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1 Introduction

To measure up how the modeling using samples is close to the original (unknown) system, researchers
have developed various. One of the ways to quantify this is to use probabilistic approach for modeling
the concentration (closeness) of the model to the original system. Such analysis need using various
probabilistic inequalities that could bound the results.

2 Markov’s inequality; the most basic bound

Theorem 2.1. If X is a non-negative random variable, for any t > 0 we have

P(X ≥ t) ≤ EX
t

Proof.

EX =

∫
X∈X

PX(dx)

=

∫
X∈X ,X<t

XPX(dx) +

∫
X∈X ,X≥t

XPX(dx)

≥
∫
X∈X ,X≥t

XPX(dx)

≥
∫
X∈X ,X≥t

tPX(dx) = t

∫
X∈X ,X≥t

PX(dx) = tP(X ≥ t)

�

3 Chebyshev’s inequality

Theorem 3.1.
P (|X − EX| ≥ t) ≤ VarX

t2
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Proof. There is a simple proof using Markov’s inequality. Based Markov’s inequality we know,

P(X ≥ t) = P(φ(X) ≥ φ(t)) ≤ Eφ(X)

φ(t)

Now assume φ(x) = x2(x ≥ 0), which gives the desired result. In other words, using the Markov’s
inequality

P (|X − EX| ≥ t) = P
(
|X − EX|2 ≥ t2

)
≤E |X − EX|2

t2
=

EX2 − (EX)2

t2
=

VarX
t2

�

Remark 3.2. In general the right side can be any moment (not just the second moment), i.e.
φ(x) = xq(x ≥ 0), for any positive q, using which we have,

P (|X − EX| ≥ t) ≤ E |X − EX|q

tq

Since the goal is to find tighter upper-bounds one can minimize the right-side with respect to q.

4 Chernoff’s Trick

For any s > 0,
P(X > t) = P(esX > est) ≤ e−stE

[
esX
]

To make the bound as tight as possible,

P(X > t) ≤ inf
s>0

e−stE
[
esX
]

5 Hoeffding’s inequality; a special case

Lemma 5.1. If X ∈ X is a random variable with EX = 0, and ∃a, b ∈ X , s.t. P(a ≤ X ≤ b) = 1,
then for any s > 0

E
[
esX
]
≤ e

1
8
s2(b−a)2

Proof. Assume any point x ∈ [a, b], which can be represented as x = β.b+ (1−β).a, 0 ≤ β ≤ 1. Let
us assume a function φ(x) = esx for any s > 0 which is a convex function on X = R. Then we have,

esx ≤ βesb + (1− β)esa

By replacing β with x−a
b−a , and since EX = 0, we have,

E [esx] ≤ b

b− a
esa − a

b− a
esb
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Now set p = a
a−b , and thus 1− p = b

b−a . We continue the previous expression:

E [esx] ≤ b

b− a
esa − a

b− a
esb

≤ (1− p)esa + pesb = esa
(

1− p+ pes(b−a)
)

Define u , s(b− a) and define Φ(u) , −pu+ log(1− p+ peu). Then we have

EesX ≤ eΦ(u)

which holds for any value of u, for p ∈ [0, 1]. One show that the Φ(u) is upper-bounded by
1
8u

2 = 1
8s

2(b− a)2, which proves the desired result. �

Theorem 5.2 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables, and for
any Xi, ∃ai, bi ∈ X = R, s.t. P(ai ≤ X ≤ bi) = 1. Let Sn , 1

n

∑n
i=1Xi then for any t > 0,

P (|Sn − ESn| ≥ t) ≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
(1)

In the special case when [ai, bi] = [0, 1] we will have:

P (|Sn − ESn| ≥ t) ≤ 2 exp
(
−2nt2

)
(2)

Proof. We can divide the inequality into two parts,

P (Sn − ESn ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
(3)

P (Sn − ESn ≤ −t) ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
(4)

To use the Lemma 5.15.1, we can replace each variable Xi → Xi − EXi, so that EXi = 0; then we
have, E

[
esXi

]
≤ es2(bi−ai)2/8. Using Chernoff’s trick,

P (Sn ≥ t) = P
(
eSn ≥ et

)
≤ e−stE

[
esSn

]
And since Xi’s are independent,

E
[
esSn

]
= E

[
es(X1+...+Xn)

]
= E

[
n∏
i=1

esXi

]
=

n∏
i=1

E
[
esXi

]

⇒ P (Sn ≥ t) ≤ e−st
n∏
i=1

es
2(bi−ai)2/8 = exp

{
−st+

s2

8

n∑
i=1

(bi − ai)2

}
To minimize the right hand-side with respect to s we can choose it to be s = 4t∑n

i=1(bi−ai)2 . This
proves the Equation 33. The proof for the Equation 44 is similar. �

Remark 5.3. When dealing with one-sided inequalities, the upper-bound probability will get half:

P (Sn − ESn ≥ t) = P (Sn − ESn ≤ −t) ≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
(5)
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Another way of saying the previous inequality is the following corollary.

