
Expectation Propagation

for Bayesian Inference

1 Introduction

Expectation Propagation(EP) is one of approaches for approximate inference
which first formulated the way we see today at [1] though the idea has roots
in many previous works in various areas. It can be considered as a variant
of message-passing where each of the individual messages are approximated
while being transferred. To introduce EP, it is easier to first start with a
couple of approximations (projections) for any arbitrary distribution. Here
we start with Assumed Density Filtering(ADF).

2 Assumed Density Filtering

ADF is introduced independently in several areas at different times un-
der different names like “Moment Matching”, “Weak Marginalization”, etc
[2, 3, 4]. The idea used is so much similar to the update equations in Kalman
Filtering.
Assume that using the x as observations we want to make inference about
the latent variables y. Now the goal is to find a an exact posterior p(y|x)
and only keep the approximation to it q(y), using a tractable form, say
exponential form, and possibly use it for future calculation. This further
approximation of the posterior is can be seen as projection of one distribu-
tion, over another family of distributions. There are many ways to project
one distribution over another, but for here, let’s say we want to project any
arbitrary distribution over exponential family using the KL-divergence1 , or,

q̂ = proj (p(y|x)→ q(y)) , arg min
q

KL (p(y|x)||q(y))

1If you don’t know about the divergence measures, see this: http://web.engr.

illinois.edu/~khashab2/learn/info.pdf
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To do so, we choose the following exponential parametric form,

qθ(y) =
1

Z(θ)
exp

(
θ>Φ(y)

)
, Z(θ) =

∫
exp

(
θ>Φ(y)

)
dy

Φ(y) is natural statistic of y. The most famous case is a Gaussian distri-
bution with mean and covariance matrix. To reduce the difference between
the posterior approximation, q(.) and the real posterior value, again we use
the KL-divergence.

f(θ) = KL(p||q) = Ep log
p

qθ
= Ep log(p) + Ep log (Z(θ))− Ep

[
θ>Φ(y)

]
∇θf(θ) = 0⇒ ∇θf(θ) = ∇θ logZ(θ)− Ep [Φ(y)] = 0 (1)

We also have:

∇θ logZ(θ) =
∇θZ(θ)

Z(θ)
=
∇θ
∫

exp
(
θ>Φ(y)

)
Z(θ)

=

∫
∇θ exp

(
θ>Φ(y)

)
Z(θ)

= Eq [Φ(y)]

(2)
Combining the results from equations (2, 1) we have,

∇θf(θ) = 0⇒ Eq [Φ(y)] = Ep [Φ(y)] (3)

Calculating the Hessian for f(θ) we can show that, the above solution is a
minimum to f(θ).

[∇∇θf(θ)]ij =
∂2 logZ(θ)

∂θj∂θi
=

∂

∂θj

∫
Φi(y) exp

(
θ>Φ(y)

)
dy

Z(θ)
(4a)

= Eq [Φi(y),Φj(y)]− Eq [Φi(y)] .Eq [Φj(y)] ≥ 0
(4b)

Using the above equation, we can conclude that, to get the best estimation
for an arbitrary distribution (With KL-divergence as the difference between
two distributions.) using an exponential distribution, it is enough to match
their moments. Specifically if we assume having a Gaussian distribution for
the approximating distributions, qθ(y) = N (y|µ,Σ) Results from equations
( 4, 3 ) are: {

µ∗ = Ep [y]

Σ∗ = Ep
[
yy>

]
− Ep [y]Ep [y]>
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2.1 ADF for a factorized distribution

Now assume we can factorize the given distribution, p(y|x) = p(x)p(x,y) =∏
i ti(y). The goal is to approximate each of the factors using the approxi-

mating distribution. It is relatively better to have less components, to keep
further calculations minimum, while it is better to have a simple form for
each of the factors, so to have easier approximation procedure for each of
them. Thus there is a trade-off between the number of factors and simplic-
ity of each factor. The goal is to get the least error by using the minimum
number of approximating factors. Assume that the approximating distri-
bution, qθ(y) has a known exponential form, e.g. Gaussian. At each step,
we will consider the factor ti from our target distribution, and changed our
approximation based on the added factor ti to get a better approximation.
The distribution p̂(y) is an auxiliary distribution which we use during the
algorithm.

