
Ensemble Methods∗

Daniel Khashabi

Fall 2014
Last Update: September 28, 2016

1 Introduction

Ensemble Methods refer to a family of techniques for using a combination of several weak learner that
in combination, make a better learner (aka strong learner). More formally, assume that we have a
set of weak learners, {gt(x)}Tt=1, i.e. we have trained these learners on the training data {(xi, yi)}ni=1,
which correspond to the weights {wi}ni=1. We can create a strong model, as a combination of all
these weak learners, by creating a linear combination of them. We define the weighted output as
GT (x) = sign

(∑T
t=1 αtgt(x)

)
.

Before moving on to the details of algorithms, we formally define what we mean by a weak
learner, based on PAC characterization.

Definition 1.1 (Weak learnable, weak algorithm and weak learner). A concept class is weakly
PAC-learnable if there exists an algorithm, and exists γ > 0 and a polynomial poly (.) , ) such that
for any γ > 0, for any distribution DX on X and for any target concept c ∈ C, the following holds
for any sample size n ≥ poly (1/δ,m, size (c)):

PS∼DX (R(hS) ≤ 1− γ) ≥ 1− δ

where O (c) is the cost of representing any x ∈ X . Such algorithm is called “weak learning algorithm"
and the resulting hypothesis is a “weak learner".

Remark 1.1. Why call it “weak"? Because it is required to be only slightly better than “ran-
dom guessing". As long as it can consistently beat random guessing, any true boosting algorithm
should/will be able to increase the accuracy of the final ensemble.

One of the most popular method for such boosting based data is “AdaBoost". Based on AdaBoost
one could develop methods for gradient boosting, especially for trees. Here we first explain the
AdaBoost.

2 AdaBoost

Adaboost, mainly introduced in [11], is considered as one of the most important algorithms in the
Statistical Learning.
∗Or Generalized Linear Methods, Boosting, ...

1



Algorithm 1: Adaboost.

Input: The set of weak learners, {gt(x)}Tt=1

Output: The weights of the generalized learner {αt}Tt=1

Initialize the weights, w(1)
i = 1

n , i = 1, . . . , n
for t = 1 to T do

Fit the learner gt(x) to the training data {(xi, yi)}ni=1, weighted by
{
w

(t)
i

}n
i=1

.
Choose αt ∈ R.
w

(t+1)
i ← w

(t)
i

exp[−αtyigt(xi)]
Zt

, for i = 1, . . . , n, where Zt is a normalization factor.
Return the output G(x).

The general form of AdaBoost algorithm is shown in Algorithm 11. What is not clear is, how
to chose αt? Following the commonly belived ideas, we aim at minimzing empirical risk, whcih is
defined as following:

R̂(h) =
1

n

n∑
i=1

I[G(xi) 6=yi]

One could show that AdaBoost (Algorithm 11) is minimizing an upper bound on the empirical
risk, the multiplication of the normalization constants:

R̂(h) ≤
T∏
t=1

Zt.

The greedy way of choosing αt is to minimize Zt(α) at each step. Since Zt(α) is a convex
function, it has a unique minimum. Given that gt(x) ∈ {±1}, we will show that (in Lemma 2.32.3)
the greedy choice of αt would result in the following update rules:

εt ←
∑
i

w
(t)
i I[yi 6=gt(xi)] (1)

αt ←
1

2
log

1− εt
εt

(2)

With this choice we can find a guarantee on the empirical error bound of this algorithm, as stated
by the next algorithm.

Theorem 2.1. The given procedure in Algorithm 11, with the choice of αt in the Equation 11, if
εt ≤ 1

2 − γ for all t will result in the following bound:

R̂(h) ≤ δ (3)

for any arbitrary γ > 0, if T ≥ ln 1/δ
2γ2

.

Before priving Theorem 2.12.1, we proved the necessary lemmas.

Lemma 2.2. The given procedure in Algorithm 11, with the choice of αt in Equation 11, will result
in the following bounds:

R̂(h) =
1

n

n∑
i=1

I[G(xi)6=yi] ≤
T∏
t=1

Zt. (4)

2



Proof.

