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1 Introduction

Consider the problem of parameter learning by maximizing the likelihood of the observations for
random variables (X,Y ) ∼ {(xi, yi)}Ni=1. Assume we model the joint distribution between X and
Y using p(X,Y ; θ) which is resulted designer’s domain knowledge, and is characterized by the
parameter θ.

L(θ) = log
N∏
i=1

p(X = xi, Y = yi; θ) =
N∑
i=1

log p(X = xi, Y = yi; θ)

To find the ML estimated parameters, one can maximize L(θ) with respect to the model parameters
θ. But what if we don’t observe anything from Y ? We call this scenario the “missing data” case.
Assume the following definition of the likelihood,

L(θ) = log

N∏
i=1

p(X = xi; θ) = log

N∏
i=1

∑
Y

p(X = xi, Y = yi; θ) =

N∑
i=1

log
∑
Y

p(X = xi, Y = yi; θ)

L(θ) =

N∑
i=1

log
∑
Y

p(X = xi, Y = yi; θ) (1)

Performing parameter learning in the case of missing data (latent variables) by maximizing 1 is not
trivial. But EM introduced a formalized way to approximate the maximization, by maximizing the
lower-bound on this function.

2 Expectation-Maximization

We first introduce the algorithm, and then analyze its properties. Define the function

Q(θ; θ(t)) = EY |X,θ(t) [log p (X,Y |θ)] (2)

The EM algorithm is the following,
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- Initialization: Initialize the parameters of the mode θ(0).
- Repeat until convergence:

1. Expectation: Find the expected objective Q(θ; θ(t))

2. Maximization: Maximize the EM objective Q(θ; θ(t)) with respect to θ:

θ(t+1) = arg max
θ
Q(θ; θ(t))

We prove this iterations will converge to the maximization of Equation 1 in several steps.

Lemma 1. The EM objective in Equation 2 is maximizing a lower bound on Equation 1.

Proof.
p(Y |X; θ) = p(X,Y ; θ)/p(X; θ)

log p(X; θ) = log p(X,Y ; θ)− log p(Y |X; θ)

log p(X; θ) =
∑
Y

p(Y |X; θ(t)) log p(X,Y ; θ)−
∑
Y

p(Y |X; θ(t)) log p(Y |X; θ)

= Q(θ; θ(t)) +H(θ; θ(t))

Similarly:
log p(X; θ(t)) = Q(θ(t); θ(t)) +H(θ(t); θ(t))

Using Gibb’s inequality we know that

H(θ; θ(t)) ≥ H(θ(t); θ(t))

Which results in
log p(X; θ)− log p(X; θ(t)) ≥ Q(θ; θ(t))−Q(θ(t); θ(t))

Which shows improving Q is lower-bound on improvements in log p(X; θ).

Example 1 (Gaussian Mixture Model). Suppose we have observations {Xi}Ni=1 and we want to
cluster them into K clusters. Define a model as following:

Zn ∈ {1, ...,K} cluster assignment latent variables

p(X|Z = k) = N (µk, 1) probability of sampling a point from cluster k

πk = p(Z = k) prior distribution over each cluster

Therefore the joint model can be written as a mixture of cluster components times their prior:

p(X) =

K∑
k=1

πkp(X|Z = k)

2



The parameters need to be estimated in this model are θ = {πk}Kk=1 ∪ {µk}Kk=1. Finding the latent
variables {Zn}Nn=1 amounts to finding the cluster assignment of the points.