p̂(y) =
1

Z̃(θ)
ti(y)qoldθ (y), Z̃(θ) =

∫
ti(y)qoldθ (y)dy. (5)

qoldθ (y) is the approximate-posterior distribution at the previous step. Based
on the previous definition it is clear that, p̂(y) is the approximate posterior
up to factor ti(y). Similar to what explained, by minimizing KL (p̂(y)||qnewθ (y))
and assuming that qnewθ (y) has an exponential form, we use the moments
of the distributions to get new approximation, qnewθ (y). To simplify the
notation, we drop old from qoldθ (y). Using the equation (5),

∇θqθ(y) = ∇θ
1

Z(θ)
exp

(
θ>Φ(y)

)
= ∇θ

[
1

Z(θ)

]
exp

(
θ>Φ(y)

)
+

1

Z(θ)
.∇θ exp

(
θ>Φ(y)

)
⇒ ∇θqθ(y) = −∇θZ(θ)

Z(θ)
qθ(y) + Φ(y)qθ(y) = −Eq [Φ(y)] + Φ(y)qθ(y).

Multiplying in 1
Z̃(θ)

.ti(y) and integrating with respect to y we have,

ti(y)

Z̃(θ)
∇θqθ(y) = −Eq [Φ(y)] .

1

Z̃(θ)
ti(y)qθ(y) + Φ(y).

1

Z̃(θ)
ti(y)qθ(y).

⇒ 1

Z̃(θ)
∇θZ̃(θ) = −Eq [Φ(y)] + Ep̂ [Φ(y)] .

⇒ Ep̂ [Φ(y)] = ∇θ log
(
Z̃(θ)

)
+ Eq [Φ(y)] .
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For calculating qnewθ (y) from KL (qnewθ (y)||p̂(y)) we can use equations ( 4, 3
) to match the moments for qnewθ (y) and p̂(y):

Eqnew [Φ(y)] = Ep̂ [Φ(y)] .

⇒ Eqnew [Φ(y)] = ∇θ log
(
Z̃(θ)

)
+ Eq [Φ(y)] .

If we assume an exponential distribution we can find ∇θ log
(
Z̃(θ)

)
and

Eq [Φ(y)] in closed form. Assume a Gaussian distribution, qθ(y) = q(y;µ,Σ) =
N (y;µ,Σ) and Z̃(θ) = Z̃(µ,Σ) =

∫
t(y).q (y;µ,Σ) dy. We now have:

∇µq (y;µ,Σ) = Σ−1 (y − µ) q (y;µ,Σ)

⇒ y.q (y;µ,Σ) = µ.q (y;µ,Σ) + Σ.∇µq (y;µ,Σ)

Multiplying both sides in 1
Z̃
ti(y) and integrating with respect to y,

µ∗ = µ +
1

Z̃
Σ.∇µ

∫
t(y)q(y)dy (6a)

= µ +
1

Z̃
Σ.∇µZ̃ (µ,Σ) (6b)

= µ + Σ.∇µ log
(
Z̃ (µ,Σ)

)
(6c)

= µ + Σ.g, g , ∇µ log
(
Z̃ (µ,Σ)

)
(6d)

Similarly we for covariance (second moment) we have,

⇒ yy>q(y) = 2Σ. [∇Σq(y)]

⇒ 〈yy>〉 = Σ+2ΣGΣ〈y〉p̂(y)µ>+µ〈y〉>p̂(y)−µµ>, G = ∇Σ log
(
Z̃(µ,Σ)

)
⇒ Σ∗ = 〈yy>〉p̂(y) − 〈y〉p̂(y)〈y〉>p̂(y) = Σ−Σ

(
gg> − 2G

)
Σ.

