
Learning Theory: Basic Guarantees

Daniel Khashabi

Fall 2014
Last Update: April 28, 2016

1 Introduction

The Learning Theory 1, is somewhat least practical part of Machine Learning, which is most
about the theoretical guarantees in learning concepts, in different conditions and scenarios. These
guarantees are usually expressed in the form of probabilistic concentration of some measure, around
some optimal value which is unknown and need to discovered. These bounds are functions of
problem specifications, for example,

• The number of samples: the more samples we have, there is a better chance of learning.

• The easiness of the underlying distribution need to be learned.

• The generalization power (or flexibility) of the family of the functions which is being used to
approximate the target distribution.

To begin with let’s start with a simple example. Suppose we have a sequence of binary obser-
vations:

y1, . . . , yn,∀yi ∈ {0, 1}

Consider the following tasks:

• Estimation: One task is to model this binary sequence. We want to take the easy way
and model it with Binomial distribution, with parameter p. We call a good parameter for
our model p̂ that models the original sequence is called the Estimation problem. Suppose
someone tells us that the original sequence is sampled i.i.d. from a Bernoulli distribution with
parameter p∗. In this case we can create an averaging estimation p̂ = 1

n

∑n
i=1 yi and have the

following bound on our estimation:

|p− p∗| < ε(n, δ) with probability at least 1− δ (1)

where ε(n, δ) is proportional to 1√
n

. In general, we are looking for finding tighter estimations

(i.e. ε(n, δ) getting smaller with faster rate).
In finding the above bound, we assumed that the original samples are from a Bernoulli
distribution. One challenge in real world is that, we don’t know from which distribution

1Some people that are on the statistics side usually call it, Statistical Learning Theory, and others at the compu-
tational side, call it Computational Learning Theory. I was fortunate to work with people from the both sides, and
these notes will include both computational and statistical tastes of the problems.

1

the data is coming from, and therefore finding bounds on estimations is not very trivial.
Estimation in real problems means, learning the best model which describes the model, which
is our first problem in the learning theory.

• Batch prediction: Suppose, given a model for the sequence we want to predict the next
coming number yn+1 ∈ {0, 1}. What is the best prediction and how do we define it? A good
measure is to compare the number of the mistakes our prediction might make, relative to the
total number of the mistakes that the best algorithm could make in retrospect.

Rn =
1

n

∑
i

1{ŷi 6= yi} −min
y′i

Eyi∼P1{y′i 6= yi} (2)

The above value is usually called Regret. The second term miny′i Eyi∼P1{y′i 6= yi} is the
minimum achievable expected loss, on observations sampled from the distribution P. Without
making any assumptions about P, evaluating miny′i Eyi∼P1{y′i 6= yi} is almost impossible.
Let’s say the data is coming from a Bernoulli distributions with parameter p∗ (i.e. P =
Ber(p∗)) and we are using our previous estimate p̂n = 1

n

∑n
i=1 yi. In this case, the expected

error by the best estimation is (why?):

min
y′i

Eyi∼Ber(p∗)1{y′i 6= yi} −min{p∗, 1− p∗}

The best estimator for yn+1 (minimizer of the regret) is the majority vote (why?):

yn+1 = 1{p̂n > 0.5}

If p∗ = p̂, our prediction is exact. But with limited data we have the bound 1 on estimation of
p̂, which means that we can find a similar bound on our prediction. Again, like the estimation,
one challenge is that, we don’t know if the data is coming from a Binomial distribution or
not, which adds further complication.

• Online prediction: This scenario is very similar to the previous case, but instead of having
all the data together, we ate getting one by one up to the i-th instance, and we are suppose
to make the best prediction for the (i + 1)-th label and then see the real value. This is
called online learning since we learn the model by seeing the data sequentially, and at each
observation we make prediction based on previous observations and past predictions. What
is the best best prediction? Again we resort to the Regret in Equation 2. At each step j ≤ n
we use choose the yj+1 which minimizes Rj . Like the previous type, the best prediction is
via majority vote up to step j:

yj+1 = 1{p̂j > 0.5}, where p̂j =
1

j

j∑
i=1

yi

Although the answer to online and batch prediction in this example were very similar, in
more complicated problems their answers can be very different.

Remark 1. Consider the strong Law of Large numbers, which says there exists a predictor, without
any assumptions on the generative process of data, such that

lim sup
n→∞

Rn → 0, a.s.

although it does not say anything about this magical method!

