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Abstract

This write up addresses the problem of learning half-spaces, a fundamental problem in machine
learning. There is a vast literature around this problem, on approximation issues and ardness analysis.
I go over the related literature and explain all the necessary background, hopefully, with an easy-to-
understand language. Later I go over some important results from the past as well as details of a recent
result.

1 Introduction

Half-spaces simply defined as linear weighted sum of some variables:

sign (w1x1 + . . .+ wnxn − θ)

Half-spaces are the cornerstone of the statistical machine learning; vast space of machine learning mod-
els are extensions of half-spaces. For example Naive Bayes, Logistic Regression and Conditional Random
Fields[1] (normalized exponentiated linear separators), Neural Networks (stack of linear/nonlinear separa-
tors), Support Vector Machines[2] (separators with preference for a big margin). Even Boolean functions
can implicitly be simulated with linear functions: AND of variables (θ = n − 1

2 ), Or of variables (θ = 1
2 ),

and majority-vote (θ = n
2 ).

2 Preliminaries

We give a brief description of the important terminology, parameters and scenarios. For more more exact
definitions we refer the reader to the important surveys in the literature [3, 4].

Basic notation. Define the input space to be X = Rd and the output space to be Y = {±1}. Suppose we
are given m training instances S = {xi, yi}mi=1, are drawn from an unknown distribution D, with marginal
distributions DX and DY . Define the hypothesis classH to be the space of all functions hw that we can use
to approximate our problem. Define the expected error (or risk) to be ErrD(h) , E(x,y)∼D [hw(x) 6= y] =

P(x,y)∼D (hw(x) 6= y). Define the best hypothesis to be h∗ , argminh∈H ErrD(h) and its error OPT =

ErrD(h∗). The empirical error (risk) is defined according to the training data ÊrrD(h) , 1
|S|
∑

(x,y)∼S hw(x) 6= y.

In reality we choose the best hypothesis via training data S and the empirical risk: ĥ , argminh∈H ÊrrD(h).
Thus is commonly referred to as empirical risk minimization (ERM).
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Learning half-spaces. If the hypothesis class H consists of half-spaces and each member of this space
hw ∈ H is defined as hw(x) = sign (〈x,w〉).

Realizable scenario. When output label does not have any noise and OPT is zero (i.e. there exists a plane
which perfectly separates the data in the hypothesis spaceH). The opposite of the realizable scenario is the
agnostic scenario for which no assumptions are made. In the literature realizable and agnostic case are also
referred to as noise-free and noisy scenarios, respectively as well.

Proper vs improper learning. If an algorithm is strictly required to output an output from the set H the
algorithm is called proper learning. In some scenarios H is subset of another set H′. If the algorithm is
allowed to output hypothesis outsideH insideH′\H, as long as it satisfies some certain guarantees (possibly
in expectation). This is often referred to as representation-independent learning or sometimes improper
learning*. In the context of half-spaces, an improper algorithm might sometimes output a classifier that is
not a half-space classifier.

The learning problem. Find h such that ErrD(h) ≤ ErrD(h∗) + ε, for some ε ∈ [0, 1]. ε is commonly
called the excess error. This is sometimes referred to as the exact learning since the algorithms gets arbitrarily
close to the exact objective (in additive sense).

The approximate learning problem. Find h such that ErrD(h) ≤ µErrD(h∗) + ε, for some ε ∈ [0, 1]
and µ > 1. µ is commonly called the approximation ratio, which is the relaxed version version of the exact
learning (i.e. µ = 1)†.

For many of the algorithms we introduce here, their performance measures will be a function of the
approximation factor µ, and naturally as we decrease µ close to one, the running time should get worse.
Hence we one can think of these results as interpolation between approximate learning and exact learning
(when setting µ to one).

Another way of converting an approximate problem is to set µ = 1 + ε′:

µ ≤ µOPT+ εold = (1 + ε′)OPT + ε = OPT+ εnew, where εnew = (1 + OPT)ε

Hence ε can be set small enough so that εnew is close to what use desires.

