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Abstract

In this write-up I am going over relevant impossibility and hardness results related to learning theory.
I go over the related literature and explain all the necessary background, hopefully, with an easy-to-
understand language. Later I go over some results from the past as well as a recent result.

1 Introduction

While study of impossibility results started right after the first successful attempts to modelling “learning"
[KV89KV89], aren’t popularly studied the community, and over time a big gap is shaped between what’s done in
practice and what is understood by theory.

In this write up I go over some of the existing results and tools as well as some open problems.

2 Preliminaries

We give a brief description of the relevant terminology, parameters and scenarios.

2.1 Learning Theory: Basics

I introduce basic terminology and notation for learning theory. For more more exact definitions we refer the
reader to the important surveys in the literature [MRT12MRT12, SSBD14SSBD14].

Basic notation. Define the input space to be X = Rd and the output space to be Y = {±1}. Suppose we
are given n training instances S = {xi, yi}ni=1, are drawn from an unknown distribution D, with marginal
distributions DX and DY . Define the hypothesis classH to be the space of all functions hw that we can use
to approximate our problem. Define the expected error (or risk) to be ErrD(h) , E(x,y)∼D [hw(x) 6= y] =

P(x,y)∼D (hw(x) 6= y). Define the best hypothesis to be h∗ , arg minh∈H ErrD(h) and its error OPT =

ErrD(h∗). The empirical error (risk) is defined according to the training data ÊrrD(h) , 1
|S|
∑

(x,y)∼S hw(x) 6= y.

In reality we choose the best hypothesis via training data S and the empirical risk: ĥ , arg minh∈H ÊrrD(h).
Thus is commonly referred to as empirical risk minimization (ERM).

Realizable scenario. When output label does not have any noise and OPT is zero (i.e. there exists a plane
which perfectly separates the data in the hypothesis spaceH). The opposite of the realizable scenario is the
agnostic scenario for which no assumptions are made. In the literature realizable and agnostic case are also
referred to as noise-free and noisy scenarios, respectively as well.
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Proper vs improper learning. If an algorithm is strictly required to output an output from the set H the
algorithm is called proper learning. In some scenarios H is subset of another set H′. If the algorithm is
allowed to output hypothesis outsideH insideH′\H, as long as it satisfies some certain guarantees (possibly
in expectation). This is often referred to as representation-independent learning or improper learning**. In
the context of half-spaces, an improper algorithm might sometimes output a classifier that is not a half-space
classifier.

The learning problem. Find h such that ErrD(h) ≤ ErrD(h∗) + ε, for some ε ∈ [0, 1]. ε is commonly
called the excess error. This is sometimes referred to as the exact learning since the algorithms gets arbitrarily
close to the exact objective (in additive sense). In other words, ErrD(H) = minh∈H ErrD(h) = 0.

The approximate learning problem. Find h such that ErrD(h) ≤ µErrD(h∗) + ε, for some ε ∈ [0, 1]
and µ > 1. µ is commonly called the approximation ratio, which is the relaxed version version of the exact
learning (i.e. µ = 1)††.

For many of the algorithms we introduce here, their performance measures will be a function of the
approximation factor µ, and naturally as we decrease µ close to one, the running time should get worse.
Hence we one can think of these results as interpolation between approximate learning and exact learning
(when setting µ to one).

Another way of converting an approximate problem is to set µ = 1 + ε′:

µ ≤ µOPT + εold = (1 + ε′)OPT + ε = OPT + εnew, where εnew = (1 + OPT)ε

Hence ε can be set small enough so that εnew is close to what use desires.

Efficient algorithm/learner. An algorithm is efficient if it runs in poly
(
n, 1

ε , log 1
δ , d
)
, where ε is the

excess error, d is the input dimension and the guarantee holds with probability at least 1− δ.

Agnostic learning. We say a learning algorithm agnostically learns H if for any distribution D, with
probability ≥ 1− δ, it outputs a hypothesis with error less than ErrD(H) + ε.

Random classification noise. Define noise level to be s(x) = min (P (Y = 1|X = x) , 1− P (Y = 1|X = x))

which can be simplified to s(x) = 1−η(x)
2 . Intuitively the smaller the noise level across all the instance is,

it is easier to do classification. One way looking at this is that, each label of a noise-free sample is flipped
independently with some fixed probability. In this model the noise is independent of the actual example
points, which are generated according to a probability distribution. When s(x) = 0 almost surely in the
deterministic case. Clearly when s > 0.5 there is no hope of learning; hence it is almost assume that s < 0.5.