2

Proposition 1. Our method for the Bernoulli example, by minimizing regret (either batch or online
case) with

yn+1 = 1{p̂n > 0.5}

can be arbitrary bad, depending on the sequence. Suppose there is a sequence of {1, 0} with alter-
nating signs. The predictor will also alternate between 0 and 1, but in opposite of the observation
sequence. In other words, this predictor will make mistake on all of the instances. In fact, many
problems are like this; without many assumption on the underlying generative process for the data,
it is almost impossible to come up with prediction guarantees, for a fixed predictor.
One other method is to find guarantees in expectation (rather than finding deterministic guarantees).
We will talk more about randomization in later sections.

Problem 1 (Randomized bound). Consider the following two problems:

1. Define a function φ(a) to be stable, iff∣∣φ(a)− φ(a′)
∣∣ ≤ 1

n
, for any a, a′ with

∥∥a− a′∥∥
1

= 1

Suppose we find a stable function such that it upperbounds expected average of mistakes:

E

[
1

n

∑
i

1{ŷi 6= yi}

]
≤ φn(y1, . . . , yn), ∀y1, . . . , yn

Prove that this upper bound holds, if and only if, for a uniform distribution of {0, 1}n,

Eφn(y1, . . . , yn) ≥ 1

2
, ∀y1, . . . , yn

2. Show that, using the previous characterization of φn(.) show existence of an algorithm that
achieves the following guarantee:

E

[
1

n

∑
i

1{ŷi 6= yi}

]
≤ min{p̂n, 1− p̂n}+ Cn−1/2

What is the smallest value of C?
Hint: The term min{p̂n, 1− p̂n} is at least 0.5.

2 Initial steps to model learning

2.1 Some combinatorial problems and consistency

To make the progress we will start with some combinatorial problems, and define our goal. In these
problems we aim to reach at consistency, which is defined as following:

Definition 1 (Consistency). A set of labeled examples are given as S. Suppose we want to to learn
to predict S, by choosing a concept c, that belongs to a concept class C. If c is consistent with all
of the elements in S, we output it; otherwise we output that “there is no consistent concept”.

Now let’s read about some problems.

3

… 𝑥8 = 0 𝑥8 = 0 𝑥4 = 1 N N N

Y Y Y

𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒 𝑇𝑟𝑢𝑒

Figure 1: An example of a decision list.

Problem 2 (Monotone CNFs). Suppose we have binary feature vectors of size d. Our concept class
is the set of all CNFs of the feature values (without negation). For example, one feature vector,
and its associated label could be the following:

1 1 0 1 0 0 1 0 0 1, +

Obviously d = 10. A concept consistent with the above instance is x1∨x2∨x7∨x10. Now a class of
instances S is given to us, and we want to find a consistent function with S. Here is an algorithm
that would do this for us:

Remove all of the features (from all of the instances), that are zero in at least one positive
instance (Since these features cannot be included in the target function). Take AND of the every
feature remained. If nothing is remained, output that such consistent function is impossible to be
made.

There is a Monotone DNF problem, similar to the Monotone-CNF, but ∨ replaced with ∧. A
consistent function for this concept class could be found using the De Morgan law and solution for
the Monotone CNF.

There are similar and relevant problems: non-monotone CNF or simply CNF problem, in which
we can use negations for each feature vector (Similarly non-monotone DNF or simply DNF prob-
lem). If we limit the size of each laterals to k features, we call it k − CNF problem (similarly
k −DNF problem).

Another hypothesis class which we will talk about is Decision List. A Decision List is a chain
of if-else rules. An example is shown in the Figure 1. This example corresponds to the following
rules:

x4 ⇒ True

x̄8 ⇒ False

x10 ⇒ True

. . .

Although in the figure, our conditions are on single features, in general the conditional could be
laterals (conjunctions or disjunctions of single features). The case when each literal is a conjunction
of k variables is commonly called k-Decision List; in the rest of these notes, we will limit ourselves
to only one variables. Note that, for each variable there are four possible cases. For example for

4

x1,
x1 ⇒ True

x̄1 ⇒ True

x1 ⇒ False

x̄1 ⇒ False

As a result, the size of the hypothesis space is |H| = n!4n (n! for different orderings).

Example 1 (Algorithm to find consistent DL). Given a training data, we want to create decision
list consistent with S. Here is a bottom-up algorithm for doing that:

• Start with an empty list.

• Find laterals that are consistent with a subset of the data, add it to the end of the DL, and
cross-out all of the instances covered.

• If we fail to find a consistent lateral, output “no consistent DL with the data”.

The above construction of a consistent DL is not unique. One can do a top-down approach, by
creating a list of all rules, and removing the inconsistent ones by observing instances (left as an
exercise to the reader).