To derive the EM, we need to estimate the Q function. For that we first form the joint distri-
bution of p(X,Z; θ).

p(X,Z; θ) =

K∏
k=1

[p(X|Z = k)πk]
1{Z=k}

⇒ log p(X,Z; θ) =
K∑
k=1

1{Z = k} log (p(X|Z = k)πk)

We plug in the observations into the joint distribution:

p({(Xn = xn, Zn)}Nn=1; θ) =

N∏
n=1

p(Xn = xn, Zn; θ)

⇒ log p({(Xn = xn, Zn)}Nn=1; θ) =
N∑
n=1

K∑
k=1

1{Zn = l} log (p(Xn = xn|Zn = k; θ)πk)

⇒ Q(θ; θ(t)) = EZ|X,θ(t) log p({(Xn = xn, Zn)}Nn=1; θ)

= EZ|X,θ(t)
N∑
n=1

K∑
k=1

1{Zn = k} log (p(Xn = xn|Zn = k; θ)πk)

=
N∑
n=1

K∑
k=1

EZ|X,θ(t)1{Zn = k} log (p(Xn = xn|Zn = k; θ)πl)

Define h
(t)
nk = EZ|X,θ(t)1{Zn = k} = p(Zn = k|Xn = xn; θ(t)). This probability tell us, what is

the probability that the point xn is assigned to the cluster k (and not other clusters).

Q(θ; θ(t)) =
N∑
n=1

K∑
k=1

hnk log (p(Xn = xn|Zn = k; θ)πl) (3)

We can calculate h
(t)
nk based on the known distributions in the problem as following using the Bayes

rule:

h
(t)
nk = EZ|X,θ(t)1{Zn = k} = p(Zn = k|Xn = xn; θ(t))

=
p(Xn = xn|Zn = k; θ(t))p(Zn = k; θ(t))∑K
l=1 p(Xn = xn|Zn = k; θ(t))p(Zn = k; θ(t))

=
p(Xn = xn|Zn = k; θ(t))π

(t)
k∑K

l=1 p(Xn = xn|Zn = l; θ(t))π
(t)
l

Now we have a way to calculate the Q(θ; θ(t)) function (E-step). The next step is to calculate
the M-step, i.e maximization of this function with respect to its parameters θ:
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θ(t+1) = arg max
θ
Q(θ|θ(t))

= arg max
θ

N∑
n=1

K∑
k=1

h
(t)
nk log (p(Xn = xn|Zn = k; θ)πk)

We need to solve this optimization for each element of Q, i.e. for any πk Note that there is an
implicit constraint on this optimization on πks, which is

∑K
k=1 πk = 1. To solve this constrained

optimization we form the Lagrangian:

L(θ, λ) =
N∑
n=1

K∑
k=1

h
(t)
nk log (p(Xn = xn|Zn = k; θ)πk)− λ

(
K∑
k=1

πk − 1

)

=

N∑
n=1

K∑
k=1

−
h

(t)
nk‖xn − µk‖

2

2
+ h

(t)
nk log

1√
2π

+ h
(t)
nk log πk − λ

(
K∑
k=1

πk − 1

)

∂L

∂πl
= 0⇒

N∑
n=1

h
(t)
nl /πl = 1⇒ π

(t+1)
l =

1

N

N∑
n=1

h
(t)
nl (4)

∂L

∂λ
= 0⇒

K∑
k=1

πk = 1 (5)

∂L

∂µl
= 0⇒

N∑
n=1

−h(t)
nl (xn − µl) = 0⇒ µ

(t+1)
l =

∑N
n=1 h

(t)
nl xn∑N

n=1 h
(t)
nl

(6)

Now we have derived all equations necessary for the EM algorithm. In summary, the E-step (
estimation of Q) is done using Equation 3 and the M-step (the optimization step) is done using
Equation 6 and Equation 4.

Example 2 (Latent categories in documents). Denote each document with D, which contains a
bunch of words, which we denote with W . The assumption is that there is an underlying topical
categories which we denote with C.

• There are M documents:
D ∈ {d1, . . . , dM}

• There are V possible words:
W ∈ {w1, . . . , wV }

• There are K possible topical categories

C ∈ {c1, . . . , cK}

Here is the generative process which defines the model:

• Prior on each document d: p(D = d)
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• Probability of a category c being inside a document d: p(C = c|D = d)

• Probability of word w being generated from category c: p(W = w|C = c)

In the input we observe the M documents with their words. In other words for each document dm,
we know the count of word wv in it, which we denote with n(wv, dm).