In the exact setting (µ = 1) we say an algorithm is learnable in presence of random classification noise,
if for any ε, δ > 0 and s it produces an output a classifier with error ε with probability at least 1− δ, in time
poly

(
1
ε , log 1

δ , d,
1

1−2s

)
. Note that in this criterion, as s→ 0.5, 1

1−2s gets bigger.
This model first introduced by Angluin and Laird[AL88AL88], and it is sometimes referred to as benign

(nonadversarial) noise.

*Although there is nothing “improper" about it!
†Statistical estimation problems are mostly evaluated based on additive errors while combinatorial problems approximation

problems are evaluated based on ratio of objectives. The one we study here has both factors, but we use the approximation term
when referring to the multiplicative approximation, following the computer science community.

2



2.2 Learning problems

Learning half-spaces. If the hypothesis class H consists of half-spaces and each member of this space
hw ∈ H is defined as hw(x) = sign (〈x,w〉), or simply defined a weighted linear sum of some variables:

sign (w1x1 + . . .+ wnxn − θ)

Half-spaces are the cornerstone of the statistical machine learning; vast space of machine learning models
are extensions of half-spaces. For example Naive Bayes, Logistic Regression and Conditional Random
Fields[LMP01LMP01] (normalized exponentiated linear separators), Neural Networks (stack of linear/nonlinear
separators), Support Vector Machines[CV95CV95] (separators with preference for a big margin). Even Boolean
functions can implicitly be simulated with linear functions: AND of variables (θ = n− 1

2 ), Or of variables
(θ = 1

2 ), and majority-vote (θ = n
2 ).

Learning intersection of half-spaces. Given the definition of a half-space hw, the class of “intersection
of half-spaces" is defined as

h̃w(x) =

k∧
i=1

sign
(
wi1x1 + . . .+ winxn − θi

)
2.3 Assumptions

Often to show hardness of computational problems, assumptions made on hardness of existing problems.
Here we provide a short list of what has been used.

P6= NP. Example works that use this assumption are [ABX08ABX08].

RP 6= NP. An example usage of this assumption is for proving the hardness of proper learning.

Refuting random K-SAT is hard. The existing algorithms can only refute random instances with Ω
(
nK/2

)
for K ≥ 4 [Fei02Fei02]. A version of this assumption in [Dan15Dan15] is that, refuting K-SATwith nf (K) constraints
is hard for some f(K) = ω (1).

Cryptographic assumptions. Many of the existing results are based on cryptographic assumptions. Gol-
dreich et al. showed that if one-way functions (functions easy to compute but hard to invert) exist, then
learning polynomial-sized circuits is hard [GGM84GGM84]. Kearns and Variant [KV89KV89] showed other hardness
results for learning automata, constant-depth threshold circuit, log-depth circuit, by making cryptographic
assumptions (e.g. breaking RSA).

Hardness of other algebraic problems. Kharitonov proved hardness of learning constant-depth circuits,
by assuming hardness of factoring random Blum integers [Kha93Kha93]. Klivans and Sherstov showed hardness
of learning intersection of polynomially many half-spaces is hard, assuming hardness of short-Vector Prob-
lem [KS06KS06]. Feldman et al. showed that learning intersection of polynomially-many half-spaces is hard
[FGKP06FGKP06].
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3 Known results

In what follows we discuss the existing results for learning half-spaces under certain assumptions. We start
off by results of exact learning (i.e. µ = 1) and which will be followed by results of approximate learning
(i.e. µ > 1).

No known algorithms can learn DNF formulas (depth 2 circuits). However, we can only rule out learn-
ing of circuits of depth d, for some unspecified constant d [Kha93Kha93].

No known algorithm can learn intersections of 2 half-spaces. In a stronger claim, Klivans and Sherstov
[KS06KS06] only rule out learning intersections of polynomially many half-spaces.

Learning in realizable case is usually easy; learning half-spaces in realizable case is always easy. In
the absence of (label/output) noise (when the data is realizable, i.e. OPT = 0) half-spaces are efficiently
learnable.

One simple way of showing it is via Linear Programming. We show that the problem of half-spaces
in the realizable case can be modelled as an LP. Given the training data S, we are looking for a realizable
answer we need a w such that yiw.xi > 0, ∀i = 1, . . . ,m. Define δ = mini∈[m] yiw.xi (because we are in
the realizable scenario it exists). The objective can equivalently written as yiw.xi ≥ δ, ∀i ∈ [m]. To keep
the notation cleaner we rewrite this equation as yiwδ .xi ≥ 1,∀i ∈ [m]. Note that for any w, w

δ is another
solution in the solution space. Hence the objective can be just written as yiw.xi ≥ 1, ∀i ∈ [m]. Given the
definition of the LP the problem is easily solvable. Note that the LP has only inequality constraints (i.e. it is
a feasibility LP).