Exercise 1. It is easy to show the conjunctions or disjunctions are special cases of decision lists.
Show that, decision lists are special cases of Linear Thresholding Functions (LTF). In other words,
given any decision list, it can be written as a weighted linear combination of some binary variables.

f(x) =
∑
i

wixi

{
≥ 0 ⇒ +

< 0 ⇒ −

Proof. For a given decision list, one possible LTF is the following:

f(x) =
∑
i

h(xi)g(xi)×
1

2i

where,

g(xi) =

{
xi if in the decison list, the condition is xi

1− xi if in the decison list, the condition is x̄i

h(xi) =

{
+1 if in the decison list outputs T

−1 if in the decison list outputs F

Proving this can be done with induction.

5

2.2 PAC model

Assume we are given labeled data S, sampled i.i.d. from an unknown distribution D over the
instance space X , and labeled by some unknown target concept c∗. Suppose we learn concept
ĉ ∈ C. If we find a good concept class that is guaranteed to have a desired error rate, with a desired
probability, we have a PAC (Probably Approximately Correct) solution for the problem. We will
explain this more formally.

First let’s start explaining the concept on the Decision List problem, which we talked about in
the Section 2.1.

Example 2 (Decision List Algorithm). Given a training data, we want to create decision list
consistent with S. Here is a bottom-up algorithm for doing that:

• Start with an empty list.

• Find laterals that are consistent with a subset of the data, add it to the end of the DL, and
cross-out all of the instances covered.

• If we fail to find a consistent lateral, output “no consistent DL with the data”.

The above construction of a consistent DL is not unique. One can do a top-down approach, by
creating a list of all rules, and removing the inconsistent ones by observing instances.
Now given this algorithm, we show that, if |S| is of reasonable size, then the hypothesis is “approx-
imately correct”, or,

P [∃h ∈ HDL with err(h) ≥ ε] ≤ δ

Proof. Consider a “bad” hypothesis h whose error probability is at least ε: err(h) ≤ ε. The proba-
bility that this this bad hypothesis is consistent with the training data S (given the independence
assumption):

(1− ε)m

Since size of the hypothesis space is at most n!4n, then the union bound for all of the hypothesis
would give us,

P [∃h ∈ HDL with err(h) ≥ ε is consistent] ≤ |H| (1− ε)m

≤ |H|e−ε|S|

Equivalently, for any ε > 0, δ > 0, and enough training data,

|S| ≥ 1

ε

[
ln |H|+ ln

1

δ

]
=

1

ε

[
n lnn+ ln

1

δ

]
we will have a Probably Approximately Correct prediction.

Remark 2 (Sample complexity). Given a PAC-learnable hypothesis space, and ε > 0, δ > 0, the
number of the data needed is called “sample complexity”.

6

Exercise 2. Suppose our hypothesis class is conjunction of features. Here is an example,

x1x̄2x̄3 . . . xnx̄n

Given a training set S, give an algorithm that finds a consistent member of this class, and prove
that this hypothesis class is PAC-learnable.
Hint: For a given, ε > 0, δ > 0, you should end up with sample complexity better than 1

ε [n ln(3) + ln (1/δ)] .
Hint 2: Show that, the size of the hypothesis space is 3n.

After giving example, we give the formal definition.

Definition 2 (PAC Learning). If for any concept class C, and any target concept c∗ ∈ C, and for
any distribution D over the instance space X , and for any given arbitrary δ > 0, ε > 0,

1. the algorithm A using the labeled instances sampled with distribution D, produces a hypothesis
h ∈ H (where H is a hypothesis class), which with probability at least 1− δ produces at most
ε error.

2. A runs in time poly(n, |S|), where |S| is sample size, and n is size of an example.

3. The sample size needed to achieve this goal is poly(1/ε, 1/δ, n, size(c∗))

Then the algorithm A, PAC-learns the concept class C.

Remark 3 (Proper PAC-learning). If H = C, then we call it “Proper Learning” scenario. In the
practical scenarios it is usually the case that, H 6= C. We call the learning “agnostic” if we simply
want to find the best h ∈ H we can, without having any prior assumption on the target concept. In
this case, instead of trying to reach a constant error probability ε, we try to read reach the error
by the best predictor, OPT (H) + ε. This is related to another notion called “regret”, which we will
talk later.

Remark 4 (Weak Learning). If instead of fixing ε, we require to learn a hypothesis of error at
most 1

2 − 1/poly(n), it is usually called “Weak Learning” scenario.

Remark 5 (Decision Trees). Decision Trees are not known to be PAC-learnable! Although it might
be easy to find a consistent hypothesis of the data (how?).