Based the above formula, it should be clear that, the order in which we use
the factors {ti}i to create the approximation, will change the final answer,
since to approximate the posterior we go through the factors linearly only
once. While Expectation Propagation aims to solve this problem by finding
more consistent approximation by passing the factors for several time, so
that the approximation is not dependent on the order which we see the fac-
tors. One sample difference in approximation of posterior of a toy example
is shown in Figure (1).
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Figure 1: The effect of changing the ordering in factors of the target distri-
bution, while approximating via ADF; [5].

3 Expectation Propagation (EP)

The EP approximation first introduced in [5]. The method is so much simi-
lar to Automatic Density Filtering (ADF). In fact, EP is using update rules
of in an intelligent iterative way until convergence. As mentioned the main
problem in ADF is that, different order in approximating the factors will
result in different approximations. While EP loops over the factors until con-
vergence. Another difference is that, instead of applying the KL-divergence
to qθ(y) as in ADF, in EP we apply it to each factors ti(y) and then we
update the approximation p(y|x). This way, by sweep over the factors for
several time, the ordering of selecting the factors {ti}i doesn’t make any
difference. The algorithm is shown in Algorithm (1).

We want to approximate p(y|x) = 1
Z

∏n
i ti(y) using qθ(y) =

∏n
i t̃i∫ ∏n
i t̃i

. We

choose the approximating family, t̃i to be exponential, to make it easier to
work with comparing to ti itself. Thus we want to approximate any factor
ti with t̃i, such that the global difference between the exact distribution and
the approximating family, KL (p(y|x)||q(y)θ) is minimized. It can be shown
that the global minimization could be achieved via a set of local minimiza-
tions [6]. Note that in this formulation, t̃i don’t need to be normalized or
a proper distribution. For example they can be Gaussians with negative
variance (an improper distribution). But given the set of

{
t̃i
}n
i=1

we can
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normalized their multiplication and get a proper distribution.

Algorithm 1: Expectation Propagation

Initialize
{
t̃i
}

qθ(y) =

∏
i t̃i∫ ∏
i t̃i

repeat
Message elimination: Choose a t̃i to do approximation with.

Remove the factor t̃i from approximation, q−iθ =
qθ

t̃i
Belief projection: Project the approximate posterior, with t̃i
replaced with ti, on the approximating family,

qnewθ (y) = proj (p̂i(y)→ qθ(y)) ,

where,

p̂i(y) =
1

Z
q−iθ (y)ti(y), Z =

∫
q−iθ (y)× ti(y)dy

Message update: Compute the new approximating factor,

t̃i = Z
qnewθ (y)

q−iθ (y)

until all t̃i converge;

In the case when the approximating family is from the exponential
family, qθ(y) ∝ exp

(
η>φ(y)

)
, the projection in algorithm 1, qnewθ (y) =

proj (p̂i(y)→ qθ(y)) is equivalent to the following moment matching,

Eqθ(y) [φ(y)] = Ep̂i(y) [φ(y)] (7)

Note that this moment matching is distributed over each factor.

To find the marginal likelihood, it is enough to find the following expres-
sion:

p(x) ≈
∫
p(x|y)p(y)dy =

∫ ∏
i

t̃i(y)dy.

4 Problems with the standard EP

EP, though giving nice approximations in many applications is sensitive to
outliers, and the cases when the approximating family is not close to the
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target distribution. This issue is addressed in [7] and a relaxed form of EP is
introduced which has better convergence properties. Another problem with
EP is that, there is no known convergence proof for it.

5 EP for inference in graphical models

In a graphical model we can interpret each t̃i as an approximate message to
the original message ti. There is a nice discussion of using EP for general
factor graphs in [8]. [6] also provides a unifying view of different message
passing algorithms on graphs. Here we give some examples on how to use
EP for inference in graphical models.

