A has a mistake bound M with respect to a learning class C if
A makes at most M mistakes on any sequence that is consistent with a function in C.

Here is a brief proof. Assume that there exists a sequence of examples on which A′ makes
M ′ > M mistakes. Cross out all examples on which A′ doesnt make a mistake, and let S denote
the resulting sequence. Both A and A′ behave identically on S, and A makes at most M mistakes
on any sequence of examples, including S. This leads to the desired contradiction. (Obviously, if
the original sequence is consistent with a concept in C, so is S.)

3 Follow-The-Perturbed-Leader

The whole thing: adasd Follow the perturbed leader http://theory.stanford.edu/~tim/f13/

l/l17.pdf 4 12 12 http://www.cs.cornell.edu/courses/cs683/2007sp/lecnotes/week7.pdf

http://ocobook.cs.princeton.edu/OCObook.pdf http://classes.soe.ucsc.edu/cmps290c/Spring09/

https://web.stanford.edu/class/cs229t/notes.pdf

4 Winnow algorithm

Developed in more than 20 years ago, in [1]. It is very relevant and similar to the perceptron
algorithm, but with different properties. The only difference is that, in the Winnow algorithm, the
updates are multiplicative. During this note, we will represent multiple versions of Winnow, but all
of them have similar properties and analysis.

The key property of the Winnow update rule [1] is that the number of examples required to
learn a linear function grows linearly with the number of relevant features and only logarithmically
with the total number of features. This is a desirable property if there are many irrelevant features
in the instances, while the relevant features might be small.

The versions we introduce here all have positive weights, although the Winnow algorithm is not
limited to positive weights LTFs.

Therefore, it is typically not expressive enough for applications. Using the “duplication trick”
[?, ?].

4.1 Winnow for LTF (Linear Thresholding Function)

Consider the following definition for hypothesis class of LTF:

Predict positive if
∑
i

w[i]x[i] ≥ n

6

http://www.princeton.edu/~sbubeck/BubeckLectureNotes.pdf
http://theory.stanford.edu/~tim/f13/l/l17.pdf
http://theory.stanford.edu/~tim/f13/l/l17.pdf
http://pages.cs.wisc.edu/~shuchi/courses/787-F09/scribe-notes/projects/project-notes-3.pdf
https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=follow%20the%20perturbed%20leader
http://www.cs.cornell.edu/courses/cs683/2007sp/
http://www.cs.cornell.edu/courses/cs683/2007sp/lecnotes/week7.pdf
http://ocobook.cs.princeton.edu/OCObook.pdf
http://classes.soe.ucsc.edu/cmps290c/Spring09/
https://web.stanford.edu/class/cs229t/notes.pdf

The Winnow algorithm is as following:

• Initialize all weights wi = 1.

• Loop over instances (xj , yj)

– Given input instance xj , make prediction h(xj).

– If h(xj) 6= yj and yj = 1, then w[i]← 2× w[i], for all i.

– If h(xj) 6= yj and yj = −1, then w[i]← 0, for all i.

Note that, disjunction functions are special case of LTF (see ??). In other words, any disjunction
could represented with an LTF. Therefore, our presented Winnow could solve disjunctions.

Theorem 3. Suppose the target function is a (r out of n) disjunction function. The mistake bound
of the algorithm presented above is the following:

1 + r(1 + lg n) = O(r lg n)

Proof. To prove this, we first prove that, the number of the mistakes on positive instances is
bounded. At first, each of weights are 1. Also, on positive instances, only the weights that are less
than n can be updated (doubled). In other words, each weight can be updated at most log2 n+ 1
times. Thus the number of the mistakes on positive instances is bounded by:

M+ ≤ r(1 + log2 n)

Then we bound the number of the mistakes on negative instances by a constant factor of the number
of the mistakes on positive instances, which would result in the final bound. First, note that, when
making mistake on negative instances, the value of the total weight decreases at least by n(why?).
Also, when making mistake on a positive instance, the total weight increases by at most n. Also,
initially the total weight is n. Then,

n+M+n−M−n > 0⇒M− < M+ + 1

This would give the over bound on mistakes:

M = M− +M+ ≤ 2r(1 + log2 n) + 1 ∈ O(r(1 + log2 n))

link

4.2 A general form for Winnow

Here is a more general algorithm:

7

https://www.cs.princeton.edu/courses/archive/spring13/cos511/scribe_notes/0409.pdf

• Initialize all weights wi = 1, and ε = 1/(2k).

• Loop over instances (xj , yj)

– Given input instance xj , make prediction h(xj).

– If h(xj) 6= yj and yj = 1, then w[i]← w[i](1 + ε), for all i.

– If h(xj) 6= yj and yj = −1, then w[i]← w[i]/(1 + ε), for all i that x[i] = 1.

Theorem 4. The Winnow algorithm with the above representation makes at most O(rk log n)
mistakes.