Exercise 3. Find out the reason that, Decision Trees are not PAC-learnable. Where does the
argument break?

Remark 6. If the computation time is not an issue, any hypothesis class is PAC-learnable!

Remark 7. Some drawbacks of the PAC-learning model:

1. It doesn’t not consider the prior knowledge or prior belief in the models.

2. It doesn’t address the unlabeled or similar scenarios.

7

2.3 Mistake Bound model

Suppose we are in the online learning scenario.

Definition 3. An algorithm A is said to learn the concept class C with mistake-bound C, if for any
ordering of the examples consistent with c, the total number of the mistakes made by A is bounded
by poly(n, size(c)), where n is size of an example.

Remark 8. The definition of the mistake-bound has nothing to do with the running time of the
algorithm.

Remark 9. Based on the definition of the mistake-bound, it doesn’t make sense to talk about “how
much data is needed for learning”. Since the algorithm might see many instances and doesn’t make
any mistakes (hence, doesn’t learn anything!).

Definition 4 (MB-learnable). The concept class is called MB-learnable, if there exists an algorthm
with a constant mistake bound, and running time poly(n, s).

Example 3 (Conjunction of features). Suppose our hypothesis class is conjunction of features.
Given a training set S, how can we learn with this hypothesis class?

1. Initialize h to be x1x̄1x2x̄2 . . . xnx̄n

2. For each instance in the training set xi, do prediction with h(x).

3. If the prediction is “false” and yi is “true”, remove all the features, which given xi are false,
so that after this h(xi) will be true.

4. If the prediction is “true” and yi is “false”, then return “no consistent hypothesis”.

5. Return to the step 2.

The above algorithm will make at most n mistakes. Since the first mistake will shrink down
the size of h to n, and the forthcoming mistakes will reduce the size of the h, by at most one.

It can also be shown that, there is no deterministic algorithm to learn this hypothesis class with
mistake bound less than n. Consider a training set, in which all of the bits, except the i-th are
zero. If there is a deterministic algorithm which correctly predicts the label for the i-th instance.
One can create another data, and the label of i-th instance flipped, and the algorithm will make
mistake on that. Since this argument can be repeated for any i = 1, ..., n, this proves that the
mistake bound for any deterministic algorithm is at least n.

Exercise 4 (MB for disjunctions). Suppose our hypothesis class is conjunction of features. Given a
training set S, how can we learn with this hypothesis class? Present an mistake-bounded algorithm,
and find its mistake bound.
Hint: Use a similar argument to the previous example, and show the the mistake bound in n.

Remark 10. An algorithm A is called “conservative”, when it updates its current state, when it
makes mistake.

Proposition 2. MB-learnabality implies PAC-learnability!

8

Remark 11. Fancier transformation could give bound O
(
1
ε [M + ln(1/δ)]

)
!

Exercise 5 (Lazy decision list). Suppose a set of learning data is given. Find a consistent decision
list with decision bound O(nL) in a lazy fashion, where L is the size of the target decision list.
Generalize this to learning k-decision lists with mistake bound O(nkL).

Proof. There are multiple answers to this question. Here we present two answers.
Answer 1:
Create a list of all possible rules:

x1 ⇒ T

x̄1 ⇒ T

x1 ⇒ F

x̄1 ⇒ F
...

Also, call the two dummy rules P = {T ⇒ T, T ⇒ F}. In overall the number of the rules is
O(4n+ 2). Now run the following algorithm:

1. Create a decision list with the rules created, with arbitrary order, call it Q. Create a copy of
Q and call it Q′.

2. Loop over the following steps, until there is no inconsistency

(a) Loop over the instances, and find the first rule that fires.

(b) If the rule is consistent with the label remove it.

(c) If at some point there is no rule fired, add Q′ to the end of the list, and continue removing
the inconsistent rules.

(d) If after adding Q′ no rule gets fired, add the two rules in C to the end of the list, and
keep the consistent one.

Now we need to prove that this would result in a valid decision list (exercise). To show that this
would have mistake bound of O(nL), you just need to show adding new Q to the end of the decision
list, wouldn’t repeat more than L times(exercise).

Answer 2:
Consider the same rules we have before in Q and the dummy rules in Q′. Consider the union of
the rules in U = Q ∪ Q′. The necessity of having these rules will become clear in the correctness
analysis. In overall the number of the rules is O(4n + 2). In this algorithm we will have a notion
called level, which is defined in the following form. Suppose we start with the the decision list Q,
and remove rule r, and create a new level:

Q converted to

Q \ {r}
else

{r}

This can be repeated many times to get multiple levels. The representation of levels is just to ease
the analysis. The algorithm is the following:

9

1. Create a decision list with the rules created, with arbitrary order.

2. Loop over the following steps, until there is no inconsistency

(a) Loop over the instances, and find the first rule that fires.