Corollary 5.4. With probability at least 1− δ, the following inequality holds:

|Sn − ESn| ≤ t

for t =
√

ln(2/δ)
2n2

∑n
i=1(bi − ai)2. In the special case [ai, bi] = [0, 1], t =

√
ln(2/δ)

2n .

6 McDiarmid’s inequality: bounded differences

This is also known as Hoeffding-Azuma, Bounded Differences orMartingale concentration inequality.

Definition 6.1 (A function with bounded differences). A function is said to have bounded differ-
ences, if changing only one variable, and keep everything the save, the absolute value of the difference
is always bounded. In other words, if we have a function f : X n → R, then,

∃ci ∈ R, s.t. ∀x1, . . . , xn, x
′
i ∈ X,

sup
∣∣f(x1, . . . , xn)− f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)

∣∣ ≤ ci
Theorem 6.1 (McDiarmid’s inequality). Let X = (X1, . . . , Xn) ∈ X n, and f : X n → R has
bounded differences. Then for any t > 0,

P (|f(X)− Ef(X)| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
TBW. �

Example 6.2. 1. Given a real-valued random variable Z, such that,

logE
[
esZ
]
≤ vs2

2 (1− cs)
, (6)

for some v, c ∈ R+ and every s ∈ [0, 1
c ]. Prove that

P
(
Z ≥

√
2vt+ ct

)
≤ e−t (7)

for all t > 0.

Hint: We know {Xi}ni=1 are i.i.d. and Xi ∼ N (0, 1). Then U =
∑n

i=1X
2
i with U ∼ χ2

n

(Chi-Squared distribution with degree-of-freedom of n.).

2. Given the definitions in the previous part, we want to prove that,

P
(
U − n ≥ 2

√
nt+ 2t

)
≤ e−t.

Hint: First prove Lemma 6.36.3 !

Lemma 6.3. The following holds for any s ∈ (0, 1/2)

− s− 1

2
log(1− 2s) ≤ s2

1− 2s
, 0 < s < 1/2 (8)
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Example 6.4. We consider we have a set of i.i.d. random variables {xi}ni=1, and xi ∼ Binomial(θ).
Clearly if S ,

∑n
i=1 xi,

S ∼ B(n, θ)⇒

{
E[S] = nθ,

V[S] = nθ(1− θ)
Now prove each part.

1. First prove the following holds

P(S ≥ nα) ≤ e−n×d(α||θ), ∀α ∈ [θ, 1] (9)

where, d(α||θ) = α log α
θ +(1−α) log (1−α)

(1−θ) is the KL-divergence between α and θ, two Bernoulli
random variables.

2. Now prove that the bound in Equation 99 is indeed tighter than,

P(S ≥ nα) ≤ e−2n(α−θ)2 , ∀α ∈ [θ, 1]

Example 6.5. We assume having i.i.d. random variables, {Yi}ki=1. For a given real number y ∈ R,

N = |{1 ≤ j ≤ k : Yj ≥ y}| . (10)

1. Considering, max1≤j≤k P(Yj ≥ y) ≤ p, we want to show that there is exists a pair (Ñ , S̃) of
jointly distributed integer-valued random variables such that

• Ñ has the same distribution as N .
• S̃ has the Binomial(k, p).
• Ñ ≤ S̃.

2. Assuming that Tk,p(t) is the probability that Binomial(k, p) is a random variable greater or
equal to t, we want to show that

P(N ≥ t) ≤ Tk,p(t) (11)

7 Bennet’s and Bernstein’s Inequalities

Bennet’s inequality offers some improvement over Hoeffding’s when the variances of the summands
are small compared to their almost-sure bounds on the absolute values:

Lemma 7.1 (Bennet’s inequality). Let Z1, . . . , Zn be independent random variables with zero mean,
and assume that Zi ≤ 1 with probability 1. Let

σ2 ≥ 1

n

n∑
i=1

E
[
Z2
i

]
Then for any ε > 0,

P

(
n∑
i=1

Zi > ε

)
≤ e−mσ

2h
(

ε
mσ2

)

where
h(a) = (1 + a) log(1 + a)− a
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Hoeffding’s inequality only assumes the summands are bounded almost surely, while Bennett’s
inequality offers some improvement when the variances of the summands are small compared to
their almost sure bounds. In both inequalities, unlike some other inequalities or limit theorems,
there is no requirement that the component variables have identical or similar distributions (only
requirement is the independence).