R̂(h) =
1

n

n∑
i=1

I[G(xi)6=yi] ≤
1

n

n∑
i=1

exp (−yiG(xi)) (5)

≤ 1

n

n∑
i=1

exp

(
−yi

T∑
t=1

αtgt(xi)

)
≤ 1

n

n∑
i=1

T∏
t=1

exp (−yiαtgt(xi)) (6)

In the above simplifications, we used the fact that I[u≤0] ≤ exp(−u) for any u ∈ R.
Using the updates of w(t+1)

i in the Algorithm 22, we have:

exp (−yiαtgt(xi)) = Zt
w

(t+1)
i

w
(t)
i

which would give:

R̂(h) ≤ 1

n

n∑
i=1

T∏
t=1

Zt
w

(t+1)
i

w
(t)
i

=

(
T∏
t=1

Zt

)
1

n

n∑
i=1

w
(T+1)
i

w
(1)
i

(7)

Since we chose w(1)
i = 1/n, and w(T+1)

i is a proper probability distribution,

R̂(h) ≤

(
T∏
t=1

Zt

)
n∑
i=1

w
(T+1)
i ≤

T∏
t=1

Zt. (8)

�

Lemma 2.3. Given Algorithm 11, with greedy choice of αt to minimize Zt will result in,

αt ←
1

2
log

1− εt
εt

and
Zt = 2

√
εt (1− εt)

where,
εt ←

∑
i

w
(t)
i I (yi 6= gt(xi))

Proof. Let’s write the definition of the normalization constant explicitly:

Zt =
∑
i

e−αtyigt(xi) =
∑

i:yi=gt(xi)

w
(t)
i e−αt +

∑
i:yi 6=gt(xi)

w
(t)
i eαt

= (1− εt)e−αt + εte
αt

Zt is a convex function of αt and has unique minimum. By talking derivative we can find the
minimizer, which is the following:

αt =
1

2
log

1− εt
εt

3



By plugging this into the definition of Zt, we will find its minimum value:

Zt = 2
√
εt (1− εt)

�

Lemma 2.4. The results of Lemma 2.22.2 and Lemma 2.32.3, and given that εt ≤ 1
2 − γ,∀t, the bound

on the empirical error is not more than,
(
1− 4γ2

)T/2 (where γ ∈ (0, 0.5)).

Proof. By the end of Lemma 2.22.2 and Lemma 2.32.3, we have proven that:

R̂(h) ≤
T∏
t=1

2
√
εt (1− εt)

Given that γ ∈ (0, 0.5), we can show that,

R̂(h) ≤
(
1− 4γ2

)T/2
�

Now we have everything we needed for the proof of the Theorem 2.12.1.

Proof of the Theorem 2.12.1. Given the result of the Lemma 2.42.4, we have

R̂(h) ≤
(
1− 4γ2

)T/2
Now define

δ ≤
(
1− 4γ2

)T/2
which is equivalent to

T ≥ ln 1/δ

2γ2

�

2.1 AdaBoost as minimizing a global objective function

One alternate view to what mentioned above is minimizing a global objective function, with
coordinate-descent (greedy) updates. It can be shown that the global objective is the following:

L(α) =
1

n

∑
i

e−yi
∑

t αtgt(xi)

when optimizing locally with respect to αt, and α = (α1, . . . , αT ).
Define αt = (α1, . . . , αt−1, 0, . . . , 0)

> and α0 = 0. Also define et to denote the unit vector
corresponding to the tth coordinate. We derive the update rules for coordinate descent:

4



dL(αt−1 + ηet)

dη
= 0⇔ − 1

n

∑
i

yigt(xi)e
−yi

∑t−1
t′=1

αt′gt(xi)−ηyigt(xi) = 0

⇔
∑
i

yigt(xi)w
(t+1)
i

[
t∏

t′=1

Zt′

]
e−ηyigt(xi) = 0

⇔
∑
i

yigt(xi)w
(t+1)
i e−ηyigt(xi) = 0

⇔ e−η
∑

yigt(xi)=1

w
(t+1)
i − eη

∑
yigt(xi)=−1

w
(t+1)
i = 0

⇔ e−η(1− εt)− eηεt = 0⇔ η =
1

2
log

1− εt
εt

We used the fact thst w(t+1)
i = e−yigt(xi)

n
∏t

t′=1 Zt′
(the defintion of w(t)

i ). This proves that the coordinate-
descent step size, is exactly the same as the αt parameter set in the AdaBoost algorithm.

This approach for recovering AdaBoost opens a can of warms. One can think about different
algorithms that can be recovered when applying optimization algorithms other than coordinate-
descent, and/or using different loss functions other than exponential used for AdaBoost (e.g. 0-1
loss, logistic loss, etc).

2.2 More general AdaBoost

As shown previously, the standard form of AdaBoost can be interpreted as minimizing an exponen-
tial loss function. One can show a general form of AdaBoost, on arbitrary loss function, but due to
computational cost these general forms are not very popular.

We can write the general problem as following, using the general loss function φ(.), instead of
the exponential loss:

J(G) = Eφ (Y G(X)) = E [φ (Y (Gt−1 + αtft(X)))]

The goal is to choose G such that it minimizes J(G). Similar to the standard AdaBoost, a descent
strategy chooses a direction (αtft(x1), . . . , αtft(xn))

3 Gradient Boosting

Using the boosting methods, new methods are proposed for Gradient Boosting methods. In fact,
the gradient boosting methods, are using both of boosting and gradient methods, especially gradient
descent (in the functional level). Using only gradient methods have cones, e.g. negative effect on
generalization error and local optimization. However, in glm (a package in R language) suggests se-
lecting a class of functions that uses the covariate information to approximate the gradient, usually
a regression “tree". The algorithm is shown in the Algorithm 33. At each iteration the algorithm
determines the gradient, the direction in which it needs to improve the approximation to fit to the
data, by selecting from a class of functions. In other words, it selects a function which has the most

5



agreement with the current approximation error.

Just to remind you what problem is formally, we want to find a function F ∗ such that:

G∗(x) = argmin
G

Ex,y [L(y, F (x))] = argmin
G

∫
x,y
L(y, F (x))P(x, y)dxdy

But in practice the true distribution P(x, y) is not known, and instead we have samples of it, in the
form of D = {(xi, yi)}ni=1. Also the set of functions we can choose from is also limited, which we
represent with G. Thus the problem is approximated in the following form:

⇒ G∗(x) ≈ argmin
G∈G

∑
(xi,yi)∈D

L(yi, F (xi))

Suppose a good approximation could be written as a linear combination of some coarse approxima-
tions:

T∑
t=1

αtgt(x)

Suppose the following is our initial approximation, with a constant function:

G0(x) = argmin
α

∑
(xi,yi)∈D

L(yi, α)

Followed by the incremental approximations:

Gm(x) = Gm−1(x) + argmin
g∈G

∑
(xi,yi)∈D

L(yi, Gm(xi) + g(xi))

Since the minimization in the previous equation is done over functions (functional minimization) it
is relatively hard to solve. Instead we can approximate it with greedy (functional-)gradient based
updates. The negative functional-gradient of the loss function:

−∇gL(yi, G(x) + g(x))

is the direction in which loss functions has the most decrease. Thus following updates, appropriate
choice of step size will result in reduction:

Gm(x) = Gm−1(x)− γm
∑
xi∈D

∇gL(yi, Gm−1(xi))

One possible way to find the step size is via line search:

γm = argmin
γ

∑
xi∈D

L (yi, Gm−1(xi)− γ∇gL(yi, Gm−1(xi)))

Suppose we want to generalize the Algorithm 22 to trees. The only difference is that, the approx-
imating function hm(x) is made of a tree, which we can represent with

∑
j bjI (x ∈ Rj), where I(.)

is an indicator function which shows whether the input x belongs to a specific region Rj or not, and

6



Algorithm 2: Gradient boosting algorithm.

