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1 Introduction

[TBW]

2 Dirichlet prior on Multinomial

Suppose we have a bag of balls with K different colors. We pick a ball, and
return it to the bag.

Example 1. For example suppose our bag has only ball of 4 colors. Let’s de-
note the observation from each of these colors to be denoted by N1, N2, N3, N4,
where the sum of all observations is

∑
iNi = n. The probability of different

observations is the following:

p(N1 = n1, N2 = n2, N3 = n3, N4 = n4) =
n!

n1!n2!n3!n4!
θn1

1 . . . θn4
4

Like the above example, the distribution of different observations, given
n total observation is the following:

p(N1 = n1, . . . , NK = nK) =
n!

n1!n2! . . . n4!
θn1

1 . . . θnKK

The parameter of interest is Θ = (θ1, . . . , θK) which lies in the following
simplex:

S =

{
Θ = (θ1, . . . , θK) |

∑
i

θi = 1, θi ≥ 0

}
One example distribution on such simplex like S is the Dirichlet distribution:

Θ ∼ Dir(α1, . . . , αK)⇔ p(Θ|α) =
Γ(
∑

i αi)

Γ(α1) . . .Γ(αK)

K∏
i=1

θαi−1

1



Dirichlet distribution is a conjugate prior for the Multinomial distribu-
tion, i.e. given a Dirchlet prior and a Multinomial likelihood, the posterior
will be of Dirichlet distribution.

Given the above likelihood and prior distributions, the posteior over the
parameters will be the following:

p(Θ|(x1, . . . , xn)) ∝
n∏
i=1

θni+αi−1
i

which is Dir(n + α), given n = (n1, . . . , nK).

2.1 Polya’s urn scheme

Definition 1 (Exchangeability). A random process x1, . . . , xn is called in-
finitely exchangeable, if for any n ∈ N and any permutation function σ(.),

P(θ1, . . . , θn) = P(θσ(1), . . . , θσ(n))

Theorem 1 (de Finetti’s Theorem). Suppose a random process x1, x2, . . . , xn
is infinitely exchangeable, then there exists an unknown distribution π such
that

p(x1, . . . , xn) =

∫ [ n∏
i=1

p(xi|θ)

]
π(θ)dθ

2.2 Taking the limit to infinity

The construction here is from [Griffiths and Ghahramani(2011)]. Now as-
sume that we have the same construction as before for Multinomial like-
lihood with Dirichlet prior. This time, we want to create a model, with
K < ∞ number of outcomes for Multinomial, and after the construction
taking its limit into infinity:

x = (x1, . . . , xn)|Θ ∼ Multinomial(θ1, ..., θK)

Θ = (θ1, . . . , θn)|α ∼ Dirichlet(
α

K
, . . . ,

α

K
)

Note that assuming the parameters of the Dirichlet distribution to be
αi = α

K is to make sure that the definition of the Dirichlet is proper when
K →∞. The probability over the observations, by averaging over the latent
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Figure 1: Splitting classes into empty and nonempty.

variables Θ:

p(x) =

∫
p(x|Θ)p(Θ|α)dΘ (1)

=

∫ ∏K
i=1 θ

mi+
α
K
−1

i

D( αK , . . . ,
α
K )

dΘ (2)

=
D(n1 + α

K , . . . , nk + α
K )

D( αK , . . . ,
α
K )

(3)

=

∏K
k=1 Γ(nk + α

K )

Γ( αK )K
Γ(α)

Γ(n+ α)
(4)

Now use the property of the Gamma function, Γ(x+ 1) = xΓ(x) :

p(x) =
( α
K

)K  K∏
i=1

nk−1∏
j=1

(j +
α

K
)

 Γ(α)

Γ(n+ α)

Now if you set K → ∞ this distribution will be zero! This actually makes
sense: if you have infinite number of classes, the probability that you have at
least one element from each class, which needs infinite number of samples, is
zero. So what?! All this to find out that the distribution of any observation
from infinite cluster is zero?! The trick is that, in practice no one cares
about the clusters which have no element inside. In other words, we want
to create a model, which has potentially infinite number of classes, but the
data might come only from a subset of the classes. For that, we change the
notation. We split the classes into empty and nonempty classes, as shown
in Figure 1. Note that, there is no ordering between the classes, and we can
specify the labels to the classes based on any order that we want.

Given this notation, we create a modified distribution based on p(x)
which is the probability of observing finite data, from finite classes, given
that there are potentially infinite number of classes, and we denote it with
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p([x]):

p([x]) =
K!

Kempty!

