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Abstract
Large language models (LLMs) exhibit pro-
nounced position bias in long-context needle-in-
haystack problems, systematically prioritizing
the location of information over its relevance.
While current mitigations rely on white-box ac-
cess, this is effectively impossible for many state-
of-the-art models. We introduce GOLD PANNING,
a black-box Bayesian framework that performs
inference-time active search over long contexts
by (i) reordering documents to concentrate high-
belief items in highly diagnostic positions (signal
anchoring) and (ii) updating beliefs over docu-
ment relevance from model outputs. Unlike con-
ventional active learning, which prioritizes un-
certainty reduction, GOLD PANNING leverages
anchoring—once flagged, keep it in sight—to pre-
serve weak cues. We implement this using itera-
tive assignment derived from the model’s diagnos-
ticity profile, which provably identifies a target
among N documents in O(logN) rounds, ensur-
ing scalability to many-document settings. On
needle-in-a-haystack retrieval and long-context
QA, GOLD PANNING matches Permutation Self-
Consistency’s target identification with 30–65%
fewer queries and remains effective under cali-
bration mismatch, suggesting coarse positional
ordering drives performance gains. These results
demonstrate that inherent model biases need not
be failures, but can be used as tools for control.

1. Introduction
Many reasoning tasks require identifying relevant signals
within large contexts, including scientific synthesis, legal
analysis, and agentic fact retrieval. LLMs have emerged as
practical tools for these tasks, enabling knowledge synthe-
sis in retrieval-augmented generation (RAG) (Lewis et al.,
2020; Gao et al., 2023) and agentic systems (Wang et al.,
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2023a; Yao et al., 2023), but a critical bottleneck undermin-
ing reliability is position bias, where LLMs often prioritize
information based on where it appears in context rather than
its intrinsic relevance (Wang et al., 2023b; Zheng et al.,
2024; Liu et al., 2024). Even state-of-the-art retrieval sys-
tems (Ke et al., 2025; Zhang et al., 2025) cannot guarantee
optimal placement. When critical information falls into low-
attention zones, reasoning failures increase substantially.

Current approaches to mitigate this bias fall into two cat-
egories. White-box mitigations modify model architec-
tures to reduce bias (Peysakhovich & Lerer, 2023; Hsieh
et al., 2024; Wang et al., 2024; Zhang et al., 2024), but
require model access or extensive fine-tuning, rendering
them impractical for proprietary API models. Inference-
time ensembling, such as Permutation Self-Consistency
(PSC; Tang et al. (2024)), offers a black-box alternative
by randomly shuffling documents across multiple queries
and aggregating results via majority vote. While PSC av-
erages over random placements, it assumes independent
error, an assumption violated in long-context settings where
position bias induces strongly correlated failures (Byerly &
Khashabi, 2025). Furthermore, PSC is inherently stateless,
as each shuffle is drawn independently, discarding informa-
tion from previous queries. Finally, PSC is bias-agnostic,
treating all positions as exchangeable rather than exploiting
known positional reliability differences.

Rather than treating position bias as noise to average away,
we propose to model it explicitly and learn from obser-
vations. We introduce GOLD PANNING, a black-box,
inference-time framework that maintains Bayesian beliefs
over document relevance and iteratively reorders inputs to
align promising documents with positions of high discrimi-
native power. We observe that position bias has a consistent
structure (Fig. 1, left pane), with some positions (e.g., the
beginning and end of context) reliably surfacing relevant
content, while others (the “lost in the middle” zone) tend to
obscure it. We characterize this structure by estimating a
position’s diagnosticity (§2.4), a measure of how reliably a
position distinguishes relevant from irrelevant documents.
We perform a lightweight, per-model calibration (§4.3, §B)
using synthetic needle-in-haystack instances to estimate
this positional reliability profile. Empirically, we find this
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Figure 1. Overview of GOLD PANNING. Given: a language model with a measured positional diagnosticity profile (TPR/FPR by position;
§2.4). Task: identify relevant information from a document collection (§4.1). Method: iteratively query the model, update Bayesian
beliefs based on observed responses (§2.3), and reorder documents to place high-belief items in high-diagnosticity positions (§2.5). This
accelerates belief separation, identifying relevant content with fewer queries than stateless ensembling.

profile transfers across multi-document question answering
(MDQA) tasks when the protocol is fixed (§4.4).

Equipped with this profile, we re-imagine the context win-
dow not as a passive input buffer, but as an array of noisy
detectors with known reliability. By adopting a Bayesian
lens (Fig. 1, right pane), we maintain a running probabilistic
belief about each document’s relevance, treating every LLM
output as a noisy measurement rather than a final answer.
This transforms the problem from stateless ensembling into
sequential Bayesian inference, where each query extracts
partial evidence that actively shapes the next input configu-
ration, allowing the system to “pan for gold.”

As document retrieval is fundamentally a search problem,
we do not need perfect belief calibration for all documents—
we only need to efficiently identify the relevant ones. Con-
sequently, reducing uncertainty about irrelevant documents
yields only marginal gain towards this goal. In long-context
LLM reasoning, the search objective dominates: placing
high-belief documents in high-diagnosticity positions con-
sistently outperforms probing uncertain ones.

The underlying mechanism behind this is signal anchor-
ing. Beliefs in long-context reasoning are inherently frag-
ile; anchoring increases the probability of receiving high-
diagnostic evidence early, which accelerates belief separa-
tion and reduces the number of rounds to confidently select
the needles. This principle, that once identified, a needle
must be kept in view, maximizes recall with fewer queries.

GOLD PANNING operationalizes these insights via greedy
belief-diagnosticity matching at each round. We evalu-
ate on MDQA, a controlled setting where position bias
is well-documented and retrieval success is directly mea-
surable. Across configurations, GP-BELIEF outperforms
GP-ENTROPY, confirming that signal anchoring dominates
uncertainty reduction. Compared to PSC, GOLD PANNING
identifies relevant documents using 30–65% fewer queries
while maintaining F1 across model families and scales.

Contributions. (1) Framework: We formalize position

bias as a diagnostic signal and introduce GOLD PANNING, a
black-box inference-time method for Bayesian active search
over long contexts via calibrated position diagnosticity. (2)
Theory: We prove that a greedy belief-based assignment
identifies targets in O(logN) LLM queries, reducing the
cost of inference. (3) Finding: GP-BELIEF outperforms
GP-ENTROPY across all configurations, confirming that
document retrieval is fundamentally a search problem, not a
learning problem. (4) Empirical: On MDQA benchmarks,
GOLD PANNING matches PSC’s F1 with 30–65% fewer
queries and remains effective under calibration mismatch,
confirming that coarse positional ordering suffices.

2. The GOLD PANNING Framework
Our goal is to exploit position bias by repeatedly reordering
documents across rounds to reliably surface relevant content
with as few LLM queries as possible. We first present the al-
gorithm (§2.1), then formalize each component: documents
and positions (§2.2), belief dynamics (§2.3), positional di-
agnosticity (§2.4), and scoring objective (§2.5).