Input: The set of weak learners, {gt(x)}Tt=1

Output: The weights of the generalized learner {αt}Tt=1

Initialize an approximation with a constant g0(x) = argminγ
∑

i L(yi, γ).
for m = 1 to M do

Compute the negative gradient, −rm = (−r1m,−r2m, . . . ,−rnm)>, such that

rim =
∂L(yi, G(xi))

∂G(xi)

∣∣∣∣
G(x)=Gm−1(x)

Fit the a function hm(x) on the gradient residuals {(xi, rim)}ni=1.
Find the scaling parameter γm such that the following objective is minimized:

γm = argmin
γ

∑
xi∈D

L (yi, Gm−1(xi) + γhm(x))

Update, Gm(x) = Gm−1(x) + γmhm(x)

Return the output GM (x).

bj is the prediction for the values in this region. In the following step, a value of γm is estimated
via line search. In the [22] it is suggested to use γ value for each region. In other words change

γm = argmin
γ

∑
xi∈D

L (yi, Gm−1(xi) + γhm(x))

to
γjm = argmin

γ

∑
xi∈Rjm

L (yi, Gm−1(xi) + γbj) .

Note that, in this line search, the values of {bj}Mj=1 do not have any effect in the final result; the
only things that matter are the set of regions {Rj}Mj=1. Thus we can simplify it, and write it as the
following:

γjm = argmin
γ

∑
xi∈Rjm

L (yi, Gm−1(xi) + γ) .

The overall algorithm is shown in Algorithm 33.
In the glm library of R, given the scenario shown in the Algorithm 33, the shrinkage parameter is

the (or learning rate) parameter in gradient updates. So the main effort in variable selection is in
selecting are the choice of n.trees and shrinkage parameters.

3.0.1 Regularization

Since the gradient boosting for trees has a big degree of freedom, it is highly prone to overfitting.
One possible way to reduce the amount of overfitting is shrinkage in the coefficients. Suppose we
have a parameter λ ∈ (0, 1), such that:

Gm(x) = Gm−1(x) + λγmhm(x)

7



Algorithm 3: Gradient boosting for trees.

Input: The set of weak learners, {gt(x)}Tt=1

Output: The weights of the generalized learner {αt}Tt=1

Initialize a single-node tree G0(x) = argminγ
∑

i L(yi, γ).
for m = 1 to M do

Compute the negative gradient, −rm = (−r1m,−r2m, . . . ,−rnm)>, such that

rim =
∂L(yi, G(xi))

∂G(xi)

∣∣∣∣
G(x)=Gm−1(x)

Fit the regression to the pseudo-responses (residuals) {(xi, rim)}ni=1, which results in
terminal regions, Rjm, j = 1, . . . , Jm.
for j = 1, 2, 3, . . . , Jm do

γjm = argminγ
∑

xi∈Rjm
L (yi, Gm−1(xi) + γ)

Update, Gm(x) = Gm−1(x) +
∑

j γjmI (x ∈ Rjm)
Return the output GM (x).

4 Final notes

Some intuition is from David Forsyth’s class at UIUC. Peter Bartlett’s class notesPeter Bartlett’s class notes provided a very
good summary of the main points.

5 Exercise Problems

True of False?: AdaBoost will eventually reach zero training error, regardless of the type of weak
classifier it uses, provided enough weak classifiers have been combined.

Answer: False! If the data is not separable by a linear combination of the weak classifiers,
AdaBoost cannot achieve zero training error.

References

[1] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line learning and
an application to boosting. In Computational learning theory, pages 23–37. Springer, 1995.

[2] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, 2008.

8

http://www.cs.berkeley.edu/~bartlett/courses/281b-sp08/

	Introduction
	AdaBoost
	AdaBoost as minimizing a global objective function
	More general AdaBoost

	Gradient Boosting
	Regularization

	Final notes
	Exercise Problems