One can write an equivalent martingale version of this inequality:

P (Sn − En > ε) ≤ exp

(
−Vnh(

t

Vn
)

)
where Sn =

∑n
i=1Xi, En =

∑n
i=1 E [Xi] and Vn =

∑n
i=1 V [Xi].

Using the inequality that h(a) ≤ a2/(2 + 2a/3) it is possible to prove the following:

Lemma 7.2 ((Bernstein’s inequality). Let Z1, . . . , Zn be i.i.d. random variables with zero mean,
and assume that |Zi| ≤M with probability 1. For any t > 0,

P

(
n∑
i=1

Zi > t

)
≤ exp

(
− t2/2∑

E
[
Z2
i

]
+Mt/3

)

This is a generalization of Hoeffding’s since it can handle not only independent variables but
also weakly-dependent variables.

The martingale form of this inequality is as following:

P (Sn − En > ε) ≤ 2 exp

(
− t2

Vn + t/3

)

8 Bibliographical notes

?
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9 Basic inequalities

Lemma 9.1 (The exponential inequality). For all x ∈ R,

1 + x ≤ ex.

Proof. Both sides are equal at x = 0. The derivative of the left side is a constant 1, and the
derivative on the right is ex. For all x ≥ 0, ex ≥ 1, so the right side grows faster than the left. For
x ≤ 0, ex ≤ 1, so as x goes down from 0 to −∞, the left side decreases faster than the right. �

Lemma 9.2 (the logarithmic inequality). For all x > −1,

ln(1 + x) ≤ x.

Lemma 9.3 (Bernoulli inequalities). • If x, y ≥ 0, then

(1− x)(1− y) ≥ 1− x− y.

If in addition y ≤ 1, then

(1 + x)(1 + y) ≥ 1 + x+ y.

• If x1, x2, . . . , xk ≥ 0, then

(1 + x1)(1 + x2) · · · (1 + xk) ≥ 1 + x1 + · · ·+ xk.

If in addition x2, . . . , xk ≤ 1, then

(1− x1)(1− x2) · · · (1− xk) ≥ 1− x1 − x2 − · · · − xk.

Proof.

(a) Since xy ≥ 0, we have

(1 + x)(1 + y) = 1 + x+ y + xy ≥ 1 + x+ y

and

(1− x)(1− y) = 1− x− y + xy ≥ 1− x− y.

(b) The base case for k = 2 is given by (a). For k > 2, since x1 + · · · + xk−1 > 0, we have by
induction and base k,

(1 + x1) · · · (1 + xk) ≥ (1 + x1 + · · ·+ xk−1)(1 + xk)

≥ 1 + x1 + · · ·+ xk

and

(1− x1) · · · (1− xk) ≥ (1− x1 − · · · − xk−1)(1− xk)
≥ 1− x1 − · · · − xk.

�
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Lemma 9.4. For 0 ≤ x ≤ 1/2,

ln(1 + x) ≥ x+ x2

and

ln(1− x) ≥ −x− x2

Lemma 9.5. For x ∈ [−1/2, 1/2],

ln(1− x) ≥ x+ x2.

Proof. For x ≤ 0,

ln(1− x) = ln(1 + (−x)) ≥ −x+ x2 ≥ −x− x2.

For x ∈≥ 0,

ln(1− x) ≥ −x− x2

�

Proof. For x ≤ 0,

ln(1 + x) = ln(1− (−x)) ≥ −(−x)− (−x)2 = x− x2 ≥ x/2.

�
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10 Proofs

10.1 Proof of lemma 6.36.3

Proof. Let’s label each side of the inequality,{
A(s) = −s− 1

2 log(1− 2s)

B(s) = s2

1−2s

We prove this inequality in two steps,

• A(s) = B(s), for s = 0:
This is easy to show that A(0) = B(0) = 0

• dA(s)
ds ≤

dB(s)
ds ,∀s ∈ (0, 1/2):

dA(s)

ds
= −1− 1

2

−2

1− 2s
=

2s

1− 2s
dB(s)

ds
=

2s(1− s)
(1− 2s)2

dB(s)

ds
− dA(s)

ds
=

2s(1− s)
(1− 2s)2

− 2s

1− 2s
=

2s2

(1− 2s)2
≥ 0

This gives us the desired result. �
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11 Answers to examples

Here answers to some of the questions are included. The answers are mostly by the authors, and
might be buggy. Therefore, read cautiously!