2.1. Overview and Algorithm

GOLD PANNING operates in rounds. Each round, we (1)
score documents based on current beliefs, (2) construct
an assignment matching high-scoring documents to high-
diagnosticity positions, (3) query the LLM with this arrange-
ment, and (4) update beliefs based on which documents
were cited. Algorithm 1 summarizes this procedure: Lines
3-4 compute positional diagnosticity and establish a fixed
ordering of positions by discriminative power (§2.4); Line 5
initializes uniform prior beliefs; the main loop (Lines 6-13)
iterates: Line 7 scores documents according to one of two
objectives (§2.5), Lines 8-9 construct the greedy assignment
matching document and position orderings, Lines 10-11 for-
mat and query the LLM, and Line 12 performs the Bayesian
belief updates (§2.3).
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2.2. Documents and Positions

We consider N documents indexed by i ∈ {1, . . . , N},
each with an unknown binary relevance Zi∈{0, 1}, where
we wish to identify the subset of documents with Zi = 1
(relevant) using a limited number of LLM calls. For
each query, we also have N context positions indexed by
j ∈ {1, . . . , N}, which we treat as binary detectors with
true/false positive rates TPRj ,FPRj . Letting Oij ∈{0, 1}
denote if the LLM cites document i at position j, we have:

Pr(Oij=1 | Zi=z) = z ·TPRj + (1−z)·FPRj , (1)

with Pr(Oij=0 | ·)=1−Pr(Oij=1 | ·). To ensure structured
outputs, we enforce a JSON citation schema via constrained
decoding when available, otherwise via format-constrained
prompting and validation. The parameters (TPRj ,FPRj)
are calibrated once (§B) and reused across tasks. In Algo-
rithm 1, input documents D (Line 1) are arranged into a
prompt Pt each round (Line 10).

2.3. Actions, Observations, and Beliefs

Observations. At each round t, we choose a permutation
σt ∈ SN (the symmetric group on {1, . . . , N}) specifying
which document is placed in which position; we interpret
σt(i) = j as “document i is placed in position j.” After
querying the LLM, we observe Ot,i ∈ {0, 1} indicating
whether document i was cited at round t. Let j = σt(i)
denote the position assigned to i. The observation model
(Eq. (1)) applies with j = σt(i).

Concretely, the model returns a set of cited document IDs Ct.
Given σt, we observe one outcome per document, Ot,i =
I[i ∈ Ct], for i ∈ {1, . . . , N}.

Belief updates. We maintain posterior beliefs bt =
(bt,1, . . . , bt,N ), where bt,i = Pr(Zi = 1 | Ft) is our be-
lief that document i is relevant given all observations up
to round t. Starting from a uniform prior, b0,i = 0.5, we
update these beliefs via Bayes’ theorem after each round
using the observation model in Eq. (1):

bt,i =
bt−1,iP1

bt−1,iP1 + (1− bt−1,i)P0
, (2)

where Pz = Pr(Ot,i | Zi = z, σt(i) = j) (Eq. (1)) is the
Bernoulli likelihood under label z for j = σt(i). When
upstream retrieval scores are available, these could inform
a non-uniform prior; we adopt the uninformative case for
generality and to isolate the contribution of positional infer-
ence. In Algorithm 1, beliefs are initialized uniformly (Line
5) and updated after each query via Eq. (2) (Line 12).

We define the log-odds λt,i = log
bt,i

1−bt,i
, which admits

an additive Bayesian update (Eq. (2)) of the form λt,i =
λt−1,i+ℓσt(i)(Ot,i), where σt(i) is the position assigned to

Algorithm 1 GOLD PANNING

1: Input: Query Q, Documents D = {d1, . . . , dN}, Detector
Profile (TPRj ,FPRj), Rounds T

2: Output: Final beliefs bT

3: Compute ddiag(j)← |TPRj − FPRj |
4: πpos ← argsort(ddiag, descending)
5: Initialize b0,i ← 0.5
6: for t = 1 to T do
7: si ← SCORE(bt−1,i)

8: πdoc ← argsort(s, descending)
9: σt ← zip(πdoc, πpos)

10: Pt ← Format(Q, Permute(D, σt))
11: Ct ← QueryLLM(Pt)
12: Update bt via Eq. (2) using citations Ct

13: end for
14: return bT

document i at round t, and ℓj(o) is the position-dependent
log-likelihood ratio ℓj(o) = log Pr(O=o|Z=1,pos=j)

Pr(O=o|Z=0,pos=j) . Thus,
the log-odds evolve as a random walk with increments de-
termined by the assigned position.

We adopt a conditional-independence approximation where
citations are treated as independent given relevance and po-
sition. While LLM decoding is autoregressive, we interpret
(TPRj ,FPRj) as marginal rates under a fixed prompting
protocol. Empirical results (§4) support this approximation.

2.4. Diagnosticity

We quantify how informative a position j is via Youden’s
index (Peirce, 1884; Youden, 1950), a measure for as-
sessing the discriminative power of diagnostic procedures.
Youden’s J-statistic is defined as Jj = TPRj − FPRj .
Under this measure, a position is maximally informative
when Jj = 1, uninformative when Jj = 0, and maxi-
mally anti-informative when Jj = −1. Crucially, when
Jj < 0, a citation from position j is more likely under
irrelevance than relevance, and therefore provides strong
negative evidence. Because we primarily need to decide
which positions yield the most information, we rank posi-
tions by magnitude, ddiag(j) = |Jj |, while retaining the
sign of Jj through the likelihoods (TPRj ,FPRj) in our
Bayesian update (Eq. (2)).

For simplicity, we present the balanced case with N docu-
ments and N positions. Asymmetric cases where the num-
ber of retrieved documents differs from the number of usable
positions can be reduced to this setting by adding dummy
positions or items; we describe these details in Appendix C.

2.5. Scoring Objectives

GOLD PANNING is a greedy policy that uses calibrated
positional diagnosticity and evolving document beliefs to
construct assignments.
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Document scoring. At each round, we assign a scalar
score st,i to each document i based on its current belief
bt−1,i, sort documents in descending order, and match the
highest-scoring document to the most diagnostic position,
second-highest to second-most diagnostic, and so on. The
choice of scoring function reflects two natural objectives
corresponding to active learning (Settles, 2009; 2011) and
active search (Garnett et al., 2012). The first, Uncertainty
Reduction, prioritizes exploring ambiguous documents to
maximize information gain, assigning the most diagnostic
positions to high-entropy documents. This follows standard
intuition from active learning: probe the most uncertain
cases to learn fastest. The second, Target Identification,
prioritizes confirming likely positives to maximize recall,
assigning diagnostic positions to high-belief documents. We
implement these objectives via two distinct scoring variants:

GP-ENTROPY (uncertainty reduction). We set sEntropy
t,i =

H(bt−1,i), so high scores correspond to high uncertainty.
This variant approximates the information-gain objective by
repeatedly testing ambiguous documents.

GP-BELIEF (signal anchoring). We set sBelief
t,i = bt−1,i, so

high scores correspond to documents believed most likely
to be relevant. This variant approximates the active search
objective by repeatedly anchoring likely-relevant documents
in high-diagnosticity positions.

We formalize both objectives in §3, showing that uncertainty
reduction is aligned with maximizing expected entropy de-
crease under our detector model, while signal anchoring
maximizes a belief-weighted sum of position-wise detection
rates. The algorithm returns the final posterior beliefs bT ,
which can be mapped to discrete predictions via standard
decision rules, as detailed in the experimental setup (§4.1).