Given this observation we want to estimate the all of the following probabilities:

θ = {p(D), p(C|D), p(W |C), ∀D ∈ {d1, . . . , dM},W ∈ {w1, . . . , wV }, C ∈ {c1, . . . , cK}}

Let’s denote the estimations at time t with

θ(t) = {pt(D), pt(C|D), pt(W |C), ∀D ∈ {d1, . . . , dM},W ∈ {w1, . . . , wV }, C ∈ {c1, . . . , cK}}

We first write the joint distribution of all variables, given observation from documents. Define
W̃j and C̃j to representing specific word and category at position j of a documents, where 1 ≤ j ≤ J
with J being the length of each document.

M∏
m=1

J∏
j=1

p(D = dm, W̃j = w̃j , C̃j)

p(joint|θ) = p

(
All documents and words and
their latent category variables

)
=

M∏
m=1

p(Words in document dm and their latent categories ) =

=
M∏
m=1

V∏
v=1

K∏
k=1

p(D = dm,W = wv, C = ck)
n(dm,wv)1{C=ck}

log p(joint|θ) =
M∑
m=1

V∑
v=1

n(dm, wv)
K∑
k=1

1{C = ck}p(D = dm,W = wv, C = ck)

Q(θ|θ(t)) = EC|W,D,θ(t)p(joint|θ)

=
M∑
m=1

V∑
v=1

n(dm, wv)
K∑
k=1

pt(C = ck|D = dm,W = wv)p(D = dm,W = wv, C = ck)

=

M∑
m=1

V∑
v=1

n(dm, wv)

K∑
k=1

pt(C = ck|D = dm,W = wv)p(D = dm)p(W = wv|C = ck)p(C = ck|D = dm)

pt(C = ck|D = dm,W = wv) =
pt(D = dk)pt(W = wv|C = ck)pt(C = ck|D = dm)∑K
k=1 pt(D = dk)pt(W = wv|C = ck)pt(C = ck|D = dm)

=
pt(W = wv|C = ck)pt(C = ck|D = dm)∑K
k=1 pt(W = wv|C = ck)pt(C = ck|D = dm)
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Now we need to find the maximizers of Q(θ|θ(t)). We form the Lagrangian:

L = Q(θ|θ(t))+α

(
1−

M∑
m=1

p(D = dm)

)
+

K∑
k=1

βk

(
1−

V∑
v=1

p(W = wv|C = ck)

)
+

M∑
m=1

γm

(
1−

K∑
k=1

p(C = ck|D = dm)

)

∂L

∂p(D = dk)
= 0⇒ pt+1(D = dm) =

∑V
v=1 n(dm, wv)∑M

m=1

∑V
v=1 n(dm, wv)

And similarly for other two parameters we should have:

pt+1(C = ck|D = dm) =

∑V
v=1 n(dm, wv)pt(C = ck|D = dm,W = wv)∑V

v=1 n(dm, wv)

pt+1(W = wv|C = ck) =

∑M
m=1 n(dm, wv)pt(C = ck|D = dm,W = wv)∑M

m=1

∑V
v=1 n(dm, wv)pt(C = ck|D = dm,W = wv)

Example 3. Consider the following simple mixture model:
p1(x; θ) = e−g1(x;θ)

p2(x; θ) = e−g2(x;θ)

p(x; θ) = µ1p1 + (1− µ1)p2

Given the set of observations, x1, . . . , xn, we want to estimate parameters of this mixture model
Θ = {θ1, θ2, µ1}.
The conventional maximum likelihood aims at solving the following problem:

Θ := arg max
Θ

{∑
i

log
[
µ1e
−g1(xi;θ) + (1− µ1)e−g2(xi;θ)