Efficient algorithm/learner. An algorithm is efficient if it runs in poly
(

1
ε , log

1
δ , d
)
, where ε is the excess

error, d is the input dimension and the guarantee holds with probability at least 1− δ.

Bayes optimal classifier. If the goal is to have minimum misclassification probability, the optimal classi-
fier given the distribution from which the data is generated is given by:

hw(x) =

{
1 η(x) ≥ 1

2

0 o.w.,

where η(x) , E [Y = 1|X = x].

*Although there is nothing “improper" about it!
†Statistical estimation problems are mostly evaluated based on additive errors while combinatorial problems approximation

problems are evaluated based on ratio of objectives. The one we study here has both factors, but we use the approximation term
when referring to the multiplicative approximation, following the computer science community.
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Random classification noise. Define noise level to be s(x) = min (P (Y = 1|X = x) , 1− P (Y = 1|X = x))

which can be simplified to s(x) = 1−η(x)
2 . Intuitively the smaller the noise level across all the instance is,

it is easier to do classification. One way looking at this is that, each label of a noise-free sample is flipped
independently with some fixed probability. In this model the noise is independent of the actual example
points, which are generated according to a probability distribution. When s(x) = 0 almost surely in the
deterministic case. Clearly when s > 0.5 there is no hope of learning; hence it is almost assume that s < 0.5.

In the exact setting (µ = 1) we say an algorithm is learnable in presence of random classification noise,
if for any ε, δ > 0 and s it produces an output a classifier with error ε with probability at least 1− δ, in time
poly

(
1
ε , log

1
δ , d,

1
1−2s

)
. Note that in this criterion, as s→ 0.5, 1

1−2s gets bigger.
This model first introduced by Angluin and Laird[5], and it is sometimes referred to as benign (nonad-

versarial) noise.

Massart noise. Massart noise with parameter β with parameter β > 0 is a condition that for all x:

|P (Y = 1|X = x)− P (Y = 0|X = x)| ≥ β

Equivalently, given a noise-free dataset, an adversary constructs the noisy data by flipping the label with
probability at most 1−β

2 .

Malicious noise. Introduced by Valiant [6] as an extension of his basic PAC framework. In this model each
training instance, with some certain probability, is replaced with an adversarially chosen one (sometimes also
referred to as “distribution free" [7]).

3 Known results

In what follows we discuss the existing results for learning half-spaces under certain assumptions. We start
off by results of exact learning (i.e. µ = 1) and which will be followed by results of approximate learning
(i.e. µ > 1).

Learning in realizable case is usually easy; learning half-spaces in realizable case is always easy. In
the absence of (label/output) noise (when the data is realizable, i.e. OPT = 0) half-spaces are efficiently
learnable.

One simple way of showing it is via Linear Programming. We show that the problem of half-spaces
in the realizable case can be modelled as an LP. Given the training data S, we are looking for a realizable
answer we need a w such that yiw.xi > 0, ∀i = 1, . . . ,m. Define δ = mini∈[m] yiw.xi (because we are in
the realizable scenario it exists). The objective can equivalently written as yiw.xi ≥ δ, ∀i ∈ [m]. To keep
the notation cleaner we rewrite this equation as yiwδ .xi ≥ 1,∀i ∈ [m]. Note that for any w, w

δ is another
solution in the solution space. Hence the objective can be just written as yiw.xi ≥ 1, ∀i ∈ [m]. Given the
definition of the LP the problem is easily solvable. Note that the LP has only inequality constraints (i.e. it is
a feasibility LP).

There are other algorithms (with guarantees) for the realizable scenario; for example the Perceptron al-
gorithm of Rosenblatt [8] is generated to find find a correct classifier after at most (RB)2 updates/iterations,
where B = min {‖w‖ : ∀i ∈ [m], yiw.xi ≥ 1} and R = maxi ‖xi‖. Note how the final bound depends on
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the realizablity in definition of B.

Another popular algorithm is Winnow, which unlike perceptron uses multiplicative updates. Given that
the hypothesis space consists of disjunctions (or conjunctions) and assuming that the target function can
be expressed with r coefficients (queries), Winnow algorithms with at most O (r log n) mistakes finds the
target function [9].