2.6. Computational Complexity

The per-round complexity of GOLD PANNING is
O(N logN) for sorting documents by score, compared to
O(N) for PSC’s random shuffle. However, this is negligible
CPU overhead, as the dominant cost in practice is LLM
inference. With respect to the number of costly LLM calls,
GOLD PANNING provides substantial savings, identifying
targets in O(logN) rounds (proven in §3.1), compared to
O(T ) rounds for PSC, where T ≫ logN in practice.

3. Theoretical Properties
We analyze GOLD PANNING as a sequential Bayesian infer-
ence process. Here we characterize how the rounds required
to identify a relevant document scale with collection size
and assigned position quality. The central quantity govern-
ing convergence is the belief update drift, determined by the
diagnostic strength of the assigned positions. All proofs are
deferred to Appendix A.

3.1. Belief Dynamics and Sample Complexity

Recall that the log-odds evolve as a random walk with in-
crements determined by the assigned position (§2.3). For
a relevant document assigned to position j, the expected
increment of this random walk is

µj = E[ℓj(O) | Z = 1] = DKL(PZ=1,j ∥PZ=0,j), (3)

the KL divergence between the observation distributions
induced by position j. Positions with larger µj therefore
induce faster belief concentration. The total rounds required
to identify the relevant document thus depends on the cumu-
lative drift achieved by the policy’s position assignments.

Theorem 3.1 (Sample Complexity). Assume that log-
likelihood ratios are bounded and that the policy assigns
the relevant document positions with average drift at least
µ > 0, i.e.,

∑T
t=1 µσt(i) ≥ µ · T. To identify a unique rele-

vant document among N candidates with high probability,
the number of rounds required satisfies

T = O

(
logN

µ
+

logN

µ2

)
= O

(
logN

µ2

)
.

Interpretation. The logN factor reflects the intrinsic diffi-
culty of distinguishing one relevant document from N − 1
distractors. The dominant term scales quadratically with
1/µ, indicating that convergence speed is governed primar-
ily by the diagnostic quality of the positions assigned to
the true positive. Policies that concentrate high-drift po-
sitions on promising candidates therefore achieve substan-
tially faster identification.

3.2. Information Rate Advantage of Strategic Placement

Thm 3.1 established that the convergence time is inversely
proportional to the assigned drift µ. Consequently, the ef-
ficiency of the retrieval process depends entirely on the
policy’s ability to maximize this quantity. We now quantify
exactly how much GP-BELIEF improves the information
rate compared to random assignment.

Let µ(1) ≥ · · · ≥ µ(N) denote the position drifts sorted in
descending order of quality. Let rankt(i) ∈ {1, . . . , N} be
the rank of document i when sorting current beliefs bt−1,i

in descending order.

Definition 3.2 (Information Rate). The information rate
for a relevant document i under policy π at round t is the
expected drift assigned to it, conditioned on the history:

Rπ(t) = E
[
µσt(i) | Zi = 1,Ft−1

]
.

For the baseline Permutation Self-Consistency (PSC),
which assigns documents uniformly at random, the rate
is fixed at the average drift: RPSC(t) = µ̄ = 1

N

∑N
j=1 µj .
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Proposition 3.3 (Exact Rate for GP-BELIEF). Under GP-
BELIEF, the information rate is:

RGP-BELIEF(t)=

N∑
r=1

µ(r) ·Pr (rankt(i)=r |Zi=1,Ft−1) .

To interpret this, we look at the probability of the relevant
document being “captured” in the high-quality positions.

Definition 3.4 (Top-m Capture Probability). For any cut-off
m ∈ {1, . . . , N}, let

pt(m) = Pr (rankt(i) ≤ m | Zi = 1,Ft−1) ,

be the probability that the relevant document is ranked
among the top m candidates.

Proposition 3.5 (Rate Advantage). For any m ∈
{1, . . . , N}, the information rate of GP-BELIEF satisfies
the lower bound:

RGP-BELIEF(t) ≥ pt(m)µ(m) + (1− pt(m))µ(N).

Interpretation. This bound isolates the two drivers of
GOLD PANNING’s performance: (1) Ranking Quality
(pt(m)): As the algorithm progresses, the probability of
the relevant document being in the top m increases. Under
random guessing (PSC), this probability is simply m/N .
Whenever pt(m) > m/N , GOLD PANNING is guaranteed
to outperform the baseline. (2) Position Heterogeneity
(µ(m) − µ(N)): The advantage is amplified when the posi-
tion profile is “spiky.” If the top positions (µ(m)) are better
than the worst ones (µ(N)), identifying the correct document
accelerates in subsequent rounds.

This creates a positive feedback loop: a good ranking yields
a high drift µ, which accumulates evidence faster, which
further improves the ranking pt+1(m).

3.3. Why Anchoring Dominates Uncertainty Reduction

Prop. 3.3–3.5 establish that assigning documents to high-
drift positions accelerates convergence. The central question
remains: which documents should receive these positions?

GP-ENTROPY prioritizes high-uncertainty documents (max-
imizing information gain), while GP-BELIEF prioritizes
high-belief documents (maximizing expected discoveries).
In sparse search settings (k ≪ N ), these objectives diverge
sharply. We formalize this divergence by analyzing the drift
allocated to the true positive as it emerges from the haystack.

Proposition 3.6 (GP-ENTROPY Demotes Confident Pos-
itives). Consider the k = 1 setting. As the belief in the
true positive approaches certainty (bt−1,i → 1), its entropy
H(bt−1,i) → 0. Consequently, if there exist at least m
distractor documents with higher entropy (e.g., b ≈ 0.5),

GP-ENTROPY assigns the true positive a rank greater than
m. In the limit, the diagnostic attention collapses to the
minimum available drift:

lim
bt−1,i→1

RGP-ENTROPY(t) = µ(N).

Proposition 3.7 (GP-BELIEF Diagnostic Lock-in). Con-
sider the k = 1 setting. Under GP-BELIEF, if the true
positive i achieves the highest belief rank at round τ , it
receives maximal diagnostic attention µ(1). Furthermore,
there exists a strictly positive probability that i retains
the lead in all subsequent rounds t > τ , maintaining
RGP-BELIEF(t) = µ(1).

Interpretation: Vicious vs. Virtuous Cycles. The Vicious
Cycle of Entropy: GP-ENTROPY penalizes success. As
the model begins to identify the relevant document (belief
rises), its entropy falls. The policy effectively says, “We are
sure about this one, so let’s stop checking it.” It demotes
the candidate to the noisiest positions (µ(N)), starving it of
the signal required to cross the final confidence threshold
(1− δ). This explains the stagnation observed in Figure 2.
The Virtuous Cycle of Belief: GP-BELIEF rewards suc-
cess. As the relevant document rises in rank, it is promoted
to positions with higher drift (µ(1)). This strong signal re-
inforces the belief, further solidifying its top rank. This
“Signal Anchoring” creates a lock-in effect that races the
winner to the threshold with maximal velocity.