(b) If the rule is consistent with the label, move it to the next level.

First prove that, choosing the subset of the rules, until the end of the first trivial rule (of the rules
in Q′) would give a valid consistent decision list (exercise). Then prove that the mistake bound is
O(nL). To prove that, show that the resulting answer will not have more than L levels (exercise).
Extending the above answers to the k-decision list, is a trivial extension.

Remark 12. In PAC model, we can just pick any consistent model. Can we do the same thing for
MC models?

2.4 The halving algorithm

Consider this form of the problem. Define an expert to be a function which scores the input. Note
that an expert is not necessary a good predictor!

Suppose we have n experts, and we want to choose the best one. Here we present a relatively
naive algorithm for that, which is based on sequential halving of the search space.

At the beginning suppose there is at least one perfect expert (an expert which does not make
any mistake on any of the instances). Consider the following algorithm:

For each instance, run all the experts, and choose the output label predicted by the majority
of the experts, and remove the experts which don’t make the majority prediction.

This algorithm would make log n mistakes until it finds the best expert. It can easily proved by
observing that, at each step we remove almost half of the experts. To be more exact, we remove at
least 25% of the remaining experts (why?).

Now consider the case when there is not a perfect expert. We can do the same strategy as we
had before, but once we cross off all of the experts start over. If the number of mistakes the best
expert makes in the hindside is OPT , this algorithm would make O((OPT + 1) log n) .

2.5 Weighted Majority algorithm

Here instead of crossing off experts, we use a weighted strategy; instead of removing an expert, we
halve its weight by half. For decision, choose the prediction, which has the biggest weight.

Theorem 1. The weighted majority algorithm has mistake bound 2.4(m + log n), where n is the
number of the mistakes, and m is the number of the mistake the best expert has made so far.

10

Proof. Define the following two variables:{
M = #number of the mistakes made so far.

W = #total weight.

First, we know that the initial value of the W is n. At each mistake, the total weight W drops by
at least %25. So after M mistakes, the total weight is at most n(3/4)M . Also the weight of the
best expert is (1/2)m. Then:

(1/2)m ≤ n(3/4)M ⇒M ≤ 2.4(m+ lg n)

Exercise 6. Define an alternative strategy for the weighted majority algorithm and prove that its
mistake bound is O(m + log n), where n is the number of the experts, and m is the number of the
mistakes the best expert makes in the hind sight. Just like before we choose the expert with the
maximum weight, but instead of halving the weights of all the wrong experts, we apply the halving,
only if the weight of the expert is at least 1/4 of the average weight of all the experts.

Proof. Just like the example we showed, define the following variables:
M = #number of the mistakes made so far.

Wbegin = #total weight at the begining of the interval.

Wend = #total weight at the end of the interval.W (t) = #total weight at time t.

First observation is that, the weight of each expert is at least the W (t)/(8n). The reason is that,
the weight of each expert gets halved only if its weight is more than W (t)/(8n). Therefore no
weight goes bellow W (t)/(8n). Since this holds for all of the weights, essentially this also holds for
the weight of the best expert.

Since the weight of the best expert gets halved for m times, the weight of the best expert is
lower bounded by

(
1
2

)m
Wstart/(8n).

Another observation is that, at each mistake at most W/4 of the total weight is fixed, and at
least W/2−W/4 = W/4 gets cut in half. In other words,

Wend =

(
7

8

)M
Wstart

(
1

2

)m
Wstart/(8n) ≤

(
7

8

)M
Wstart

Which would give us the desired bound.

Can we make better? yes! If make the strategy randomized, it will give us an improved bound.

11

2.6 Randomized Weighted Majority algorithm

In the randomized strategy, instead of choosing the decision with maximum weight, we use the
weights as probability distribution and choose the label randomly with respect to the weight dis-
tribution. Also, let’s make the strategy a little more complicated, by multiplying (or dividing) by
1− ε (instead of 1/2).