(
α

Kempty

)Kempty Kempty∏
i=1

nk−1∏
j=1

(j +
α

Kempty
)

 Γ(α)

Γ(n+ α)

where K!
Kempty ! the number of possible assignments of Knonempty objects into

K classes. Doing so, and taking the limit into infinity, we have:

lim
K→∞

p([x]) = αKempty

Kempty∏
i=1

nk−1∏
j=1

(j +
α

Kempty
)

 Γ(α)

Γ(n+ α)
(5)

2.3 Chinese Restaurant Process (CRP)

We can write the conditional distribution of the the i-th observation in the
following form:

p(Xi = xi|xi−1, xi−2, . . . , x1) =
p(Xi = xi, xi−1, xi−2, . . . , x1)

p(xi−1, xi−2, . . . , x1)

If the observation Xi = xi belongs to one of the classes which is already
occupied, we can use the closed form in Equation 4:

p(Xi = xi|xi−1, xi−2, . . . , x1) =

Γ(nk+ α
K

+1)

Γ(i+α)

Γ(nk+ α
K

)

Γ(i−1+α)

=
nK + α

K

i− 1 + α

Note that this probability only with the assumption that the observation
Xi = xi in one of the occupied (nonempty) classes. If we take limit K →∞,
we will have:

lim
K→∞

p(Xi = xi|xi−1, xi−2, . . . , x1) = lim
K→∞

nK + α
K

i− 1 + α
=

nK
i− 1 + α

If the Xi = xi does not belong to the the set of occupied classes, the prob-
ability of this event is the complement of the above probability. Therefore,
the CRP distribution is the following:

p̃(Xi = xi|xi−1, xi−2, . . . , x1) =

{
nk

i−1+α k ≤ Knonempty

α
i−1+α k = Knonempty + 1

An example of this construction is represented in Figure 2.
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Figure 2: Example run of Chinese Restaurant Process.
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Remark 1. CRP is an exchangeable process:

P(122) = 1× α

1 + α
× 1

2 + α

If you change the order you will get the same distribution:

P(212) = 1× α

1 + α
× 1

2 + α

Even if you change the labeling you will get the same distribution, since the
labeling is just the way we denote different classes, and are matter of choice:

P(112) = 1× 1

1 + α
× α

2 + α

3 A mixture model with potentially infinite num-
ber of components

In this section using the Chinese Restaurant Process we want to create a
mixture model which has potentially infinite number of components. This
model is called Dirichlet Process Mixture (DPM) or Mixture of Dirichlet
Processes (MDP) model.

A mixture model could be represented in the following form:

x1, . . . , xn
i.i.d.∼

K∑
k=1

wkfθk

In this model the number of the mixture is fixed and is denoted by K. We
want to create a model in which the number of the components is a random
variable. Thus, from now on, though we use K to denote the number of the
mixture components, but this number if not fixed, and is a random variable
in our model. For this example we assume the Gaussian distribution for each
component, though later we will show that the sample could come from any
distribution, unless there is a computational barrier:

xi|zi = k ∼ N (µk,1)

in which zi denoted the cluster number for each sample xi. Thus, the set of
the unknowns are the following:

Latent variables: z1, . . . , zn

Parameters: µ1, . . . , µK

}
:= Θ
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which we all denote by Θ. Also assume that the distribution over µi ∼
G0 = N (0, τ2). We denote the prior over zi by CRP: zi ∼ CRP(α). The
translation of this prior is the following process:

1. For the first sample, create a class and name it 1: z1 = 1, µ1 ∼ G0.

2. For the second sample,{
choose class one z2 = 1 with probability 1

1+α

create a new class: z2 = 2 with probability α
1+α and sample a new µ ∼ G0

...

More formally, we denote the above procedure with the following short-
hand: {

z1, . . . , zn ∼ CRP)(α)

µ1, . . . , µK ∼ N (0, τ2)

Remark 2. In the above representation we we debited the set of unique
mean values with (µ1, µ2, . . .). Depending on the data, the best model might
be obtained from (µ1), or (µ1, µ2), or (µ1, µ2, µ3), or etc. This the parameter
representation is proportional to:

(µ1)× (µ1, µ2)× (µ1, µ2, µ3)× . . .× (µ1, µ2, . . . , µn)

which is exponential in terms of n (the number of samples). Since the in-
ference algorithm needs to find the best model for the data, by some sort of
search in the parameters space, inference with this model is probably very
hard, or needs strong approximations. For that, we change the representa-
tion.

Now, we change the previous representation to the following equivalent
representation: {

xi|θi ∼ N (θi,1)

θi ∼ N (0, τ2)

and similar to the previous representation we define the parameters Θ =
(θ1, . . . , θn), and the size of the clusters is represented by K = [Θ] which is
the criminality of unique θi’s. One can find that there is a one-to-one corre-
spondence between parameters of this parameterization (θ1, . . . , θn) and the
previous one, (µ1, . . . , µK , z1, . . . , zn).

The sampling procedure in this formulation, equivalent to the previous
form, and could written as following:
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1. Sample the first mean: θ1 ∼ N (0, τ2)

2. Sample the second mean: θ2|θ1 ∼ 1
1+αδθ1 + α

1+αN (0, τ2)
...

k+1. Sample (k + 1)-th mean from:

θk+1|θ1:k ∼
1

k + α

k∑
i=1

δθi +
α

α+ k
N (0, τ2) (6)

4 Gibbs sampling on the posterior of DPM

These algorithms are from the great paper [Neal(2000)] (Section 3), which
only need conjugacy between the distribution of the mixture function and
the prior over its parameters. First, before moving the sampling we show a
closed form for the joint distribution of the θi, p(θ1, θ2, . . . , θn).