4. Empirical Validation
4.1. Setup

Benchmarks. We evaluate on two FLenQA bench-
marks (Levy et al., 2024): MonoRel (monotonic transi-
tive reasoning) and PIR (People in Rooms; compositional
reasoning). We selected these tasks because they offer un-
ambiguous, deterministic ground-truth labels. In contrast to
open-domain QA, where implicit ambiguity can confound
evaluation (Min et al., 2020) and necessitate complex seman-
tic matching (Kamalloo et al., 2023), FLenQA allows for
precise measurement of retrieval recall without the noise of
partial relevance or answer granularity mismatches. While
these benchmarks are natively single-fact QA, we convert
each instance into a controlled MDQA task by augmenting
the ground-truth fact with N−1 sampled distractor, yielding
exactly one relevant document.

Models. We test two model families at multiple scales:
Gemma-3 (Team et al., 2025) (12B, 27B) and OLMo-
3 (Olmo et al., 2025) (OLMo-3-7B, OLMo-3.1-32B). These
models exhibit varying degrees of position bias as measured
by their calibrated positional profiles (§B), allowing us to
isolate when position-aware reordering helps.
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Figure 2. Main results across models and tasks. F1 score over 8 iterations for N=100 documents. GP-BELIEF (orange) consistently
outperforms GP-ENTROPY (green, dashed) and PSC (black, dotted), with advantages most pronounced on models exhibiting strong
position bias. Gemma-3-27B shows no separation due to its lack of exploitable bias. Shaded regions indicate 95% confidence intervals.

Default configuration. Unless stated otherwise, we use
N = 100 documents with k = 1 relevant document (Top-
1 selection) and run T = 8 rounds. We follow model-
recommended sampling parameters: temperature 1.0 with
top-p 0.95 for Gemma, and temperature 0.6 with top-p 0.95
for OLMo. All methods enforce structured JSON outputs
via constrained decoding to ensure parsable citations. Each
round returns a set of cited document IDs, which we map to
per-document indicators Ot,i (Eq. (1)) for belief updates.

Baseline. We compare against Permutation Self-
Consistency (PSC) (Tang et al., 2024), which queries the
model on independent random permutations and aggregates
per-document relevance predictions across rounds via per-
document majority vote (ties broken deterministically). PSC
is a black-box baseline that mitigates position bias by aver-
aging over placements. All methods use the same number of
LLM calls, enabling direct comparison of query efficiency.

Evaluation. GOLD PANNING maintains continuous beliefs
bt ∈ [0, 1]N , converted to binary predictions for evaluation.
We assume the number of relevant documents k is known
and given, and select the k highest-belief documents (Top-
k). We report mean F1 with 95% confidence interval.

Calibration of diagnosticity. For each model, we run a
lightweight calibration to extract its diagnosticity profile.
At position j, we construct calibration trials by placing a
known-relevant “gold” document at position j, filling the
remaining N − 1 positions with distractors, and query the
model. Citing the gold at j contributes to TPRj , while cit-
ing position j when gold is elsewhere contributes to FPRj .
Estimating diagnosticity at all N positions can be expensive
for long contexts, even though this is a one-time cost. We
therefore use sparse fixed-grid sampling with linear interpo-
lation, assuming smooth diagnosticity trends. Specifically,

we evaluate a fixed grid of K = 11 positions with 50 trials
each and linearly interpolate to obtain the full N -position
profile (validated in §4.3; full details in Appendix B).

Fig. 3 shows the calibrated diagnosticity profile for Gemma-
3-12B on both MonoRel and PIR with N = 100 documents.
Both exhibit the characteristic “lost in the middle” pattern:
positions near the beginning (primacy) and end (recency)
of context show high diagnosticity, while middle positions
are far less informative. This heterogeneity enables strate-
gic placement—GP-BELIEF exploits the high-diagnosticity
positions to accelerate belief separation.
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Figure 3. Diagnosticity profile for Gemma-3-12B on MonoRel
and PIR (N = 100). Both tasks show primacy and recency
effects, i.e., diminished diagnosticity in the middle.

4.2. Main Results

Fig. 2 compares GP-BELIEF, GP-ENTROPY, and PSC
across four models. We analyze whether (i) our stateful
Bayesian inference beats stateless ensembling, and (ii) sig-
nal anchoring outperforms uncertainty reduction.

Signal anchoring (GP-BELIEF) dominates uncertainty
reduction (GP-ENTROPY). Whenever position bias is
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exploitable, GP-BELIEF consistently outperforms GP-
ENTROPY. On Gemma-3-12B (PIR), GP-BELIEF achieves
F1 ≈ 0.88 at iteration 4 versus 0.72 for GP-ENTROPY, a
gap that persists across model scales. This confirms that
in needle-in-haystack retrieval (k ≪ N ), the optimal strat-
egy is not to probe ambiguity, but to protect likely signals.
GP-ENTROPY fails because it prioritizes documents near
b ≈ 0.5—predominantly irrelevant distractors not yet ruled
out. By contrast, GP-BELIEF anchors likely signals in high-
diagnosticity positions to accelerate separation.

Bayesian statefulness beats stateless ensembling. Even
with the suboptimal entropy objective, the Bayesian frame-
work generally outperforms the stateless PSC baseline. On
OLMo-3-7B (PIR), GP-ENTROPY attains F1 ≈ 0.25 at
iteration 8 compared to PSC’s 0.17. The gains come from
adaptivity: PSC treats iterations independently, often re-
testing resolved negatives in high-value positions, whereas
GOLD PANNING accumulates evidence, deprioritizing low-
belief documents to make room for promising ones. When
combined with GP-BELIEF, this statefulness enables the
theoretical information rate gains of Proposition 3.5.

Query efficiency. GP-BELIEF matches PSC using 30–65%
fewer queries. On Gemma-3-12B (MonoRel), GP-BELIEF
reaches F1 ≈ 0.97 in just 4 iterations, matching PSC’s
performance at iteration 8. On PIR, the gains are even
larger: GP-BELIEF’s iteration-4 performance (0.88) strictly
exceeds PSC’s final iteration-8 result (0.82), making it a
viable strategy for latency-constrained applications.

No bias, no gains. Gemma-3-27B (Fig. 2, column 2) serves
as a control. Because this model exhibits a fairly flat di-
agnosticity profile (Fig. 6), strategic reordering offers no
leverage over random shuffling, and all methods converge
indistinguishably. This negative result validates that GOLD
PANNING is not a “magic wand,” but a targeted intervention
that turns position bias into a resource.

4.3. Validating Sparse Diagnosticity Calibration

As discussed in §4.1, we estimate diagnosticity via sparse
position sampling. We validate this by comparing fixed-grid
interpolation against uniform calibration over all positions.
Tab. 1 reports the mean absolute residual ∆ between fixed-
grid interpolated values and uniformly-sampled ground truth
(N = 100); across models, ∆ < 0.071. Thus, a grid of
K = 11 positions recovers diagnosticity with minimal bias,
supporting lightweight calibration for full-scale evaluation.

4.4. Cross-dataset Transferability

If position bias is a structural model property (as suggested
by Fig. 3) rather than dataset-specific, diagnosticity pro-
files should transfer across datasets. We test this via cross-
evaluation: applying the diagnosticity profile calibrated

Table 1. Mean absolute residual ∆ (mean±SE) between uniformly-
sampled (N = 100) and fixed-grid interpolated diagnosticity
(K = 11 positions). All values < 0.071 confirm that sparse
grid sampling accurately recovers the full profile.