Theorem 2. The (expected) mistake bound of the randomized weighted majority algorithm is:

M ≤
m ln 1

1−ε + lnn

ε

The followings are special cases for different values of ε:

ε = 1/2→M ≤ 1.39m+ 2 log n

ε = 1/2→M ≤ 1.15m+ 4 log n

ε = 1/2→M ≤ 1.07m+ 8 log n

Proof. Suppose at time t, αt is the fraction of the weights (of the experts) that have made mistake.
So, we remove εαt of the total weight at step t:

W (T) = n
T∏
t=1

(1− εαt)

lnW (T) = lnn+

T∑
t=1

ln(1− εαt) ≤ lnn+ ε

T∑
t=1

αt

Note that:

M = E [# of mistakes] =
T∑
t=1

αt

lnW (T) ≤ lnn− εM
If the best expert makes m mistake up to time T , we know that:

(1− ε)m ≤W (T)⇒ m log(1− ε) ≤ lnW (T)

⇒ m ln(1− ε) ≤ lnn− εM

⇒M ≤ 1

ε
[−m ln(1− ε) + lnn] ≈ (1 + ε/2)m+

1

ε
lnn (3)

Remark 13. The bound in the Equation 3 could be written in the following form:

E [# of mistakes] ≤ (1 + ε)OPT + ε−1 log n

To make tighter bound (and assuming that we know OPT , and OPT ≥ logn), we set ε = (logn/OPT)1/2.
With simplification it can be shown that

E [# of mistakes]

T
≤ OPT

T
+O

(√
log n

T

)
As it can be seen, as T → +∞, the regret goes to zero. Algorithms with this property are usually
called “no-regret” algorithms.

12

3 Winnow algorithm

Developed in more than 20 years ago, in [1]. It is very relevant and similar to the perceptron
algorithm, but with different properties. The only difference is that, in the Winnow algorithm, the
updates are multiplicative. During this note, we will represent multiple versions of Winnow, but all
of them have similar properties and analysis.

The key property of the Winnow update rule [1] is that the number of examples required to
learn a linear function grows linearly with the number of relevant features and only logarithmically
with the total number of features. This is a desirable property if there are many irrelevant features
in the instances, while the relevant features might be small.

The versions we introduce here all have positive weights, although the Winnow algorithm is not
limited to positive weights LTFs.

3.1 Winnow for LTF (Linear Thresholding Function)

Consider the following definition for hypothesis class of LTF:

Predict positive if
∑
i

w[i]x[i] ≥ n

The Winnow algorithm is as following:

• Initialize all weights wi = 1.

• Loop over instances (xj , yj)

– Given input instance xj , make prediction h(xj).

– If h(xj) 6= yj and yj , then w[i]← 2× w[i], for all i.

– If h(xj) 6= yj and yj , then w[i]← 0, for all i.

Note that, disjunction functions are special case of LTF (see ??). In other words, any disjunction
could represented with an LTF. Therefore, our presented Winnow could solve disjunctions.

Theorem 3. Suppose the target function is a (r out of n) disjunction function. The mistake bound
of the algorithm presented above is the following:

1 + r(1 + lg n) = O(r lg n)

Proof. To prove this, we first prove that, the number of the mistakes on positive instances is
bounded. At first, each of weights are 1. Also, on positive instances, only the weights that are less
than n can be updated (doubled). In other words, each weight can be updated at most log2 n+ 1
times. Thus the number of the mistakes on positive instances is bounded by:

M+ ≤ r(1 + log2 n)

13

Then we bound the number of the mistakes on negative instances by a constant factor of the number
of the mistakes on positive instances, which would result in the final bound. First, note that, when
making mistake on negative instances, the value of the total weight decreases at least by n(why?).
Also, when making mistake on a positive instance, the total weight increases by at most n. Also,
initially the total weight is n. Then,

n+M+n−M−n > 0⇒M− < M+ + 1

This would give the over bound on mistakes:

M = M− +M+ ≤ 2r(1 + log2 n) + 1 ∈ O(r(1 + log2 n))

3.2 A general form for Winnow

Here is a more general algorithm:

• Initialize all weights wi = 1, and ε = 1/(2k).

• Loop over instances (xj , yj)

– Given input instance xj , make prediction h(xj).

– If h(xj) 6= yj and yj = 1, then w[i]← w[i](1 + ε), for all i.

– If h(xj) 6= yj and yj = −1, then w[i]← w[i]/(1 + ε), for all i that x[i] = 1.

Theorem 4. The Winnow algorithm with the above representation makes at most O(rk log n)
mistakes.

Proof. Suppose the number of the mistakes on positive examples is M+, and the number of the
mistakes on negative examples is M−. This the mistake bound is M = M+ +M−. Define the total
sum to be S =

∑
iw[i] Also define the following short hands:{

positive-instance-mistake = p.i.m

negative-instance-mistake = n.i.m

We know at first:
w[i] = 1, ∀i,

and
S =

∑
i

w[i] = n.