Learning in realizable scenario can sometimes be hard, even in the realizable case. We argued that for
half-spaces learning in the realizable case is easy. For completeness we mention that learning some concept
classes (beyond half-spaces), even in the realizable case can be hard. A famous example is 3-term DNFs:
Unless (randomized poly) RP = NP, proper learning of 3-term DNF class is not efficiently PAC-learnable
[10]. A common way of proving this is by reduction to the 3-coloring problem [11].

Another interesting point about 3-term DNFs is that, if we remove the proper learnabilty condition (i.e.
we allow the learning algorithm to sometimes output from a super-set of 3-term DNFs), it is efficiently
learnable. Specifically one can efficiently learn 3-term DNFs using 3-CNFs. This is a good example to be
aware of, since we will see a similar scenario for learning half-spaces in the agnostic case.

Proper learning of half-spaces in agnostic scenario is hard. For many functions ERM in the agnostic
case is NP-hard; i.e. unless P = NP, there is no polynomial time approximation scheme for finding a mem-
ber in the class that approximately minimizes the empirical risk on a given training sample. Ben-David et
al. [12] proves this result for class of monomials (disjunctions), axis-aligned hyper-rectangles, closed balls
and monotone monomials.

When restricted to proper algorithms, learning half-spaces is equivalent to minimizing disagreement (aka
co-agnostic learning) which is a well-studied problem and it’s included in Karp’s celebrated work [13] as an
NP-hard problem.

Half-spaces are not efficiently properly agnostically PAC learnable. This has proved in different ways
based on several commonly considered hard problems; Kalai et al. [14] based on hardness of learning
parity functions, Feldman et al. [15] based on hardness of shortest vector problem, Daniely and Shalev-
Shwartz [16] using hardness of refuting random k-SAT, Klivans and Kothari [17] via hardness of learning
sparse parity functions (under uniform distribution), Daniely [18] using hardness of refuting random k-
XOR. Feldman[15] has shown that for any constant ε > 0 determining whether the best disjunction for a
given ε > 0 has error ≤ ε or error > 1

2 − ε is NP-hard. Guruswami and Raghavendra [19] showed that for
any ε ∈ (0, 1/2], it is NP-hard to find a halfspace with error bounded by 1/2− ε.

Even improper learning of half-space in the agnostic scenario is probably hard. Klivans and Kothari[17]
show that any algorithm for improperly agnostically learning half-spaces requires nΩ(log(1/ε)) time under the
assumption that k-sparse parities under uniform distribution requires nΩ(k) time.

Data-independent and bounded noise. Blum et al. [20] gave an efficient algorithm under independent
label noise. Awasthi et al. [21] achieves similar result by finding efficient algorithm for data corrupted by
bounded noise, also called Massart noise [22], as well as providing the lower-bounds under the same noise
assumption.

4



realizable or
agnostic

proper or
improper approximation factor marginal distribution DX margin(γ)? extra assumptions run time label complexity reference

a p µ = 1 uniform × - - poly
(
d1/ε4 , log 1

δ

)
Kalai et al., 2008 [14]

a p µ = 1 log-concave × - - poly
(
df(ε), log 1

δ

)
Kalai et al., 2008 [14]

a p µ =
√
log 1

OPT uniform × - poly
(
n, 1

ε , log
1
δ

)
poly

(
n2

ε2
log n

δ

)
Kalai et al., 2008 [14]

a i µ = 1 - X L-Lipschitz constant poly
(
exp

(
L log L

ε

)) (
2L+3
√

2 ln 8/δ

ε

)2

Shalev-Shwartz, 2011 et al. [28]

a i µ =
1
γ

log 1
γ

- X - - - Birnbaum and Shalev-Shwartz [25]

a i ∀µ > 1 uniform - - poly

(
d

log3 1
µ−1

(µ−1)2 , 1
η

)
poly

(
d

log3 1
µ−1

(µ−1)2 , log 1
η

)
Daniely, 2015 [27]

a p µ = 1 uniform over unit ball in Rd × Massart noise O
(
log 1

ε

)
O
(
d(d+ log k

δ )
)

Awasthi, 2015 et al. [21]

a p µ = 1 - × - poly
(
n(1/ε2) log2(1/ε), d, log 1

δ

)
- Zhang, 2015 et al. [29]

a p µ = 1 - × -

poly
(
n, d(1/ε2) log2(1/ε), log 1

δ

)
p = 1

poly
(
n, d, e(q/ε2) log2(1/ε), log 1

δ

)
p > 1

- Zhang, 2015 et al. [29]

Table 1: Summary of upper-bound results for learning half-spaces. The results sorted chronologically.

