THE WORLD Is WORTH How MANY APIs? A THOUGHT EXPERIMENT

Jiefu Ou, Arda Uzunoglu, Benjamin Van Durme, Daniel Khashabi % GENTER FOR LANGUAGE

JOHNS HOPKINS {jou6, auzunogl, vandurme, danielk}@jl?u. edu Il\) ,f AND SPEECH PROCESSING
UNIVERSITY Center for Language and Speech Processing 7/|_

Johns Hopkins University

Cr

&

Introduction Translating Language Instructions to Pythonic Experiment & Evaluation Metrics

Policies and Actions

Research Question: To build a versatile embodied agent that can carry out daily
tasks in the physical world, how many primitive actions (APIs) should such an

We experiment with 3 variants of our pipeline on 1000 sampled wikiHow

‘b oed with. and what do thev look [ike? We jointly induce primitive actions (APIs) and policies (Pythonic programs) via tutorials:
agent be equipped with, and what do they look like" : -] - - . | | | | |
WorldAPI (ours): Top-down Approach 2 fromp?[jung L}l‘M‘:’ ;’;']'thr:ew tshho*: delmon_stratlonst. tTht?w del_rlr_llc\)/lns.tratlo?sbf)rovglie Itn » The Base variant takes in only pairs of (instruction steps, full program) as
0,0« orm.a. [o]g a.ou € nypotnetica envwonmen 0] .e | S. dvallable 0DJeClsS, in-context demonstrations.
primitive actions (APls), as well as how to interact with objects through API calls
wiki Tr'imI and state checking. We create an annotation guideline that defines the seman- - The Base + Use Case version that additionally takes in code snippets of
Chooolate n How toRemove | How to Remave Urine | | s Vol tic formalism of objects and APIs for the hypothetical environment. We annotate APl use cases as demonstrations.
Microwave Bushes Odors and Stains I"' _ _Inguc_:fd Ac’ion Epice_ _ _! Program th f ” t f kH t t _ | d d t t
(o) e chocolate... | 1. Trim away smaller . Soak up any excess acuum nser urnOn in in e ro rams Or a Sma Se O WI I OW u Orla S aS See emons ra |OnS = = . .
L (R i %V = HI tHT ° H Find }: Rrog - The Base + Use Case + Description version that includes API use cases
. Place the chocolate... . Pu Screw Grab
* branches. “ oo ' — T | TASK: @) s # progran in demonstrations and adds descriptions to each instruction step.
n. Allow the chocolate I [Wipe][Scrub][Spray H M x]l _ 2 How to Melt Chocolate in Microwave 16 def robot_program() :
to cool...) | our ach read Cut 3 INSTRUCTIONS: 17 # 1. Chop the chocolate into small pieces with a \ \ .
n Shovelsoil back | In Blotexcesscleaner | - Tm o T =, 4 1. Chop the chocolate ... serrated knife. We evaluate the quality of generated APls with two metrics: For each new
[5 3 ind an rab chocolate . . .
! S | ¢ Fiace the chocolate . b it o API, we quantify its redundancy with a 0 — 0.5 — 1 scale measurement.
"5 O u s+), 7 PROGRAM: ° 20 grab(obj=chocolate_0) We approximate the simulator execution-based evaluation of generated
oy L - 8 # primitive APIs 21 # find and grab knife . .
i« o N > find(obi-knife_0) programs with faithfulness measurement of 0 — 0.5 — 1 scale.
\L l { } 10 # objects 23 grab (obj=knife_0)
Predefined Action Space Instructions Program Program 11 from objects_pool import chocolate_0, knife 0 ... 24 # find cutting board °
: 12 # object-object relation specification 25 find (obj=cutting_board_0) -
[P-'CkUpJ[Open J Br}:ng‘r;o:nilmilk C.Ieon the TurnOn P'lckup 13 faucit_o.recj:eptacles.appeni(sink_O) 26 # chop chocolate until it’s into small pieces Results & AnaIySIS
> [P][Close] i © The Table. microwave. 14 ° 27 while chocolate_0O.material_properties[‘*form’] !=
[TurnOn] [Turnoff] wash the Boil water in a ‘small pieces’:
o) mug. pot. a: Specifying task & instruction steps 28 chop (obj=chocolate_0, tool=knife_0, on=
b: Import existing primitive actions (APIs) and objects cutting_board_0)
: . - c: Specifying object-object relations 29 put_back (obj=knife_0))
PreVIOUS Work. BOttom Up ApproaCh d:Decomposeinstruction Stepinto Sub-steps and 30 # 2. Place the chocolate into a microwave-safe RedundanCw FaltthIneSST APls
Figure 1: Top: WORLDAPIS, the proposed thought experiment that takes a top-down approach. execute sub-step by calling APIs that take objects as bowl. - _Complex |
Starting from daily tasks with sequences of instruction steps in wikiHow, and a seed action space arguments, with state checking and feedbackclooping =1 - | Induction Pipelines | Score -Complex o | Score Ranking | Avg. #
(API pool), we iteratively prompt LLMs to generate agent programs and add the induced (hal- Figure 2: Our in-context demonstrations for decomposing wikiHow tasks into API calls.
UG . . . Full (a) 46.50 38.11 35.32 | 820 1.756 | 2.88
ucinated) APIs in generated programs to the APl pool. Bottom: in contrast, most of the prior +UseCase 4344 36.07 2143 | 810 1732 | 1.94
work in building embodied environments often adopts a bottom-up approach. The simulation and - : - - +UseCase+Desc 47.46 36.59 33.70 84.0 1.439 1.74
collection of instructions and programs are all based on a close set of predefined actions. IndUCIng the ACtlon/POllcy Space In the
HypOtheticaI WOrId Table 1: Human evaluation results on the output of 50 wikiHow tutorials. For redundancy,
“Score” is the full score, and “-Complex”/“-Synonyms” refers to rescoring all the new APIs
S . that are too complicated to be further decomposed/synonyms to existing APIs from 0.5
WOI"dAPl . DEflnlng d HVPOthetlca| World We d | neline for induci fion/ooli £ wiki tutorials via iterat (partially redundant) to 1 (fully use full), respectively. For faithfulness, “Score” is the abso-
€ gevelop a pipeline .Or n .ucmg action/po 'C_y 0 VY' | _OW utorials via fterative lute score, and “Rank” is the preference-based ranking. “Avg. #” of APIs lists the average
few-shot code generation with LLMs. As depicted in Figure 3, at each step of number of new APIs induced per tutorial.
Our goal is to formulate simulations that allow us to approximate the action space induction, a random tutorial is sampled from wikiHow. Given the input tutorial, T
of versatile robots physical world: a prompt is constructed with a system instruction, retrieved programs, and API Sy A > __
1 Collect di 4 realistic instructions | ; use cases that are used as demonstrations to guide LLM generation. The LLMs £ _// -
- LOlICCLAIVETSE and realiStic INSIUCLONS Trom Ohine Tesources process this prompt, after which we verify the syntactic well-formedness of the &
2. Define hypothetical environment and agent that are capable of carrying out generated program. If it passes the verification, we add the full program and the T bt ottt
these instructions extracted API into the pool of demonstrations. This is done iteratively, monoton- Figure 4: Size of API pool vs. # of tutorials. Lines represent different frequency thresholds
ically expanding the pool of APls/programs. At each round, LLM leverages the used to filter the APls.