11.1 Answer to example 6.26.2

11.1.1 First part :

Proof. Based on the Markov inequality we know that we have,

P (X ≥ t) ≤ E [X]

t
.

We apply the Chernoff trick to find better (smaller=tighter) upper bound for our desired upper-
bound:

P (X ≥ a) = P
(
esX ≥ esa

)
≤

E
[
esX
]

esa
= e−saE

[
esX
]
, ∀s > 0. (12)

P (X ≥ a) ≤ infs∈R+e−saE
[
esX
]
. (13)

From the Equation 77, and combining it with the Equation 1313 we have,

P (X ≥ a) ≤ infs∈R+e−saE
[
esX
]
≤ infs∈R+

{
e−sa exp

[
vs2

2 (1− cs)

]}
= infs∈R+

{
exp

[
−sa+

vs2

2 (1− cs)

]}
.

The minimizer of the right term could be found:

d

ds

[
−sa+

vs2

2 (1− cs)

]
= −a+

2vs (1− cs) + cvs2

2 (1− cs)2 = 0

⇒ P (X ≥ a) ≤ e−saE
[
esX
]
≤
{
e−sa exp

[
vs2

2 (1− cs)

]}
.

Since the minimization could be cumbersome, we do reverse engineering using the modified objective,

P
(
Z ≥

√
2vt+ ct

)
= P

(
esZ ≥ es(

√
2vt+ct)

)
≤ inf

s∈R+

EesZ

es(
√

2vt+ct)

≤ inf
s∈R+

exp

{
vs2

2 (1− cs)
− s

(√
2vt+ ct

)}
Now we just need to show that,

inf
s∈R+

exp

{
vs2

2 (1− cs)
− s

(√
2vt+ ct

)}
≤ e−t
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We can make it looser and show that,

∃s ∈ R+ s.t. exp

{
vs2

2 (1− cs)
− s

(√
2vt+ ct

)}
= e−t

⇒ ∃s ∈ R+ s.t. exp

{
vs2

2 (1− cs)
− s

(√
2vt+ ct

)
+ 1

}
= 1

⇒ ∃s ∈ R+ s.t.
vs2

2 (1− cs)
− s

(√
2vt+ ct

)
+ 1 = 0

The expression above could be turned into a nice closed form:

vs2

2 (1− cs)
− s

(√
2vt+ ct

)
+ 1 =

vs2 − 2s
(√

2vt+ ct
)

(1− cs) + 2 (1− cs)
2 (1− cs)

=
vs2 − 2s

√
2vt (1− cs) + 2 (1− cs)2

2 (1− cs)

=

(
s
√
v − (1− cs)

√
2t
)2

2 (1− cs)
= 0

⇒ s =

√
2t

c
√

2t−
√
v

This holds only when s ∈ [0, 1
c ], since we used Equation 66. Since v, t ∈ R+, for any t ≥ v

2c2
, s

belongs to [0, 1
c ] and this bound holds. �

11.1.2 Second part :

Proof. We first prove that the inequality in Equation 66 holds, when we choose Z = U − n =∑n
i=1X

2
i − n,

E
[
esZ
]

=

∫
x∈X

es(
∑n
i=1 x

2
i−n)(2π)−k/2 |Σ|−1/2 e−

1
2

(x−µ)>Σ−1(x−µ)dx

= e−sn
n∏
i=1

∫
xj

esx
2
i

1√
2π
e−

x2i
2 dxi

= e−sn
n∏
i=1

∫
xj

1√
2π
e−x

2
i (

1
2
−s)dxi

= e−sn
n∏
i=1

√
1

1− 2s

= e−sn (1− 2s)−n/2

Taking logarithm of both sides, and using the result of Lemma 6.36.3,

logE
[
esZ
]

= n

(
−s− 1

2
(1− 2s)

)
≤ n× s2

1− 2s
, 0 < s < 1/2

Which is of the form given in the equation 66, when v = n and c = 2. Given this, we can use the
bound we found in part (a), with replacing the values v = n and c = 2, which gives us the desired
result. �
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11.2 Answer to example 6.46.4

11.2.1 First part :

Proof. Based on the Markov inequality we know that,

P(S ≥ nα) ≤ inf
λ∈R+

[
e−λnαES∼B(n,θ)e

Sλ
]

(14)

It is easy to show that the Moment Generating Function (MGF) for a binomial distribution is
as following,

MX(t) = EX∼Binomial(n,θ)e
tX = (1− θ + θet)n

Using MGF formula, we can simplify our bound in Equation 1414.