On any p.i.m. the increase of S is at most εn. Thus for all the p.i.m. the increase of S is εnM+. On
any n.i.m. the decrease of S is at least ε

1+εn. Thus for all the n.i.m. the decrease of S is ε
1+εnM−.

At the end of the algorithm, the sum is:

S = n+ εnM+ −
ε

1 + ε
nM−

14

Since the sum never goes negative then we have the constraint that,

S = n+ εnM+ −
ε

1 + ε
nM− ≥ 0. (4)

We can make another inequality by focusing on the number of the relevant features (attribute)
which has size k. For any positive instance, the number of the active features is at least k (in
particular the k relevant one), and in the negative instances, the number of the active relevant
features is at most k−1. For any feature, suppose we increase its weight c+ times, and decrease its
weight c− times. We know that its weight shouldn’t be more than n (unless all predictions become
positive). Thus,

(1 + ε)c+

(1 + ε)c−
≤ n⇒ (1 + ε)c+−c− ≤ n

which means the absolute number of increases c+ − c− 2 is upper bounded by log1+ε n. Since this
holds for any k feature, the sum of absolute number of increases (sum of coins; see the footnote)
for all the relevant features must be less than k log1+ε n. For any p.i.m, the number of the coins
added is k (since at least k active relevant feature), and in the n.i.m at most k− 1 active instances.
And we need to have:

kM+ + (k − 1)M− ≤ k log1+ε n. (5)

Combining Equations 4 and 5 we get the following:

M ∈ O(rk log n)

Problem 3. Suppose there exists a w∗ such that,{
w∗.xi ≥ c for all i such that yi = +1

w∗.xi ≤ c− γ for all i such that yi = −1

Then for the choice of ε = γ/2, the mistake bound for the Winnow algorithm is O((l1(w
∗)/γ)2 log n).

Hint: think about the variations of
∑

iw
∗[i] log1+εw[i]

Proof. Define the potential function at time t to be the following:

Φt =
∑
i

w∗[i] log1+εw
t[i]

We know the updates could be written in the following short form:

wt+1[i]← wt[i](1 + ε)yx[i]

2Increases minus decreases; some people like to think about c+ as adding coin on each relevant feature, and c−
removing relevant feature from the feature.

15

where y ∈ {±1}, and x[i] ∈ {0, 1}. Also given this update we know that:

Φt+1 =
∑
i

w∗[i] log1+εw
t+1[i] =

∑
i

w∗[i] log1+ε

(
wt[i](1 + ε)yx[i]

)
=
∑
i

w∗[i] log1+ε

(
wt[i](1 + ε)yx[i]

)
=
∑
i

w∗[i] log1+εw
t[i] +

∑
i

yx[i] = Φt +
∑
i

y.w∗[i].x[i]

⇒ Φt+1 = Φt +
∑
i

y.w∗[i].x[i] (6)

Based on the assumption in the question, we can make the following conclusions.

1. On positive instances (y = +1), the potential function Φt increases by at least c.

2. On negative instances (y = −1) , the potential function Φt decreases by at most c− γ.

At each step we know that (otherwise we never make mistake on positive instances)

w[i] ≤ n(1 + ε).

Then,
log1+εw[i] ≤ log1+ε n(1 + ε) = log1+ε n+ 1.

⇒
∑
i

w∗[i] log1+εw[i] ≤
∑
i

w∗[i]
{

log1+ε n+ 1
}

= l1(w
∗)
(
1 + log1+ε n

)
.

Then using the results we got from the Equation 6:

M+c−M−(c− γ) ≤ l1(w∗)
(
1 + log1+ε n

)
(7)

Also from the original analysis, remember the inequality:

n+M+εn−M−
ε

1 + ε
n ≥ 0 (8)

Combining these two inequalities proper choice of ε as a function of γ, would give us the following
bound:

M = M+ +M− ∈ O

((
l1(w

∗)

γ

)2

log n

)
If we set l1(w

∗) = 1, it would give the desired bound.

Remark 14. One interesting open question is that, can we learn a computationally efficient decition
list with mistake bound poly(L, logn)? Note that, although the halving algorithm attains this mistake
bound, it is not computationally efficient.

16

𝛾

𝛾

𝑤∗

Figure 2: A representation of Perceptron Algorithm updates, and its margin.

4 Perceptron Algorithm

The perceptron algorithm is one of the oldest algorithms for learning linear separators which is in-
vented around 1960s. Although being very simple, it is still being widely used. Even many fancier
and newer algorithms, are modifications of the this algorithm.