The fully (distribution-free) agnostic model. The first fully agnostic (distribution free learning) result is
for Kearns and Li [23] has an approximation ratio of µ = O (d).

Half-spaces with margin. One popular scenario is when there is preferred margin between the half-

spaces. The best approximation ratio for this setting is O
(

1/γ

log 1
γ

)
[24, 25].

Approximate learning of half-spaces is efficiently learnable with distributional assupmtions. One can
simplify the problem by making distributional assumption for the generative process of data. One common
assumption is uniform assumption; under this assumption Kalai et al. [14] presented an algorithm with

µ = O
(√

log 1
OPT

)
approximation ratio. Later Awasthi et al. [26] improved the approximation ratio to

µ = O (1) under the same assumption. Daniely [27] extends Awasthi et al. algorithm, by providing an
efficient algorithm for any fixed µ assuming uniform distribution. The resulting algorithm is exponential the
approximation parameter µ, while polynomial in other paramaters (hence the name “PTAS"‡) (Section 4).

4 PTAS for agnostically learning half-spaces under uniform dist. [27]

This is a recently result presented by Daniely [27]. The results is referred to as “PTAS" since the final bound
has approximation ratio of µ, and the final algorithm has efficient runtime assuming that µ is a constant.

The solution is presented in algorithm 1; it contains different pieces of the previous results. Hence
the analysis is relatively simple and it is done by combining results of previosly known results. The final
algorithm is improper since the may not always output a valid half-space; instead it outputs a polynomial
approximation of the sign function, around the decision margin.

A common technique among the previous works is approximating the sign function with a polynomial
function (e.g. see [14, 30, 28, 25]). He makes this smart observation that such approximations work best
around a strip close to the decision margin (close to the non-linearity of the sign function). Similar ideas
are presented by Awasthi et al. [26] under the label of Localization. The main idea in localization [31, 26]
is to focus on the solutions “close" to the current best solution in the hypothesis space. The algorithm of
[26] iteratively minimize empirical hinge loss on a strip of width γ around the decision margin:Td,γ =
{x| |x,w| ≤ γ}.

Next we present the main claim of the paper, as well as the claims used in the analysis borrowed from
previous works and sketch of the proof.

‡Polynomial-time approximation scheme

5



Algorithm 1: Improper PTAS learning of half-spaces.

Input: Samples from D;
while not at end of this document do

Find a w such that ErrD(h) ≤ α0s [26, Theorem 1.1] ;
Define a γ-strip around the decision line: Td,γ = {x| |x,w| ≤ γ} ;
Find a d-variate degree r polynomial p such that ErrD|T (p) ≤ ErrD|T (h∗) +minp′ ‖h∗ − p′‖+ β,
s.t. h∗ is the optimal half-space classifier with respect to D [14, Theorem 1]. ;

With probability 0.5 return hw and with probability 0.5 return

h(x) =

{
hw(x) |w.x| > γ

sign (p(x)) |w.x| ≤ γ
(1)

Theorem 4.1. The solution presented in algorithm 1, for proper choices of its parameters, for every µ
(µ > 0) is efficient algorithm for agnostically learning of half-spaces under uniform distribution with
an approximation ratio 1 + µ. Specifically the resulting solution tolerates noise rate of (2 − µ)s, i.e. if

ErrD(hw∗) ≤ (2 − µ)s then ErrD(hw) ≤ s, it runs in pseudo-polynomial time poly

(
d

log3 1
µ−1

(µ−1)2 , 1
η

)
with

pseudo-polynomial label complexity of poly

(
d

log3 1
µ−1

(µ−1)2 , log 1
η

)
.