Dataset Model Mean ∆ Diagnosticity

M
on

oR
el Olmo-3-7B-Think 0.054±0.002

Olmo-3.1-32B-Think 0.051±0.002

Gemma-3-12B-IT 0.027±0.002

Gemma-3-27B-IT 0.008±0.000

PI
R

Olmo-3-7B-Think 0.041±0.002

Olmo-3.1-32B-Think 0.071±0.003

Gemma-3-12B-IT 0.028±0.002

Gemma-3-27B-IT 0.013±0.001

on MonoRel to guide GP on PIR, and vice-versa. As
shown in Fig. 4, GP-BELIEF retains its advantage under
cross-calibration, with only modest degradation relative to
matched calibration. This suggests most gains come from
coarse positional ordering, i.e., with the ranking of positions
being more important than precise TPR/FPR values.
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0.75

1.00

F1
 S

co
re

Eval: PIR Cal: M
onoRel

Eval: MonoRel

0 2 4 6 8
Iteration

0.25

0.50

0.75

1.00

F1
 S

co
re

0 2 4 6 8
Iteration

Cal: PIR

GP-Belief GP-Entropy PSC

Figure 4. Cross-task transferability for Gemma-3-12B (N =
100). Rows indicate calibration source; columns indicate evalua-
tion task. GP-BELIEF maintains its advantage even under cross-
calibration (off-diagonal), with only modest degradation compared
to matched calibration (diagonal). This robustness suggests that
coarse positional ordering, the relative ranking of high- vs. low-
diagnosticity positions, drives most of the gain.

4.5. Controlled Ablations with Simulated Environment

Real LLM experiments confound multiple factors: cali-
bration error, intrinsic model variability, and task-specific
noise. To isolate the conditions under which GP-BELIEF
succeeds, we turn to simulation, where we can precisely con-
trol detector heterogeneity, calibration accuracy, and context
scale independently. We characterize GP-BELIEF’s operat-
ing conditions through simulation (Fig. 5; Top-1 selection,
N = 100, k = 1, 5 000 trials unless noted).
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Figure 5. Ablation studies characterizing GP-BELIEF’s operating conditions (simulation; Top-1 selection, N=100, k=1, 5,000
trials unless noted). (a) Calibration robustness: advantage degrades gracefully as Gaussian noise (σ) is injected into TPR/FPR estimates,
confirming that relative position rankings matter more than precise calibration. (b) Heterogeneity: advantage peaks at moderate Beta
concentration (α ≈ 1) and vanishes as positions become homogeneous (α→∞), since uniform detectors offer no strategic leverage. (c)
Context scaling: advantage grows with N , reaching ∆F1 ≈ 0.5 at N = 500, confirming that strategic placement becomes critical as
random placement increasingly misses high-diagnosticity positions.

Robustness to calibration error (a). We test GP-BELIEF
under miscalibration by adding Gaussian noise (σ ∈ [0, 0.5])
to TPR/FPR estimates (Fig. 5a). Performance degrades
smoothly: even at σ = 0.4, GP-BELIEF retains a clear ad-
vantage over PSC (∆F1 ≈ 0.15–0.25). This indicates the
method relies on relative ranking of positional diagnostici-
ties rather than their precise absolute values.

Heterogeneity (b). GP-BELIEF’s advantage depends on
profile variation. When detector quality is drawn from
BETA(α, α), advantage peaks at moderate concentration
(α ≈ 1) and vanishes as positions become homogeneous
(α → ∞), since uniform detectors are indistinguishable and
therefore offer no opportunity for strategic leverage.

Context scaling (c). The advantage grows with N , reaching
∆F1 ≈ 0.5 at N = 500. As context expands, random
placement rarely assigns relevant documents to diagnostic
positions, amplifying the value of strategic placement.

5. Related Work
Exploiting systematic biases. Systematic biases are typ-
ically viewed as obstacles, but prior work in human–
computer interaction has leveraged cognitive biases to op-
timize interfaces (Gajos & Weld, 2005; Gajos et al., 2008)
and guide user behavior (Cialdini & Cialdini, 2007; Mathur
et al., 2019). In LLMs, predictable regularities enable simi-
lar efficiency gains, as in speculative decoding and early-exit
methods (Leviathan et al., 2023; Schuster et al., 2022; Chen
et al., 2024). In a similar spirit, we leverage position bias as
a diagnostic signal to improve in-context NIAH retrieval.

Position bias in LLMs. Position bias in long-context LLMs
is well-studied (Wang et al., 2023b; Zheng et al., 2023; Liu
et al., 2024, inter alia), with mitigations broadly divided
into white-box and black-box approaches. White-box meth-
ods suppress bias by modifying model internals, includ-

ing alternative positional encodings (Zhang et al., 2024)
and attention manipulations (Peysakhovich & Lerer, 2023;
Hsieh et al., 2024; Wang et al., 2024). Black-box methods
instead treat the model as fixed, such as Permutation Self-
Consistency (PSC) (Tang et al., 2024), which averages pre-
dictions over random permutations. PSC, however, is state-
less and does not exploit information accumulated across
queries. While Liu et al. (2025) explores relevance via inter-
nal model states, we are the first to formalize inference-time
reordering as sequential Bayesian active search, enabling
stateful inference using only API-level outputs.

Active search and iterative retrieval. We frame context re-
ordering as a Bayesian active search problem (Garnett et al.,
2012; Jiang et al., 2017), distinct from conventional active
learning (Settles, 2009; 2011), which prioritizes uncertainty
reduction. Bandit-based methods (Slivkins, 2019) have been
applied to optimize retrieval in RAG systems (Duan et al.,
2025), but these primarily operate at training time. At in-
ference time, GOLD PANNING is most closely related to
iterative reranking methods such as RankGPT (Sun et al.,
2023), but differs fundamentally: rather than prompting the
model to explicitly sort candidates (itself subject to position
bias), we infer relevance from the model’s natural responses
under structured layouts, requiring no instruction tuning.

6. Conclusion
We introduce GOLD PANNING, a Bayesian framework
that exploits position bias as a diagnostic signal for long-
context retrieval. By treating positions as noisy detec-
tors and actively anchoring high-belief documents in high-
diagnosticity positions, signal anchoring consistently outper-
forms uncertainty-based baselines, achieving large query re-
ductions with matched asymptotic accuracy. More broadly,
our results suggest that predictable inference-time biases
can be leveraged as information rather than treated as noise.
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Impact Statement
This paper presents a method for improving the efficiency
of long-context retrieval in large language models. By re-
ducing the number of LLM queries required to identify
relevant documents, GOLD PANNING may lower computa-
tional costs and latency in retrieval-augmented generation
systems, with associated reductions in energy consumption.

Our method exploits position bias, a known limitation of
current LLMs. While we frame this bias as a resource rather
than a flaw, we do not believe this work discourages efforts
to reduce position bias at the model level. We see no direct
ethical concerns specific to this work beyond those inherent
to improving information retrieval systems generally.

References
Byerly, A. and Khashabi, D. Self-consistency falls short!

the adverse effects of positional bias on long-context
problems. 2025. URL https://arxiv.org/abs/
2411.01101.