Suppose we have linear combination of features x and their weights w, as w.x. If w.x ≥ 0,
we consider the prediction positive, otherwise we consider it negative. Here is the algorithm in its
simplest form:

• Initialize the weights w = 0

• If mistake on positive example,
w ← w + x

• If mistake on negative example,
w ← w − x

Theorem 5. Suppose the data (scaled to to the unit ball) is consistent with some LTF with w∗,
such that

w∗.x > 0

‖w∗‖ = 1

γ = minx
|w∗.x|
‖x‖

Then the number of mistakes is less than 1/γ2.

Proof. The key to prove this, is in analyzing the behavior of ‖w‖ and w.w∗. First, we show that
each mistake increases w.w∗ by at least γ.

(w + x).w∗ = w.w∗ + x.w∗ ≥ w.w∗ + γ

And after M mistakes:
w.w∗ ≥ γM

17

Each mistake increases ‖w‖2 = w.w by at most one.

‖w + x‖2 = (w + x).(w + x) = w.w + 2w.x+ x.x ≤ w.w + 1

And after M mistake (updates),
‖w‖ ≤

√
M

Combining the two inequalities, by knowing that w.w∗ ≤ ‖w‖ (since w∗ is a unit vector) we get:

γM ≤ w.w∗ ≤ ‖w‖ ≤
√
M

And we get M ≤ 1
γ2

.

Remark 15. One way of looking at the perceptron updates is optimizing an objective function via
gradient descent updates. Specifically if you define the following objective function based on the
hinge loss on a given daataset:

F (w) =
1

T

T∑
t=1

max (0,−yt(w.xt))

The gradient descent updates for minimizing this objective would result in the following updates:

wt+1 ←

{
wt + ηytxt y1(w.xt) < 0

wt o.w.

One can prove that the mistake /update bound for the perceptron is optimal in terms γ. The
next theorem is proving this.

Theorem 6. The Perceptron algorithm is optimal in terms of γ. No deterministic algorithm can
have mistake bound less than 1/γ2, which maintaining a separation margin of γ.

Proof. For proof, we design a set of 1/γ2 data points, such that they always satisfy the margin
separation of γ, and show that, for any algorithm, we can label then in a way that it makes mistake
on all the data points.

Suppose our data points are the unit vectors ei in dimension i. x1 = e1, . . . , x1/γ2 = e1/γ2 .
Consider the following family of target functions:

w∗ = γ(±x1 ± x2 . . .± x1/γ2)

For any of these target functions (with any arbitrary signs) ‖w∗‖ = 1, and it separates points with
margin γ (with respect to any of ei). So, for any deterministic algorithm, as adversary could choose
the signs of the target separator in a way that, it makes mistake on all of the data points.

By now, we have seen that, if the data is linearly separable by some (relatively big) γ (large-
margin condition) the Perceptron algorithm is a very good algorithm.

In the previous case, the analysis were dependent on having a separator and the separation
width, γ. But what if we don’t have such grantees on our data? Can we get other bounds on our
algorithm? (In other words, w∗ is not perfect)

18

Problem 4. Remember the Problem 3. We can make a similar statement in the perceptron algo-
rithm. Specifically, suppose there exists a w∗ such that,{

w∗.xi ≥ c for all i such that yi = +1

w∗.xi ≤ c− γ for all i such that yi = −1

Then the mistake bound for the Perceptron algorithm is O((l2(w
∗)l2(X)/γ)2).

• Initialize α of lenght T

• for each t← 1 to T

– Receive xt

– ŷt ← sign
(∑T

s=1 αsys(xs.xt)
)

– Receive yt

– Update αt:

αt ←

{
αt + 1 ŷt 6= yt

αt o.w.

• Return α

Remark 16. One cam make the above dual percentron kernelized (aka Kernel-Perceptron) by simply
replacing the dot product xs.xt with a kernel evaluation K(xs, xt).

References

[1] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine learning, 2(4):285–318, 1988.

[2] Maxim Raginsky. Lecture notes: Ece 299: Statistical learning theory. Tutorial, 2011.

[3] Alexander Rakhlin and A Tewari. Lecture notes on online learning. Draft, April, 2009.

[4] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends
in Machine Learning, 4(2):107–194, 2011.

19

	Introduction
	Initial steps to model learning
	Some combinatorial problems and consistency
	PAC model
	Mistake Bound model
	The halving algorithm
	Weighted Majority algorithm
	Randomized Weighted Majority algorithm

	Winnow algorithm
	Winnow for LTF (Linear Thresholding Function)
	A general form for Winnow

	Perceptron Algorithm