We can represent the distribution in a factor-graph as following2,

p(x) =
1

Z
∏
i

fi(x)

where Z is the partition function. To compute Z, since we need to sum over
all of the variables x, this could be quite computationally expensive. Given
this product of factors, in which it is hard to marginalize over, we can cre-
ate an approximate product of factors using EP. In other words, we create
another graphical model, in which the marginals are as close as possible to
the marginals in the original graph. But in this graph, the it is easier to
find the marginals.
Note that it is always possible to approximate any factor with several vari-
ables with several approximating functions. For example if a factor f(xa, xb, xc)
is a function of three variables, it could be approximated with three approx-
imating factors(approximate it with a function of three variables is compu-
tationally intensive, and approximating with one single-variable function is
insufficient). This is easy to visualize for pairwise factors, in a graphical
model. Consider Figure 2. In the lest-side there is a pairwise factor which
is being approximated by two single-variable factors in the right.

In Figure 2 (left) an HMM is represented in factor-graph notation. Each
of the factor could decomposed into two disjoint factors. In practice, when
creating p̂i (in the Algorithm 1) we decompose only one of the factors and
use its approximation in our updates.

2If you have problem with factor graphs, see this: web.engr.illinois.edu/~khashab2/
learn/graph.pdf
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..xi−1 ... xi ⇒ ..xi−1 ..... xi

1

Figure 2: Decomposition of the pairs edges in factor graph

.... xi−1... xi... xi+1........ .... xi−1..... xi..... xi+1........

1

Figure 3: Decomposition of the factors in an HMM

6 EP energy function

There is a discussion of primal/dual energy minimization for EP in [9]. The
primal energy is given in the following lemma.

Lemma 1 (EP primal). The primal energy function is the following,

min
p̂i

max
q

[∑
i

∫
y
p̂i(y) log

p̂i(y)

ti(y)p(y)
dy − (n− 1)

∫
y
qθ(y) log

qθ(y)

p(y)
dy

]
(8)

with the constraints that

Eqθ(y) [φ(y)] = Ep̂i(y) [φ(y)] , ∀i (The local moment matching, in Equation 7)
(9)

Basically by assigning energy function to a graphical model, we assign
a global function to it, that is being optimized in a distributed fashion.
This approach has been previously used to model the behaviour of other
distributed inference algorithms like Belief Propagation. For more details
on energy minimization schemas see [10].

Justification of the above energy function is not hard. Basically we are
minimizing a linear combination of several objectives, using an arbitrary
divergence measure D(.||.):{

min{p̂i}minq
∑

i αiD(p̂i||q) + βD(q||p)
Eqθ(y) [φ(y)] = Ep̂i(y) [φ(y)] ,∀i
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.... xi−1..... xi..... xi+1........ .... xi−1..... xi..... xi+1........

1

Figure 4: Decomposing each pairwise edge at each step of EP.

Choosing D(.||.) to be the KL-divergence, α = 1 and β = (n − 1) will give
the desired result. Note that we chose these values intentionally in a way
that would result in our distributed updates. Note that this is not a proof,
this is a justification3. The proof of this is by finding the model evidence.
To see the details, see Equation (66) at [6], when α = 1.

Using the primal form, one can obtain the dual form, and by setting
the gradient of the dual form to zero, one can find the fixed-point updates
introduced in the previous sections. In the rest, we show how to obtain this
function.

Lemma 2 (Variational lower bound on KL divergence). If p(.) and q(.) are
proper distributions defined on X , we can show that,

KL(p||q) =

∫
x∈X

p(x) log
p(x)

q(x)
dx = max

ν

[∫
x∈X

p(x)v(x)dx− log

∫
x∈X

q(x)ev(x)
]

Proof. Easy enough to take functional derivatives with respect to ν(.) and

observe that ν(x) = log p(x)
q(x) + c is indeed a global maximizer for the terms

inside the max[.] function.

Now we derive the dual EP energy.