There are other algorithms (with guarantees) for the realizable scenario; for example the Perceptron
algorithm of Rosenblatt [Ros58Ros58] is generated to find find a correct classifier after at most (RB)2 updates/it-
erations, where B = min {‖w‖ : ∀i ∈ [m], yiw.xi ≥ 1} and R = maxi ‖xi‖. Note how the final bound
depends on the realizablity in definition of B.

Another popular algorithm is Winnow, which unlike perceptron uses multiplicative updates. Given that
the hypothesis space consists of disjunctions (or conjunctions) and assuming that the target function can
be expressed with r coefficients (queries), Winnow algorithms with at most O (r log n) mistakes finds the
target function [Lit88Lit88].

Learning can sometimes be hard, even in the realizable case. We argued that for half-spaces learning
in the realizable case is easy. For completeness we mention that learning some concept classes (beyond
half-spaces), even in the realizable case can be hard. A famous example is 3-term DNF’s: Pitt and Valiant
[PV88PV88] showed that unless (randomized poly) RP= NP, properly learning 3-term DNFclass is not efficiently
PAC-learnable [PV88PV88]. There are corresponding upper-bounds in prior work by Valiant [Val84Val84] where he
shows that there is an efficient algorithm for learning any DNFwith ≤ q for some constant q. A common
way of proving the DNFhardness result is by reduction to the 3-coloring problem [KV94KV94].
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In the 3-coloring problem, we check it is possible to color the graph with 3 colors, such that any
two neighboring vertices have different colors. In the 3-term DNF, given a collection of positive and
negative instance sets, S+ and S− respectively, we look for a 3-DNFthat would satisfy them all.

Given a 3-coloring instance, we generate binary sequences as inputs to 3-term DNF. Each term
in the 3-DNF should correspond to a single color class. We generate binary vectors with length equal
to number of vertices. We will encode each vertex as positive instances and each edge as negative
instances. Each vertex vi generates a binary vector of ones, with the i-th element set to 0. Each edge
(vi, vj) generates a binary vector one 1’s, with the i-th, j-th elements set to zero. Note that the number
of the samples generated is polynomial in the size of input.

If there is a consistent 3-coloring for the input graph, then there is a 3-DNF consistent with our
instances generated according to the input graph. Suppose the colors are red, blue and yellow. We
construct a Boolean function TR∨TY ∨TB , where each Boolean function T. is constructed as it follows:
Let TR be the conjunction of all the literals xi for which the vertex vi is not red. Among the positive
instances S+ the ones that satisfy this are the ones corresponding to vertex i. Hence any instance will be
satisfied by one of the three Boolean formulas Ti. Among the negative instances none satisfy this, hence
none will be satisfied by the Boolean function. Therefore all the instances S+∪S− are compatible with
the formula TR ∨ TY ∨ TB .

Conversely if there is a 3-DNF consistent with our instances generated according to the input graph,
then there is a consistent 3-coloring for the input graph: label the clauses with colors. Then color vertex
vi to the color of the clause that is satisfied by the corresponding example in S+. If there are multiple
colors, pick a valid one arbitrarily. It is easy to show that there can’t be an edge with the same color on
two ends.

This proves that learning 3-DNFis at least as hard as 3-coloring.

Here a simplified argument for the hardness of general proper learning:

Given a hypothesis classH, let Π (H) be the problem of distinguishing betweenH-realizable sample
S and the one with ErrS(H) ≥ 1/4. Will prove that if H is efficiently properly learnable, the problem
Π (H) is in RP: In order to solve Π (H) we can invoke the proper learning algorithm, on a set of
uniformly sampled instances S. Let h be the output of this algorithm: (a) If S is a realizable, the
ErrS(h) is small. (b) If ErrS(H) ≥ 1/4 then ErrS(h) ≥ 1/4 (since h ∈ H and setting is proper). This is
an efficient way to decide whether H is realizable or not. With this in hand, we conclude that if Π (H)
is NP-hard, thenH is not efficiently learnable, unless NP= RP.

Another interesting point about 3-term DNF’s is that, if we remove the proper learnability condition
(i.e. we allow the learning algorithm to sometimes output from a super-set of 3-term DNF’s), it is efficiently
learnable. Specifically one can efficiently learn 3-term DNF’s using 3-CNF’s, i.e. each DNFcan be effi-
ciently converted to a CNF, and each CNFis easy to learn. This is a good example to show the importance
of representation in hardness of learning

Proper learning of half-spaces in agnostic scenario is hard. For many functions ERM in the agnostic
case is NP-hard; i.e. unless P = NP, there is no polynomial time approximation scheme for finding a mem-
ber in the class that approximately minimizes the empirical risk on a given training sample. Ben-David et
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al. [BDEL03BDEL03] proves this result for class of monomials (disjunctions), axis-aligned hyper-rectangles, closed
balls and monotone monomials.