]}

this optimization is slightly hard, as we have logarithm of some summation. We will add some
additional variables to the model to make the optimization steps more explicit. We assume that
each data is coming from one specific component. For that, we define additional variable to specify
the component from which the sample is coming from:

δi =

{
1 if the sample is coming from the first component

0 if the sample is coming from the second component

The complete data likelihood is:

L(Θ) =
∑
i

log p(xi, δi|Θ) =
∑
i

log p(xi|δi,Θ) + log p(δi|Θ)

Sometimes people call the above likelihood F (Θ, δ), since we don’t know the δi values and they need
to be estimated. Therefore we can’t compute the above likelihood. But we can assume a parametric
form for distribution of δi, given an estimate to parameters Θn (at the n-th step), which we denote
with p(δ|Θn, X). To remove the random variable δ from the full-model likelihood we marginalize
over δ:

Q(Θ; Θn) = Ep(δ|Θn,X) [F (Θ, δ)]
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Now the EM updates are the followings:{
E: Estimate the distribution of p(δ|Θn, X), and find Q(Θ; Θn).

M: Find Θn+1 := arg maxΘQ(Θ; Θn)

Let’s simplify this. We know:

L(Θ) =
∑
i

[log p(xi|δi,Θ) + log p(δi|Θ)] (7)

=
∑
i

[−δig1(xi; θ1)− (1− δi)g2(xi; θ2) + δi lnµ1 + (1− δi) ln(1− µ1)] (8)

Now we need to estimate p(δ|Θn, X). Based on its definition we have:

p(δi = 1|Θn, xi) =
p(δi = 1, xi|Θn)

p(xi, δi = 1|Θn) + p(xi, δi = 0|Θn)

=
p(xi|δi = 1,Θn)p(δi = 1|Θn)

p(xi|δi = 1,Θn)p(δi = 1|Θn) + p(xi|δi = 0,Θn)p(δi = 0|Θn)

=
µn1e

−g1(xi;θ
n
1 )

µn1e
−g1(xi;θn1 ) + (1− µn1 )e−g2(xi;θn2 )

If you are not convinced that this is a good estimation for p(δi|Θn, xi), we can derive it in different
way. Consider F (Θ, δ). Whatever distribution we choose for δ it needs to maximize this function.
Thus we take differentiation with respect to δ (Note that this differentiation is with respect to a
function, which is called functional derivative).

∇δiF (Θn, δ) = 0

⇒ ∇δiF (Θn, δ) =− [log δi − log(1− δi)]
+ [−g1(xi; θ

n
1 ) + log µn1 ]

+ [−g2(xi; θ
n
2 ) + log(1− µn1 )] = 0

Which will result in the same distribution for p(δi|Θn, xi). Given this closed form estimation for
p(δi|Θn, xi) it is easy to find Q(Θ; Θn), by plugging it into Equation 7, and maximizing it with
respect Θ.

Remark 1. One interpretation of EM is coordinate-descent optimization, over latent variable coor-
dinate, and the observation coordinates. In the previous example we solved the E-step with another
optimization over the latent variables.

Example 4 (A simple Bayesian network(from [?])). Assume that a set of 3-dimensional points
(x, y, z) is generated according to the following probabilistic generative model over Boolean variables
X,Y, Z ∈ {0, 1}:

Y ← X → Z
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1. What parameters from the table bellow will you need to estimate in order to completely define
the model?

(1) P(X=1) (2) P(Y=1) (3) P(Z=1)

(4) P(X|Y=b) (5) P(X|Z=b) (6) P(Y|X=b) (7) P(Y|Z=b)

(8) P(Z|X=b) (9) P(Z|Y=b) (10) P(X|Y=b,Z=c) (11) 3

Answer: Based on the above generative model we could write the joint distribution as fol-
lowing:

p(X,Y, Z) = p(X).p(Y |X).p(Z|X).