Proof. Suppose the number of the mistakes on positive examples is M+, and the number of the
mistakes on negative examples is M−. This the mistake bound is M = M+ +M−. Define the total
sum to be S =

∑
iw[i] Also define the following short hands:{

positive-instance-mistake = p.i.m

negative-instance-mistake = n.i.m

We know at first:
w[i] = 1, ∀i,

and
S =

∑
i

w[i] = n.

On any p.i.m. the increase of S is at most εn. Thus for all the p.i.m. the increase of S is εnM+. On
any n.i.m. the decrease of S is at least ε

1+εn. Thus for all the n.i.m. the decrease of S is ε
1+εnM−.

At the end of the algorithm, the sum is:

S = n+ εnM+ −
ε

1 + ε
nM−

Since the sum never goes negative then we have the constraint that,

S = n+ εnM+ −
ε

1 + ε
nM− ≥ 0. (4)

We can make another inequality by focusing on the number of the relevant features (attribute)
which has size k. For any positive instance, the number of the active features is at least k (in
particular the k relevant one), and in the negative instances, the number of the active relevant
features is at most k−1. For any feature, suppose we increase its weight c+ times, and decrease its
weight c− times. We know that its weight shouldn’t be more than n (unless all predictions become
positive). Thus,

(1 + ε)c+

(1 + ε)c−
≤ n⇒ (1 + ε)c+−c− ≤ n

8

which means the absolute number of increases c+ − c− 2 is upper bounded by log1+ε n. Since this
holds for any k feature, the sum of absolute number of increases (sum of coins; see the footnote)
for all the relevant features must be less than k log1+ε n. For any p.i.m, the number of the coins
added is k (since at least k active relevant feature), and in the n.i.m at most k− 1 active instances.
And we need to have:

kM+ + (k − 1)M− ≤ k log1+ε n. (5)

Combining Equations 4 and 5 we get the following:

M ∈ O(rk log n)

Problem 1. Suppose there exists a w∗ such that,{
w∗.xi ≥ c for all i such that yi = +1

w∗.xi ≤ c− γ for all i such that yi = −1

Then for the choice of ε = γ/2, the mistake bound for the Winnow algorithm is O((l1(w
∗)/γ)2 log n).

Hint: think about the variations of
∑

iw
∗[i] log1+εw[i]

Proof. Define the potential function at time t to be the following:

Φt =
∑
i

w∗[i] log1+εw
t[i]

We know the updates could be written in the following short form:

wt+1[i]← wt[i](1 + ε)yx[i]

where y ∈ {±1}, and x[i] ∈ {0, 1}. Also given this update we know that:

Φt+1 =
∑
i

w∗[i] log1+εw
t+1[i] =

∑
i

w∗[i] log1+ε

(
wt[i](1 + ε)yx[i]

)
=
∑
i

w∗[i] log1+ε

(
wt[i](1 + ε)yx[i]

)
=
∑
i

w∗[i] log1+εw
t[i] +

∑
i

yx[i] = Φt +
∑
i

y.w∗[i].x[i]

⇒ Φt+1 = Φt +
∑
i

y.w∗[i].x[i] (6)

Based on the assumption in the question, we can make the following conclusions.

1. On positive instances (y = +1), the potential function Φt increases by at least c.

2. On negative instances (y = −1) , the potential function Φt decreases by at most c− γ.

2Increases minus decreases; some people like to think about c+ as adding coin on each relevant feature, and c−
removing relevant feature from the feature.

9

At each step we know that (otherwise we never make mistake on positive instances)

w[i] ≤ n(1 + ε).

Then,
log1+εw[i] ≤ log1+ε n(1 + ε) = log1+ε n+ 1.

⇒
∑
i

w∗[i] log1+εw[i] ≤
∑
i

w∗[i]
{

log1+ε n+ 1
}

= l1(w
∗)
(
1 + log1+ε n

)
.

Then using the results we got from the Equation 6:

M+c−M−(c− γ) ≤ l1(w∗)
(
1 + log1+ε n

)
(7)

Also from the original analysis, remember the inequality:

n+M+εn−M−
ε

1 + ε
n ≥ 0 (8)

Combining these two inequalities proper choice of ε as a function of γ, would give us the following
bound:

M = M+ +M− ∈ O

((
l1(w

∗)

γ

)2

log n

)
If we set l1(w

∗) = 1, it would give the desired bound.

Remark 3. One interesting open question is that, can we learn a computationally efficient decition
list with mistake bound poly(L, logn)? Note that, although the halving algorithm attains this mistake
bound, it is not computationally efficient.

link2

5 Perceptron Algorithm

The perceptron algorithm is one of the oldest algorithms for learning linear separators which is in-
vented around 1960s. Although being very simple, it is still being widely used. Even many fancier
and newer algorithms, are modifications of the this algorithm.