When restricted to proper algorithms, learning half-spaces is equivalent to minimizing disagreement (aka
co-agnostic learning) which is a well-studied problem and it’s included in Karp’s celebrated work [Kar72Kar72]
as an NP-hard problem.

Half-spaces are not efficiently properly agnostically PAC learnable. This has proved in different ways
based on several commonly considered hard problems; Kalai et al. [KKMS08KKMS08] based on hardness of learning
parity functions, Feldman et al. [Fel06Fel06] based on hardness of shortest vector problem, Daniely and Shalev-
Shwartz [DSS14DSS14] using hardness of refuting random k-SAT, Klivans and Kothari [KK14KK14] via hardness of
learning sparse parity functions (under uniform distribution), Daniely [Dan15Dan15] using hardness of refuting
random k-XOR. Feldman[Fel06Fel06] has shown that for any constant ε > 0 determining whether the best
disjunction for a given ε > 0 has error ≤ ε or error > 1

2 − ε is NP-hard. Guruswami and Raghavendra
[GR09GR09] showed that for any ε ∈ (0, 1/2], it is NP-hard to find a halfspace with error bounded by 1/2− ε.

Improper learning of half-space in the agnostic scenario is probably hard. Klivans and Kothari [KK14KK14]
show that any algorithm for improperly agnostically learning half-spaces requires nΩ(log(1/ε)) time under the
assumption that k-sparse parities under uniform distribution requires nΩ(k) time.

Approximate learning of half-spaces is efficiently learnable with distributional assumptions. One can
simplify the problem by making distributional assumption for the generative process of data. One common
assumption is uniform assumption; under this assumption Kalai et al. [KKMS08KKMS08] presented an algorithm

with µ = O
(√

log 1
OPT

)
approximation ratio. Later Awasthi et al. [ABL14ABL14] improved the approximation

ratio to µ = O (1) under the same assumption.

4 Hardness of Improper Learning

There is a good understanding for hardness of learning in the proper scenario. The ideas discussed by
Daniely et al. [DLS14DLS14] is to analyze the hardness of learning for the improper scenario. The idea discussed
for a wide range of hypothesis spaces and the techniques are relatively general (with stronger assumptions).
‡‡ However we go over proving hardness results for special case of CNF’s with smaller assumptions. Specifi-
cally the result of Daniely et al. [DSS14DSS14] where it’s proved that learning DNF’s are hard, with the following
assumption:

Assumption 4.1. Refuting random K-SAT formulas with nω(1) constraints is hard.

Define DNFq(n) be a class of DNF’s with less than q(n) clauses. Daniely et al. show that:

Theorem 4.2. Learning DNFω(logn) is hard.

Proof sketch. The proof uses Assumption 4.14.1. One other ingredient of the proof comes from [DLS14DLS14]:

‡ A recent by Allen et al. [AOW15AOW15] “falsified the SRCSP assumptions" used in Danielly et al. [DLS14DLS14].
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Theorem 4.3 ([DLS14DLS14]). IF for any a > 0, it is hard to distinguishH-realizable from scattered samples
of size na, then learningH is hard.

where scattered instances are defined as the set of input/output pairs with outputs assigned via
independent fair coins.

Informally speaking, a classifier with short description can return a limited number of hypothesis;
if the instances are scattered, all the hypothesis are likely to be perform poorly.

Define a predicate P : {±1}K → {0, 1}. A P -constraint is defined asC(x) = P (j1xi1 , ..., jKxiK ),
with ji ∈ {±1}. A CSP instance is defined as collection of P−constraints J = {C1, ..., Cm}with input
assignments x ∈ {±}n. The value of a CSP instance J is denoted with VAL (J), the maximal fraction
of constraints that can be simultaneously satisfied. A CSP instance is satisfiable if its value is 1.

Define CSPrand
m(n) (P ) to be the problem of distinguishing satisfiable from random P -formulas, for

some function m : N → N. The proof starts off by reducing CSPrand
nd (SATK) to the problem of

distinguishing realizable samples from scattered samples, and uses Theorem 4.34.3 to conclude the result.

5 Open Questions

Before finishing this survey I summarize a set of important open questions.

Improper learning half-spaces is definitely NP-hard. There are some evidences for this based upon some
cryptographic and average case complexity assumptions, but no strong standalone proof yet.

Lower-bounds for interesting problems: Decision Trees + intersection of two half-spaces. For these
problems we have almost no satisfying lower-bound.

Exponential lower-bound for DNF’s. The best known algorithms for DNF’s are exponential while the
known lower-bounds are polynomial.
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