P(S ≥ nα) ≤ inf
λ∈R+

[
e−λnα(1− θ + θeλ)n

]
= inf

λ∈R+

[(
(1− θ)e−λα + θeλ(1−α)

)n]
=

(
inf
λ∈R+

[
(1− θ)e−λα + θeλ(1−α)

])n
We define A(λ) = (1− θ)e−λα + θeλ(1−α), and find minimizer of A(λ),

∂A

∂λ
= −α(1− θ)e−λα + (1− α)θeλ(1−α) = 0⇒ λ = ln

α(1− θ)
(1− α)θ

⇒ A(λ) = (1− θ)e−λα + θeλ(1−α) = (1− θ)e−λα
(

1 +
θ

1− θ
eλ
)

⇒ A (λ)|
λ=ln

α(1−θ)
(1−α)θ

= (1− θ)e−λα
(

1 +
θ

1− θ
eλ
)∣∣∣∣

λ=ln
α(1−θ)
(1−α)θ

=

(
θ

α

)α( 1− θ
1− α

)1−α

= −d(α||θ)

⇒ P(S ≥ nα) ≤ e−nd(α||θ)

�

11.2.2 Second part :

Proof. We want to show,
e−n×d(α||θ) ≤ e−2n(α−θ)2 , ∀α ∈ [θ, 1]

Or we want to show,
d(α||θ) ≥ 2(α− θ)2, ∀α ∈ [θ, 1]

First note that for α = θ both bounds are the same, as they are both zero. Then if we show that
the derivative of d(α||θ) is always greater than 2(α−θ)2, this would imply that d(α||θ) ≥ 2(α−θ)2,
for all α ∈ [θ, 1]. Equivalently, we show that ∂λ

∂α ≥ 0 for θ ≥ α ≥ 1, where

λ = d(α||θ)− 2(α− θ)2

12



∂λ

∂α
= ln

α

θ
+ 1 + ln

1− α
1− θ

− 1

To show that ∂λ
∂α ≥ 0, we do the same trick; since ∂λ

∂α

∣∣
α=θ

= 0, we just need to show that, ∂
2λ
∂α2 ≥ 0.

Since ∂2λ
∂α2 = 1

α(1−α) − 4, and using the Arithmetic-Geometric inequality∗∗, we have

α(1− α) ≥ 4

Then ∂2λ
∂α2 ≥ 0 which finishes our proof. �

11.3 Answer to example 6.56.5

11.3.1 First part :

Proof. In practice the original random variables {Yi}ki=1, could be distributed with any arbitrary
distribution. But we can easily replace them with any arbitrary distribution, and come up with the
same distribution for Equation 1010, as long as it satisfies certain conditions. To make everything
simple, we use uniform distribution, and we define the set of uniform i.i.d. random variables {Ui}ki=1,
such that for a fixed y,

P(Uj ≥ y) = P(Yj ≥ y), ∀j ∈ {1, . . . , k} (15)

Now we define a modified version of the Equation 1010 for the Uj random variables,

Ñ = |{1 ≤ j ≤ k : Uj ≥ y}| . (16)

Referring to the conditions in the Equation 1515, it is easy to see that Ñ and N have the same
distributions, or in other words,

P(Ñ ≥ t) = P(N ≥ t), ∀t ∈ N ∪ {0}

In a similar way, we define the set of i.i.d. random variables {Vi}ki=1, with the condition that

P(Vj ≥ y) = p, ∀j ∈ {1, . . . , k} (17)

Similar to Ñ we define a modified version of the Equation 1010 for the Vj random variables,

S̃ = |{1 ≤ j ≤ k : Vj ≥ y}| . (18)

Based on the condition in Equation 1717, since

P(Yj ≥ y) = P(Uj ≥ y) ≤ p = P(Vj ≥ y)

it is clear that,
P(S̃ ≥ t) ≥ P(Ñ ≥ t), ∀t ∈ N ∪ {0} (19)

Also it is easy to see that S̃ ∼ Binomial(k, p). To show this, we define

S̃j = 1 {Vj ≥ y} .

Each S̃j is distributed with the Bernoulli, with P(S̃j = 1) = P(Vj ≥ y) = p. Clearly S̃ =
∑k

j=1 S̃j ,
and since each S̃j ∼ Bernoulli(p),

S ∼ Binomial(k, p) (20)

�
∗ x+y

2
≥ √xy ⇒ α+(1−α)

2
≥

√
(1− α)α⇒ α(1− α) ≥ 4
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11.3.2 Second part :

Proof. Referring back to Equation 1919, we have,

P(S̃ ≥ t) ≥ P(Ñ ≥ t), ∀t ∈ N ∪ {0}

And based on the result in Equation 2020, it gives us the desired answer. �
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