Suppose we have linear combination of features x and their weights w, as w.x. If w.x ≥ 0,
we consider the prediction positive, otherwise we consider it negative. Here is the algorithm in its
simplest form:

• Initialize the weights w = 0

• If mistake on positive example,
w ← w + x

• If mistake on negative example,
w ← w − x

10

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=9&ved=0CGUQFjAI&url=http%3A%2F%2Fwww.cs.tufts.edu%2F~roni%2FTeaching%2FCLT%2FLN%2Flecture15b.pdf&ei=PAAPVJeAOvaJsQS_yoHQBw&usg=AFQjCNG-I1KzxaOGQXxVcf7lIts1I9kOSw&sig2=RinjA7QJrEGykTJh281faA&bvm=bv.74649129,d.cWc&cad=rja

𝛾

𝛾

𝑤∗

Figure 1: A representation of Perceptron Algorithm updates, and its margin.

Theorem 5. Suppose the data (scaled to to the unit ball) is consistent with some LTF with w∗,
such that

w∗.x > 0

‖w∗‖ = 1

γ = minx
|w∗.x|
‖x‖

Then the number of mistakes is less than 1/γ2.

Proof. The key to prove this, is in analyzing the behavior of ‖w‖ and w.w∗. First, we show that
each mistake increases w.w∗ by at least γ.

(w + x).w∗ = w.w∗ + x.w∗ ≥ w.w∗ + γ

And after M mistakes:
w.w∗ ≥ γM

Each mistake increases ‖w‖2 = w.w by at most one.

‖w + x‖2 = (w + x).(w + x) = w.w + 2w.x+ x.x ≤ w.w + 1

And after M mistake,
‖w‖ ≤

√
M

Combining the two inequalities, by knowing that w.w∗ ≤ ‖w‖ (since w∗ is a unit vector) we get:

γM ≤ w.w∗ ≤ ‖w‖ ≤
√
M

And we get M ≤ 1
γ2

.

One can prove that the bound that we got for the perceptron is optimal in terms γ. The next
theorem is proving this.

Theorem 6. The Perceptron algorithm is optimal in terms of γ. No deterministic algorithm can
have mistake bound less than 1/γ2, which maintaining a separation margin of γ.

11

Proof. For proof, we design a set of 1/γ2 data points, such that they always satisfy the margin
separation of γ, and show that, for any algorithm, we can label then in a way that it makes mistake
on all the data points.

Suppose our data points are the unit vectors ei in dimension i. x1 = e1, . . . , x1/γ2 = e1/γ2 .
Consider the following family of target functions:

w∗ = γ(±x1 ± x2 . . .± x1/γ2)

For any of these target functions (with any arbitrary signs) ‖w∗‖ = 1, and it separates points with
margin γ (with respect to any of ei). So, for any deterministic algorithm, as adversary could choose
the signs of the target separator in a way that, it makes mistake on all of the data points.

By now, we have seen that, if the data is linearly separable by some (relatively big) γ (large-
margin condition) the Perceptron algorithm is a very good algorithm.

In the previous case, the analysis were dependent on having a separator and the separation
width, γ. But what if we don’t have such grantees on our data? Can we get other bounds on our
algorithm? (In other words, w∗ is not perfect)

Problem 2. Remember the Problem 1. We can make a similar statement in the perceptron algo-
rithm. Specifically, suppose there exists a w∗ such that,{

w∗.xi ≥ c for all i such that yi = +1

w∗.xi ≤ c− γ for all i such that yi = −1

Then the mistake bound for the Perceptron algorithm is O((l2(w
∗)l2(X)/γ)2).

6 Bibliographical notes

These notes initiated during the Statistical Learning Theory, by Maxim Raginsky [3] and Ma-
chine Learning Theory, by Avrim Blum(while his sabbatical at UIUC). In particular some sample
questions from Maxim’s homework assignments. I have also used Sasha Rakhlin and Karthik Srid-
haran’s class notes. Some of the material for Online Learning is borrowed from [4, 5], and some
are borrowed from Nina Balcan’s notes.

References

[1] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine learning, 2(4):285–318, 1988.

[2] Arkadĭı Nemirovsky. Problem complexity and method efficiency in optimization.

[3] Maxim Raginsky. Lecture notes: Ece 299: Statistical learning theory. Tutorial, 2011.

[4] Alexander Rakhlin and A Tewari. Lecture notes on online learning. Draft, April, 2009.

[5] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends
in Machine Learning, 4(2):107–194, 2011.

12

http://www-stat.wharton.upenn.edu/~rakhlin/courses/stat928/stat928_notes.pdf

	Introduction
	Several early algorithms
	The halving algorithm
	Weighted Majority algorithm
	Randomized Weighted Majority algorithm
	Sleeping expert's problem

	Follow-The-Perturbed-Leader
	Winnow algorithm
	Winnow for LTF (Linear Thresholding Function)
	A general form for Winnow

	Perceptron Algorithm
	Bibliographical notes