Remark 3. First, for practical reasons assume that in Equation 6, instead
of a continuous distribution, we have a discretized version of it (we have a
probability mass function), and denote it with G̃0. Now we want to find the
probability of the following mean values (for simplicity suppose the values
are in the domain of the PMF):

p(1.2, 1.2, 2.3, 2.3, 1.2) =

(
G̃0(1.2)× 1

1 + α

)
× α

2 + α
×
(
G̃0(2.3)× 1

3 + α

)
× 2

4 + α

Using this example, one can write the following general formula:

p(θ1, θ2, . . . , θn) =

[∏K
j=1 G̃0(µj)(nj − 1)!

]
αK−1

(α+ 1) . . . (α+ n− 1)

given that µ1, . . . , µK represent the unique values of θ1, . . . , θn and the fre-
quency of µj is denoted by nj, where

∑K
j=1 nj = n.

Now, we continue the sampling on the posterior. The posterior distribu-
tion is π(Θ|x1:n). Since sampling from this joint is hard, we sample each θi
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separately:

π(θi|Θ\i, x1:n) ∝ p(x1:n|θ1:n)π(θ1:n) (7)

∝
n∑
j=1

1

α+ n− 1
φ(xi − θj)δθj (θi) +

α

α+ n− 1
φ(xi − θi)N (0, τ2)

(8)

where φ(.) is the mixture component.

Example 2. How would you sample from the following distribution?

W =
1

3
δ(x− x0) +

2

3
N (0, 1)

The answer is very simple. First, sample from a uniform distribution U(0, 1).
If the result is less than, 1/3 choose x0 to be the sample, if not, sample from
the uniform distribution.

Thus, in order to have a successful sampling from the above distribu-
tion we need to be able to sample from the distribution φ(.)N (0, τ2) in the
Equation 8, we need to have closed form for φ(.)N (0, τ2). If φ(.) is from a
normal the resulting distribution will have a closed form.

5 Dirichlet Process

Dichlet Processes(DP) is a crucial element in Bayesian nonparametric mod-
elling; since it is able to model infinite number of components. A DP is
infact generalization of Dirichlet Distribution to infinite random variables.
To make it clear, if we have set B of disjoint partitions on a set, {B1, ..., Bk},
we have a DP,

G|α,G0 ∼ DP(α,G0).

in which α is scaling parameter and G0 is base distribution, such that values
of random measures have joint Dirichlet distribution with scaling parameter
αG0(.),

(G(B1), ..., G(Bk)) ∼ Dir (αG0(B1), ..., αG0(Bk)) .

This definition has different interpretations, such as Chinese resturant pro-
cess, or stick breaking process which are inherently the same. Using the
clustering behaviour of DPs one could definite unlimited clusters and use it
in infinite mixtor model, similar to conventional mixture models,

G|α,G0 ∼ DP(α,G0),
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ηn|G ∼ G,

Xn|ηn ∼ p(xn|ηn).

Generally these Dirichlet mixture models are trained using MCMC meth-
ods. While one could do faster, but approximate learning using mean-field
variational approximation. To make everything simple, it is assumed that
data is sampled from an exponentional family. In that case, one could as-
sume that G0, the base distribution of Dirichlet is conjugate prior of the
aforementioned exponential family. The approximation is based on the con-
structive view of DP, i.e. stick breaking process, in which we have an infinite
sequence of mixture weights π = {πi}∞i=1 derived from the following:

βi ∼ Beta(1, α)

πi = βi

i−1∏
l=1

(1− βl) = βi

(
1−

i−1∑
l=1

πl

)
and we denote it by π ∼ GEM(α). If we define G(θ) =

∑∞
k=1 πkδθk(θ),

where π ∼ GEM(α) and θk ∼ H, then one can show that G ∼ DP(α,H).

5.1 Variational inference for DPM

In order to find the details of the variational inference for DPM go to the
related chapter ?? 1

6 Other nonparametric models

6.1 Infinite Hidden Markov Model (iHMM)

In [Beal et al.(2002)Beal, Ghahramani, and Rasmussen] they’ve shown an
HMM with countably infinite states using Dirichlet processes. They have
only three parameters that need to be learnt from data. Conventionally
HMM could be trained using Baum-Welch algorithm by taking int account
counts of outputs, after specifying the set of possible hidden states. While
this parameter optimization would result in over/under fitting the model;
thus it might seem a reasonable idea to provide a Bayesian model of HMMs.
They use a two-level hierarchical Dirichlet Process model to create infinite
state structure.To do inference they do Gibbs sampling which takes quite a
long time.

1Or here: http://web.engr.illinois.edu/~khashab2/learn/variational.pdf
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7 Bibliographical notes

Some of the explanations are based on Feng Liang’s “nonparametric” course
at UIUC.
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