So we need to have (1), (6), (8). For this problem in order to find the whole joint distribution
we need to know five parameters. For simplicity we denote the parameters using the following:

p(X = 1) = α

p(Y = 1|X = 1) = a1

p(Y = 1|X = 0) = a2

p(Z = 1|X = 1) = b1

p(Z = 1|X = 0) = b2

Then we have:

p(X = x) = αx(1− α)1−x

p(Y = y|X = 1) = ay1(1− a1)1−y

p(Y = y|X = 0) = ay2(1− a2)1−y

p(Z = z|X = 1) = bz1(1− b1)1−z

p(Z = z|X = 0) = bz2(1− b2)1−z

2. You are given a sample of m data points sampled independently at random. However, when
the observations are given to you, the value of X is always omitted. Hence, you get to see
{(y1, z1), . . . , (ym, zm)}. In order to estimate the parameters you identified in part (a), in the
course of this question you will derive update rules for them via the EM algorithm for the
given model.

Express Pr(yj , zj) for an observed sample (yj , zj) in terms of the unknown parameters.
Answer: We can use the joint distribution and integrate out the unseen variables:

Pr(yj , zj) =
∑
i

Pr(X = xi, yj , zj)

=
∑
i

p(X = xi).p(Y = yj |X = xi).p(Z = zj |X = xi)

We can replace each term with its own parameter denoted in the previous part. -Let pji =
Pr(X=i|yj , zj) be the probability that hidden variable X has the value i ∈ {0, 1} for an

8



observation (yj , zj), j ∈ {1, . . . ,m}. Express pji in terms of the unknown parameters.
Answer: Using the Bayes law we could express the probability like this:

pji = Pr(X=i|yj , zj) = Pr(yj , zj |X=i).P r(yj , zj)/Pr(X=i)

= Pr(yj |X=i).P r(zj |X=i).P r(yj , zj)/Pr(X=i)

Each of the terms are previously calculated.

3. Let (xj , yj , zj) represent the completed jth example, j ∈ {1, . . . ,m}. Derive an expression for
the expected log likelihood (LL) of the completed data set {(xj , yj , zj)}mj=1, given the parameters
in (a).
Answer:
LL =

∑
j log p(xj , yj , zj) =

∑
j log p(X = xj) +

∑
j log p(Y = yj |X = xj) +

∑
j log p(Z =

zj |X = xj) - Maximize LL, and determine update rules for any two unknown parameters of
your choice (from those you identified in part (a)).
Answer: Because we don’t haven’t seen the latent variable values x we cannot explicitly plug
in their values into the log-likelihood. But instead we need to takes its expectation with respect
to the variable. This corresponds to the E-step in EM algorithm:

Q(y, z) =
∑
x

p(x|y, z) log p(x, y, z)

In the next step we shall maximize the expected likelihood with respect to the parameters:

θ = arg max
θ
Q(y, z)

We can calculate the expectation of the whole-data likelihood as follows:

Q = E

∑
j

log p(xj , yj , zj)

 =
∑
j

E
[
log p(xj , yj , zj)

]
=
∑
j

[pj1A+ pj0B]

Where,

A = yj log b1 + (1− yj) log(1− b1) + zj log a1 + (1− zj) log(1− a1) + logα

B = yj log b2 + (1− yj) log(1− b2) + zj log a2 + (1− zj) log(1− a2) + log(1− α)

To maximize the above expression, we must take derivitive with respect to the parameters:

∂Q

∂α
=
∑
j

pj1
1

α
−
∑
j

pj0
1

1− α
= 0⇒ α =

∑
j p

j
1∑

j p
j
1 +

∑
j p

j
0

∂Q

∂b1
=
∑
j

pj1y
j 1

b1
−
∑
j

pj1(1− yj) 1

1− b1
= 0⇒ b1 =

∑
j p

j
1y
j∑

j p
j
1
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