Chen, Y., Pan, X., Li, Y., Ding, B., and Zhou, J.
EE-LLM: Large-scale training and inference of early-
exit large language models with 3D parallelism. In
Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A.,
Oliver, N., Scarlett, J., and Berkenkamp, F. (eds.), Pro-
ceedings of the 41st International Conference on Ma-
chine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 7163–7189. PMLR, 21–27 Jul
2024. URL https://proceedings.mlr.press/
v235/chen24ae.html.

Cialdini, R. B. and Cialdini, R. B. Influence: The psychology
of persuasion, volume 55. Collins New York, 2007.

Duan, S., Li, X., Liu, Z., Yi, X., Yan, Y., Wang, S., Gu,
Y., Yu, G., and Sun, M. Chunks as arms: Multi-armed
bandit-guided sampling for long-context llm preference
optimization. arXiv preprint arXiv:2508.13993, 2025.

Gajos, K. and Weld, D. S. Preference elicitation for interface
optimization. In Proceedings of the 18th annual ACM
symposium on User interface software and technology,
pp. 173–182, 2005.

Gajos, K. Z., Wobbrock, J. O., and Weld, D. S. Im-
proving the performance of motor-impaired users with
automatically-generated, ability-based interfaces. In Pro-
ceedings of the SIGCHI conference on Human Factors in
Computing Systems, pp. 1257–1266, 2008.

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y.,
Sun, J., Wang, H., and Wang, H. Retrieval-augmented
generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2(1), 2023.

Garnett, R., Krishnamurthy, Y., Xiong, X., Schneider, J.,
and Mann, R. Bayesian optimal active search and survey-
ing. In International conference on machine learning, pp.
843–850. PMLR, 2012.

Hsieh, C.-Y., Chuang, Y.-S., Li, C.-L., Wang, Z., Le, L.,
Kumar, A., Glass, J., Ratner, A., Lee, C.-Y., Krishna, R.,
et al. Found in the middle: Calibrating positional attention
bias improves long context utilization. In Findings of the
Association for Computational Linguistics ACL 2024, pp.
14982–14995, 2024.

Jiang, S., Malkomes, G., Converse, G., Shofner, A., Mose-
ley, B., and Garnett, R. Efficient nonmyopic active
search. In Precup, D. and Teh, Y. W. (eds.), Proceed-
ings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learn-
ing Research, pp. 1714–1723. PMLR, 06–11 Aug 2017.
URL https://proceedings.mlr.press/v70/
jiang17d.html.

Kamalloo, E., Dziri, N., Clarke, C., and Rafiei, D. Evaluat-
ing open-domain question answering in the era of large
language models. In Rogers, A., Boyd-Graber, J., and
Okazaki, N. (eds.), Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 5591–5606, Toronto, Canada,
July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.307. URL https:
//aclanthology.org/2023.acl-long.307/.

Ke, W., Zheng, Y., Li, Y., Xu, H., Nie, D., Wang, P., and He,
Y. Large language models in document intelligence: A
comprehensive survey, recent advances, challenges and
future trends. ACM Transactions on Information Systems,
2025.

Leviathan, Y., Kalman, M., and Matias, Y. Fast in-
ference from transformers via speculative decoding.
In Krause, A., Brunskill, E., Cho, K., Engelhardt,
B., Sabato, S., and Scarlett, J. (eds.), Proceedings of
the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learn-
ing Research, pp. 19274–19286. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/leviathan23a.html.

Levy, M., Jacoby, A., and Goldberg, Y. Same task, more
tokens: the impact of input length on the reasoning perfor-
mance of large language models. In Ku, L.-W., Martins,
A., and Srikumar, V. (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 15339–15353,
Bangkok, Thailand, August 2024. Association for Com-
putational Linguistics. doi: 10.18653/v1/2024.acl-long.
818. URL https://aclanthology.org/2024.
acl-long.818/.

9

https://arxiv.org/abs/2411.01101
https://arxiv.org/abs/2411.01101
https://proceedings.mlr.press/v235/chen24ae.html
https://proceedings.mlr.press/v235/chen24ae.html
https://proceedings.mlr.press/v70/jiang17d.html
https://proceedings.mlr.press/v70/jiang17d.html
https://aclanthology.org/2023.acl-long.307/
https://aclanthology.org/2023.acl-long.307/
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://aclanthology.org/2024.acl-long.818/
https://aclanthology.org/2024.acl-long.818/


GOLD PANNING: Iterative Bayesian Signal Anchoring for Many-Document Needle-in-Haystack Reasoning

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
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A. Proofs
In this section, we provide proofs for the theoretical proper-
ties of GOLD PANNING. We begin by defining the filtration
and the martingale structure of the belief updates.

Setup and notation. Let (Ω,F , P ) be a probabil-
ity space carrying the sequence of document relevance
variables Z and observation sequence O. Let Ft =
σ(O1, . . . , Ot, σ1, . . . , σt+1) be the filtration representing
the information available after round t (including the pol-
icy’s choice for round t + 1). The log-odds for a fixed
document i update as:

λt,i = λt−1,i + ℓσt(i)(Ot,i),

where ℓj(o) is the log-likelihood ratio at position j.

A.1. Proof of Consistency

Proof. Consider a single document i. Assume without
loss of generality that i is relevant (Zi = 1); the case for
Zi = 0 follows by symmetry with negative drift. Let Xt =
ℓσt(i)(Ot,i) denote the update increment at round t. We can
decompose the accumulated log-odds λt,i =

∑t
s=1 Xs into

a drift term and a martingale difference sequence.

Define the expected drift at step s conditioned on the history:

µs = E[Xs | Fs−1, Zi = 1].

By definition of the log-likelihood ratio, this expectation is
the KL divergence:

µs = DKL(PZ=1,σs(i)∥PZ=0,σs(i)).

Let Mt be the centered process:

Mt =

t∑
s=1

(Xs − µs).

Mt is a martingale with respect to Ft because E[Mt −
Mt−1 | Ft−1] = E[Xt − µt | Ft−1] = 0.

As in Thm. 3.1, we assume the drift is bounded, and so
|Xs| ≤ L. Consequently, the martingale increments are
also bounded: |Xs − µs| ≤ 2L. By the Strong Law of
Large Numbers for Martingales, we have:

lim
t→∞

Mt

t
= 0 almost surely.

Now consider the log-odds normalized by time:

λt,i

t
=

1

t

t∑
s=1

µs +
Mt

t
.
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As t → ∞, the second term vanishes. For the first term, the
boundedness guarantees that the average drift is bounded
away from zero:

lim inf
t→∞

1

t

t∑
s=1

µs ≥ µ > 0.

Therefore, lim inft→∞
λt,i

t ≥ µ > 0. This implies
limt→∞ λt,i = +∞ almost surely. Since the belief bt,i =
σ(λt,i) is the sigmoid of the log-odds, bt,i

a.s.−−→ 1, recover-
ing the ground truth Zi = 1.

A.2. Proof of Thm. 3.1 (Sample Complexity)

Proof. We analyze the probability that the log-odds λT,i

fail to reach the threshold Λ by time T ; assume Zi = 1. We
are given that for all t ≤ T , the assigned positions satisfy
µσt(i) ≥ µ. Decomposing the log-odds as before:

λT,i =

T∑
t=1

µt +MT ≥ Tµ+MT .

