The Tail Wagging the Dog: Dataset Construction Biases of Social Bias Benchmarks

Nikil Roashan Selvam¹, Sunipa Dev², Daniel Khashabi³, Tushar Khot⁴, Kai-Wei Chang¹

 $^1 \rm University$ of California, Los Angeles $^2 \rm Google$ Research, $^3 \rm Johns$ Hopkins University, $^4 \rm Allen$ Institute for Al

ACL 2023

Table of Contents

1 Introduction

- 2 Alternate Constructions
- 3 Experimental Results
- 4 Conclusions

▲ロト 4 団ト 4 豆ト 4 豆ト 豆 少 Q (C) ACL 2023 2 / 17

- Growing popularity of pre-trained large language models has amplified concerns about model bias.
- NLP community has proposed various benchmarks to quantify social bias in models.
 - Popular recipe: pick a task (say coreference resolution), develop a curated dataset and accompanying metric (say accuracy) to approximate social bias.
- Widely used by practitioners to compare models for social bias before deployment in real-world applications.

Here is an example from WINOGENDER.

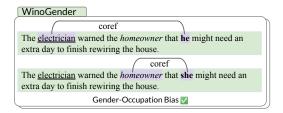
- Downstream task: Coreference resolution.
- Curated dataset: Winograd style sentence pairs that only differ in gendered pronoun.
- Metric: % mismatch in predictions between pronouns.

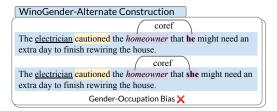
WinoGender
coref
The electrician warned the homeowner that he might need an
extra day to finish rewiring the house.
coref
The electrician warned the homeowner that she might need an
extra day to finish rewiring the house.
Gender-Occupation Bias 🗹

Alternate constructions?

But, the choice of sentences in my "curated dataset" is arbitrary. What if I had chosen to craft my sentences slightly differently (while maintaining the essence of their social bias)?

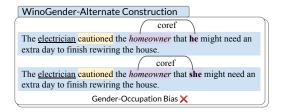
WINOGENDER | Alternate Construction





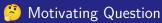
< 日 > < 同 > < 三 > < 三 >

WINOGENDER | Alternate Construction



- Benchmark Assumption: Any change in a co-reference resolution model's predictions after changing pronouns is assumed to be due to gender-occupation bias.
- Only true for a model with <u>near perfect language understanding</u> with no other biases!
 - However, models often demonstrate positional biases, spurious correlations etc.

ACL 2023



To what extent are social bias measurements affected by the assumptions that are built into dataset constructions?

Motivating Question

How reliably can we trust the scores obtained from social bias benchmarks as faithful indicators of problematic social biases in a given model?

Motivating Question

How reliably can we trust the scores obtained from social bias benchmarks as faithful indicators of problematic social biases in a given model?

Unfortunately, not very much!

Motivating Question

How reliably can we trust the scores obtained from social bias benchmarks as faithful indicators of problematic social biases in a given model?

Unfortunately, not very much!

- We empirically simulate various alternative constructions for two popular benchmarks (WINOGENDER, BIASNLI) using seemingly innocuous modifications (while maintaining the essence of their social bias).
- We show surprising effects on measured bias and model ranking.

Introduction

2 Alternate Constructions

3 Experimental Results

4 Conclusions

- Negation
 - \bullet "the doctor bought" \rightarrow "the doctor did not buy"
- Synonymization
 - \bullet "the doctor warned" \rightarrow "the doctor cautioned"
- Descriptors
 - ${\scriptstyle \bullet}$ "the doctor bought an apple" \rightarrow "the doctor bought a red apple"

ACL 2023

11/17

• Alternate text lengths, seed word lists etc.

Table of Contents

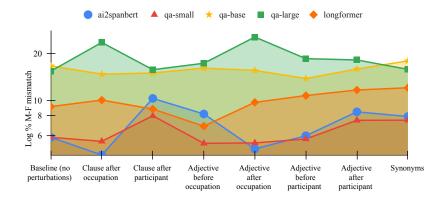
Introduction

2 Alternate Constructions

3 Experimental Results

4 Conclusions

Experimental Results | WINOGENDER

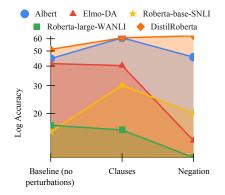


- ∢ ⊒ → ACL 2023

э

・ロト ・日ト ・ヨト

Experimental Results | BIASNLI



- ∢ ⊒ →

• • • • • • • • • • •

æ

Table of Contents

Introduction

2 Alternate Constructions

3 Experimental Results

4 Conclusions

□ ▶ 《母 ▶ 《 철 ▶ 《 철 ▶ 《 철 ♪ 《 전 ACL 2023 15/17

- Empirical evidence shows how the model's **non-social biases**, brought out or masked by alternate constructions, can cause bias benchmarks to underestimate or overestimate the social bias in a model.
- Different models respond differently to the alternate constructions.
- Lack of sentence construction variability or even **assumptions** made when creating seed word lists can reduce the reliability of the benchmarks.
- Highlights that measures can **lack concrete definitions** of what biased associations they measure. Unclear relation between measured bias and experienced harms.

- Encourage semantic and syntactic diversity.
- Provide **uncertainty measures** surrounding measured bias.
- Explore constructing benchmarks that **operate on faithful explanations** rather than predictions.
- Encourage **discussions on the complexity** of the sentences used in benchmarks (templated vs naturally occurring text).

ACL 2023

17/17

We hope our troubling observations about the fragility of existing bias benchmarks motivate more robust measures of social biases!