Lemma 3 (The dual EP energy). The dual enegy function for EP is,

min
ν

max
λ

[
(n− 1) log

∫
y
p(y) exp

(
ν>φ(y)

)
dy −

n∑
i=1

log

∫
y
t̂i(y)p(y) exp

(
λi
>φ(y)

)
dy

]
,

(10)
with the constraint that,

(n− 1)ν =
∑
i

λi.

3In fact, a very bad justification!
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Proof. The dual can be found by applying Lemma 2 for several times. Con-
sider the first part of equation 8, which can be lower-bounded using Lemma
2.∫

y
p̂i(y) log

p̂i(y)

ti(y)p(y)
dy = max

λ

[∫
y
p̂(y)λi(y)dy − log

∫
y
ti(y)p(y) expλi(y)dy

]
Define λi(y) = λi

>φ(y), also using the constraint in equation 9,∫
y
pi(y) log

p̂i(y)

ti(y)p(y)
dy = max

λ

[∑
i

λi

∫
y
q̂θ(y)φi(y)dy − log

∫
y
ti(y)p(y) exp

(
λi
>φ(y)

)
dy

]
,

where φi(y) is the i-th element in the φ(y). Now consider the second part
of equation 8 which can also be lower-bounded using Lemma 2,∫

y
qθ(y) log

qθ(y)

p(y)
dy = max

ν

[∫
y
qθ(y)ν(y)dy − log

∫
y
p(y) exp ν(y)dy

]

⇒ −
∫

y
qθ(y) log

qθ(y)

p(y)
dy = min

ν

[
−
∫

y
qθ(y)ν(y)dy + log

∫
y
p(y) exp ν(y)dy

]
.

Similarly define νi(y) = νi
>φ(y),

−
∫

y
qθ(y) log

qθ(y)

p(y)
dy = min

ν

[
−
∑
i

νi

∫
y
qθ(y)φi(y)dy + log

∫
y
p(y) exp

(
ν>φ(y)

)
dy

]
.

Combining these two results we get,

Primal = max
p̂i,q,λ

min
ν
{
∑
j

∑
i

λi

∫
y
qθ(y)φi(y)dy − log

∫
y
ti(y)p(y) exp

(
λi
>φ(y)

)
dy

− (n− 1)
∑
i

νi

∫
y
qθ(y)φi(y)dy + (n− 1) log

∫
y
p(y) exp

(
ν>φ(y)

)
dy}.

By defining
∑

i λi = (n − 1)ν, and dropping qθ(y) as a result, we will end
up with the dual form in Equation 10.

Stable fixed points of EP correspond to the local minima of its energy
function. By taking derivatives of the dual EP energy function, we will
end-up with the updates in Algorithm 1. We show this fact in the following.

6.1 EP updates from dual energy

[TBW]
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..

Power EP

• exp family

• Dα(p||q)

.

Factorial BP

• fully
factorized

• Dα(p||q)

.

Structure mean-
field

• exp family

• KL(q||p)

.

EP

• exp family

• KL(p||q)

.

TRW BP

• fully
factorized

• Dα(p||q)

• α > 1

.

Mean-field

• fully
factorized

• KL(q||p)

.

BP

• fully
factorized

• KL(p||q)

1

Figure 5: Hierarchies of different inference methods (From:
http://research.microsoft.com/en-us/um/people/minka/papers/

message-passing/minka-message-passing-slides.pdf. )

7 BP vs. EP

[More later]

8 Further improvements on EP

Another future work could be in making the inference more efficient. In [11]
a faster way with convergence guarantees is proposed. Also at [12, 13] a
faster scheme is presented. [14] is using the α-divergence for mapping the
messages. It also showed that, it includes Fractional Belief Propagation [15],
EP and variational Bayes as special cases. In [16] EP has successfully used
for Gaussian Process classification.
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9 Bibliographical notes

Thanks to Doan Thanh Nam for reporting mistakes.
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