A failure occurs if λT,i < Λ. This implies:

Tµ+MT < Λ =⇒ MT < Λ− Tµ.

We apply the Azuma-Hoeffding inequality to the martingale
MT . The increments Yt = Xt − µt are bounded within
an interval of size at most 2L (since Xt ∈ [−L,L]). The
inequality states that for any K > 0:

Pr(MT ≤ −K) ≤ exp

(
− K2

2TL2

)
.

Let us choose T large enough such that the expected drift Tµ
exceeds the threshold Λ by a safety margin K. Specifically,
we set the safety margin to be half the total drift:

Let Tµ = 2Λ =⇒ Λ− Tµ = −Λ.

However, we also need to satisfy the confidence requirement
δ′. We set T according to the bound in the proposition:

T =
2Λ

µ
+

8L2

µ2
log

(
1

δ′

)
.

Substituting this T into the failure condition is algebraically
complex, so we verify the bound using the safety margin
approach directly. Let us define the target margin K =
Tµ− Λ. We require Pr(MT < −K) ≤ δ′. Using Azuma-
Hoeffding, it suffices to have:

exp

(
− K2

2TL2

)
≤ δ′ =⇒ K2

2TL2
≥ log(1/δ′)

=⇒ K ≥ L
√
2T log(1/δ′).

Substitute K = Tµ− Λ:

Tµ− Λ ≥ L
√

2T log(1/δ′).

We now check if the proposed T satisfies this inequality.
The proposed T has two terms. Let T1 = 2Λ

µ and T2 =

8L2

µ2 log(1/δ′). So T = T1 + T2. The LHS of the inequality
becomes:

(T1 + T2)µ− Λ = (2Λ + T2µ)− Λ = Λ+ T2µ > T2µ.

The RHS requires us to bound L
√
2(T1 + T2) log(1/δ′).

Notice that for δ′ small enough (or Λ small relative to the
noise), the stochastic term dominates. To strictly prove the
bound holds, we can simply ensure T2µ alone is sufficient
to cover the noise from the entire duration T . Observe
that T2µ = 8L2

µ log(1/δ′). Squaring the LHS requirement
(conservatively using just T2µ):

(T2µ)
2 =

64L4

µ2
(log(1/δ′))2.

Squaring the RHS (substituting T ≈ T2 for the worst case
noise regime):

2T2L
2 log(1/δ′) =

16L4

µ2
(log(1/δ′))2.

Since 64 > 16, the drift from T2 alone is more than suffi-
cient to cover the variance from T2. The addition of T1 adds
more drift (Λ) than variance (since variance grows as

√
T

while drift grows as T ), so the inequality holds comfortably.
Thus, with probability at least 1−δ′, the threshold is crossed
by time T .

We note that the derived bound for T is an upper bound
and is not tight. The constants 2 and 8 are conservative
estimates chosen to simplify the application of the Azuma-
Hoeffding inequality and ensure the safety margin K is
robust against worst-case noise. While a tighter constant
might be achievable through more complex analysis (e.g.,
using exact characteristic functions), the current bound is
sufficient to establish the fundamental logarithmic scaling,
T ∝ logN , required for efficient search.

A.3. Proofs of Information Rate Properties (Section 3.2)

Setup. Recall that µ(1) ≥ µ(2) ≥ · · · ≥ µ(N) denotes
the fixed position drifts sorted in descending order. Let
rankt(i) denote the rank of document i according to the
beliefs bt−1 at the start of round t. The GP-BELIEF policy
assigns the document with rank r to the position with drift
µ(r). Thus, if rankt(i) = r, the drift assigned to document
i is µσt(i) = µ(r).

12
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A.3.1. PROOF OF PROPOSITION 3.3 (EXACT RATE)

Proof. The information rate is defined as the expected drift
assigned to a relevant document i (Zi = 1) conditioned on
the history Ft−1:

RGP-BELIEF(t) = E
[
µσt(i) | Zi = 1,Ft−1

]
.

Since the policy is deterministic given the beliefs (which
are fixed in Ft−1), the only randomness comes from the un-
certainty of the rank itself relative to the ground truth. Con-
ditioning on the specific rank r that the document achieves:

E
[
µσt(i)

]
=

N∑
r=1

E
[
µσt(i) | rankt(i) = r

]
·Pr(rankt(i) = r).

Under GP-BELIEF, the assignment is strictly coupled:
the event {rankt(i) = r} implies that the document
is assigned to the position with drift µ(r). Therefore,
E
[
µσt(i) | rankt(i) = r

]
= µ(r). Substituting this back

into the summation yields the exact rate:

RGP-BELIEF(t) =

N∑
r=1

µ(r)·Pr(rankt(i) = r | Zi = 1,Ft−1).

A.3.2. PROOF OF PROPOSITION 3.5 (RATE ADVANTAGE)

Proof. We seek a lower bound on RGP-BELIEF(t) based on
the Top-m capture probability pt(m). We split the sum-
mation from Proposition 3.3 into two parts: the top m
ranks (where the document is ”captured”) and the remaining
N −m ranks.

RGP-BELIEF(t) =

m∑
r=1

µ(r) Pr(rankt(i) = r)︸ ︷︷ ︸
Term 1

+

N∑
r=m+1

µ(r) Pr(rankt(i) = r)︸ ︷︷ ︸
Term 2

.

Bounding Term 1: The drifts are sorted descending, so for
any rank r ≤ m, we have µ(r) ≥ µ(m).

Term 1 ≥
m∑
r=1

µ(m) Pr(rankt(i) = r)

= µ(m)

m∑
r=1

Pr(rankt(i) = r).

By definition, the sum of probabilities for the top m ranks is
the capture probability pt(m). Thus, Term 1 ≥ µ(m)pt(m).

Bounding Term 2: For any rank r > m, the drift is at least
the minimum drift µ(N).

Term 2 ≥
N∑

r=m+1

µ(N) Pr(rankt(i) = r)

= µ(N)

N∑
r=m+1

Pr(rankt(i) = r).

The sum of probabilities for the remaining ranks is simply
the complement of the capture probability, 1−pt(m). Thus,
Term 2 ≥ µ(N)(1− pt(m)).

Combining: Adding the lower bounds for Term 1 and Term
2 yields the result:

RGP-BELIEF(t) ≥ µ(m)pt(m) + µ(N)(1− pt(m)).

A.4. Proofs of Signal Anchoring Properties (Section 3.3)

A.4.1. PROOF OF PROPOSITION 3.6 (ENTROPY
DEMOTION)

Proof. The binary entropy function H(p) = −p log p −
(1 − p) log(1 − p) is concave and maximized at p = 0.5.
Consider the case where the true positive i has high belief
bt−1,i > 0.5, and there are N − 1 distractors. In sparse
search (k ≪ N ), the vast majority of distractors are true
negatives. However, early in the process, many distractors
will have beliefs near the prior 0.5 (high entropy) simply
due to noise or lack of observation.

Let U = {j ̸= i : H(bt−1,j) > H(bt−1,i)} be the set of
documents with higher entropy than the true positive. GP-
ENTROPY assigns positions by descending order of entropy.
Thus, the rank of document i is |U| + 1. As bt−1,i → 1,
H(bt−1,i) → 0. Since distractor beliefs fluctuate around
0.5 (or decay to 0 slower than the winner rises to 1), the size
of the set |U| approaches N − 1 (all other documents have
more uncertainty than the almost-certain winner).