3. Induce agent programs and action spaces jointly

Most frequent 50 APIs

program examples generated by itself in previous steps, essentially bootstrap-
ping from its prior output.

103 5

add the new APIls and programs to the pool

Logarithmic Frequency

,f";);o‘g‘ra}na;)aar\. o et e S | IRDIN NERNRRRNNN ARRARRRS - e
N RQ It I @2 S XS 2 L@ IR PO O & DK & L Q2 &
Wlkl <:v | Prompt API Manager ori flca tlon Q\‘\&%\?&;\@%\‘f@@g{:g:o&@\cezie;&%%%gi /200@@2&@@;&0;5’00 :Q:E%‘g %\%\\ig:g&. §®§®(§’§ 92\:0\;’209%:::(}@22@’0x%\%%%;ﬁigﬁ@@@@@%@(?
We leverage wikiHow, a prominent web platform with 200K+ professionally cu- = SOTEIEion W Q - ° ST R
1 1) : : : : — API use case pooI API
rated hOW-’[(.) tgtorlals across a diverse set of domglns. We fOIIOV\(prior work to Sl refry Figure 5: Top-50 most frequent APIs in the induced action space, with frequency in log
use the tutorial title as the goal, the paragraph headline as instruction steps, and scale. We use = to mark the APIs with exact/overlapping affordance to the primitive ac-
the paragraph body as additional descriptions. Figure 3: Proposed pipeline that jointly induces new APIs and programs. tions in existing embodied environments (ALFRED and VirtualHome) and use - to mark

APls that are beyond the action space of exiting environments.