The runtime and label complexity of the algorithm needs to be calculated by putting together runtime and
label complexity of each sub-algorithm. The runtime and label complexity of the first step are poly

(
d, 1

s

)
and poly

(
d, log 1

s

)
(see [26, Theorem 1.1]). Based on [14], one can get the calculate the total runtime and

label complexity.
The following lemma is a simple useful fact used in many places.

Lemma 4.2.
Px∼D (hw1(x) 6= hw2(x)) =

θ(w1,w2)

π

As the angle between the weight vectors grow, the upper-bound on their error probability also grows.
This is intuitive hw is a linear classifier and only dependents on the direction of w.

Lemma 4.3 (Localization lemma). For any r > 0:

Px∼D (hw(x) 6= hw∗(x)) ≤
4π(w,w∗)

π
exp

(
−1

8
r2d

)
Lemma 4.2 is same as previous lemma when r → 0. For bigger values of r, the further a point is from

the decision boundary, the lower the error probability is. This lemma can be used to choose a strip-size
which has certain error upper-bound. Intuitively this lemma says as the size of the strip grows, the error
probability drops exponentially. The proof is relatively simple, based on geometric properties and using
concentration inequalities.

For big enough degree, a polynomial can easily approximate a half-space decision.
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Lemma 4.4 (Uniform half-spaces [30]). ∀τ > 0 there exists a polynomial with degree r in d-dimension

such that r = O
(

log2 1
τ

τ2

)
and Ex∼DX [‖hw(x)− p(x)‖] ≤ τ .

Theorem 4.5 (Kalai et al. [14]). There is an algorithm with run-time poly
(
dr, 1

ε

)
such that for every

distribution D and every h it returns a d-variate degree r polynomial p, with

ErrD(p) ≤ ErrD(h∗) + min
p′

∥∥h∗ − p′∥∥+ β

Next is the sketch of the proof for our Theorem 4.1.

Proof sketch. ErrD(h∗) ≤ (1 − µ)η then the error of the returned classifier should be ErrD(h) ≤ η. Fol-
lowing the algorithm, the expected error is decomposed into two conditionals. Denote the outside Td,γ to be
T cd,γ . Based on equation (1):

ErrD(h) = P(x,y)∼D (x ∈ Td,γ)ErrD|T×{±1}(p) + P(x,y)∼D (x /∈ Td,γ)ErrD|T c×{±1}(hw)

For the first term, using the bound given in Kalai et al., we choose β and r such that:

P(x,y)∼D (x ∈ Td,γ)ErrD|T×{±1}(p) ≤ P(x,y)∼D (x ∈ Td,γ)ErrD|T×{±1}(hw∗) + (µ− 1)s/2

For the second term we can set use Lemma 4.3 and set the size of the margin so that P(x,y)∼D (x /∈ Td,γ) ≤
(µ− 1)s/2, and hence:

P(x,y)∼D (x /∈ Td,γ)ErrD|T c×{±1}(hw) ≤ P(x,y)∼D (x /∈ Td,γ)ErrD|T c×{±1}(hw∗) + (µ− 1)s/2

Putting these together we would get

ErrD(h) ≤ ErrD(hw∗) + (µ− 1)s = (2− µ)η + (µ− 1)s = s

�

5 Open Questions

Before finishing this survey I summarize a set of important open questions.

Improper learning half-spaces is definitely NP-hard. There are some evidences for this based upon some
cryptographic and average case complexity assumptions, but no strong standalone proof yet.

No known efficient algorithm under uniform noise. Under the uniform distribution there is no known
efficient algorithm known, with no approximation (i.e. µ = 1).

Proper approximate algorithm. The result presented by Daniely [27] is an improper algorithm. Is it
possible to get similar results by restricting the algorithm to be proper?

Approximate solution in distributional assumption. Daniely [27] presented a relatively general (im-
proper) result for µ > 1, under the uniform distribution assumption. It is not clear how these results would
extend to other distributional assumptions, e.g. log-concave, permutation-invariant.
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