Consequently, the rank of i approaches N . Under the as-
signment policy, rank N corresponds to the position with
drift µ(N). Thus, AGP-ENTROPY(t) → µ(N).

A.4.2. PROOF OF PROPOSITION 3.7 (BELIEF LOCK-IN)

Proof. Let i be the relevant document (Zi = 1) and let
K = {k : k ̸= i} be the set of irrelevant distractors (Zk =
0). At round τ , we are given that document i achieves the
highest belief rank. In terms of log-odds, this implies that
λτ,i > maxk∈K λτ,k.

Define the “margin” of the relevant document as the gap
between its log-odds and that of its strongest competitor:

∆t = λt,i −max
k∈K

λt,k (4)
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We are given the initial condition ∆τ > 0. We analyze the
evolution of this gap for t > τ conditioned on the event that
i retains rank 1.

1. Drift of the relevant document: Since i holds rank 1,
the GP-BELIEF policy assigns it to the position with
maximal diagnosticity. The expected increment for i is
strictly positive:

E[λt,i − λt−1,i] = µ(1) > 0 (5)

2. Drift of distractors: Any distractor k ∈ K is assigned
to a position j = σt(k). Since Zk = 0, the expected
update is the negative KL divergence between the like-
lihoods (negative drift):

E[λt,k − λt−1,k] = −DKL(PZ=0,j ||PZ=1,j)

≤ 0

Thus, the gap ∆t evolves as a random walk with a strictly
positive expected drift (since the relevant document accumu-
lates positive signal while distractors accumulate negative
or neutral signal).

From the theory of random walks with positive drift, starting
at ∆τ > 0, there exists a strictly positive probability that the
walk never crosses zero (i.e., ∆t > 0 for all t > τ ). On this
event, document i never loses the top rank. Consequently,
it remains permanently assigned to the optimal position,
maintaining the maximal information rate RGP-BELIEF(t) =
µ(1) for all subsequent rounds.

B. Calibration
GOLD PANNING requires position-wise detector parameters
(TPRj ,FPRj) estimated once per model. Here we describe
the calibration procedure and validate that simple fixed-grid
sampling suffices.

Calibration procedure. For each dataset (MonoRel, PIR),
we construct calibration instances to estimate position-wise
detector parameters. Each instance is formed by selecting
one sample as the known-relevant “gold” document and
drawing N − 1 distractors from other samples in the same
dataset. We place the gold at a target position j, fill remain-
ing positions with distractors, and query the model once,
yielding a set of cited document IDs. This induces binary
observations for every document–position pair: a true posi-
tive when the gold is cited, a false positive when a distractor
is cited, and analogous negatives otherwise.

For each position, we repeat this procedure 50 times with dif-
ferent gold documents and distractor sets. We average over
10 independent trials to obtain stable estimates of TPRj

and FPRj . Diagnosticity ddiag(j) = |TPRj − FPRj | is
then computed from these estimates.

Conditional independence assumption. We adopt a
conditional-independence approximation: given the true
labels Z and the assignment σt, citation outcomes are
independent across documents within a round. In prac-
tice, citation events may exhibit within-round dependencies
due to limited citation budgets or answer structure con-
straints. We therefore interpret (TPRj ,FPRj) as position-
wise marginal detection rates under a fixed protocol. Under
this interpretation, within-round dependencies are absorbed
into the calibrated parameters rather than modeled explic-
itly. This approximation is conservative: if citations are
negatively correlated (e.g., due to a citation budget), our
independence assumption overestimates false positive rates,
leading to more cautious belief updates.

C. Asymmetric Document-Position Cases
The main text presents the balanced case where the number
of documents N equals the number of context positions. In
practice, these quantities may differ: retrieval may return
more documents than fit in context, or the context window
may have unused capacity. We describe how to reduce
asymmetric cases to the balanced setting via dummy items.

More documents than positions (Ndoc > Npos). When
the retrieved set exceeds context capacity, we cannot place
all documents in a single query. We introduce Ndoc −Npos
dummy positions with parameters TPR = FPR = 0. Doc-
uments assigned to dummy positions are excluded from the
current query and receive no observation, leaving their be-
liefs unchanged. The greedy matching then operates over
Ndoc documents and Ndoc positions (real + dummy). Under
GP-BELIEF, the lowest-belief documents are assigned to
dummy positions and effectively “wait” until higher-belief
documents are resolved. Under GP-ENTROPY, the lowest-
uncertainty documents wait instead.

This reduction preserves the algorithm’s convergence guar-
antee as long as every document is eventually placed at an
informative real position. In practice, with T rounds and
Npos real positions per round, we can test up to T · Npos
document-position pairs, which suffices for convergence
when T is moderate.

More positions than documents (Npos > Ndoc). When
context capacity exceeds the document set, some positions
remain unfilled. We introduce Npos − Ndoc dummy docu-
ments with fixed belief b = 0 (known irrelevant). These
are assigned to the lowest-diagnosticity positions, ensur-
ing that real documents occupy the most informative slots.
Dummy documents do not participate in belief updates; their
presence simply pads the assignment to achieve a balanced
matching.

Implementation note. In our experiments, we use N =
Ndoc = Npos = 100 throughout, so these reductions are
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Figure 6. Calibrated position profiles across models and tasks (N = 100). Each panel shows TPR (solid), FPR (dashed), and diagnosticity
|TPR− FPR| (dotted) by context position. Gemma-3-12B and OLMo models exhibit pronounced primacy and recency effects, while
Gemma-3-27B shows a flat profile with minimal position bias, explaining why strategic reordering offers no advantage for this model.

not exercised. However, the framework naturally extends
to production settings where retrieval set sizes vary across
queries. The key insight is that dummy items with degener-
ate parameters (TPR = FPR for positions, b = 0 or b = 1
for documents) do not affect the information-theoretic prop-
erties of the algorithm.

D. Profile Stability Across Tasks
§4.4 demonstrated that GOLD PANNING remains effective
under cross-calibration, suggesting that diagnosticity pro-
files are structural properties of the model rather than task-
specific artifacts. Here we quantify this stability directly by
measuring the rank correlation between profiles calibrated
on MonoRel versus PIR.

Table 2. Spearman’s ρ and Kendall’s τ between diagnosticity
profiles calibrated on MonoRel vs. PIR. Red entries are not statisti-
cally significant (p > 0.05); these correspond to degenerate cases
where the model exhibits minimal position bias.

Model ρ τ

OLMo-3-7B-Think 0.595 0.455

OLMo-3.1-32B-Think 0.488 0.315

Gemma-3-12B-IT 0.959 0.842

Gemma-3-27B-IT 0.102 0.112

Tab. 2 reports Spearman’s ρ and Kendall’s τ for each model
at N = 100 positions. Models with exploitable position bias
show strong rank correlations (ρ > 0.49), indicating that
the relative ordering of high- vs. low-diagnosticity positions
is preserved across tasks. This stability explains why cross-
calibration incurs only modest performance degradation

(Fig. 4): the algorithm primarily relies on which positions
are reliable, not their precise TPR/FPR values.
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