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Large pretrained language models can solve various types of
tasks by following in-context instructions.

Super-Natural Instructions
We collected a diverse set of 1616 NLP tasks and annotated

their natural language instructions. (see example )

vHow are they collected?
Ø Data was contributed by 88 NLP practitioners from the

community.
Ø Instructions were carefully written by these contributors 

and then reviewed by experts.
Ø Multiple iterations of editing and review were done via

GitHub to ensure quality.

Instructing Example

Tk-Instruct

vWhy is this dataset unique?
Ø Instructions are declarative and informative!
Ø Diversity: 76 broad categories (see comparison )

Instruction tuning of T5 model (11B) on our data enables
better generalization to unseen tasks than GPT3 (175B ).

vEval setup for cross-task generalization
Ø 12 manually picked evaluation categories.
Ø English track: 119 eval tasks, 757 training tasks.
Ø Cross-lingual track: 35 eval tasks, 1271 training tasks.
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vCheck our paper for more ablations!
Ø Definition and in-context examples are complementary.
Ø A large number of training instances are not necessary.

Website

• Input: “Context: … ‘That's fantastic, I'm glad we came to something we both agree 
with.’ Utterance: ‘Me too. I hope you have a wonderful camping trip.’”
•Output: “Yes”
• Explanation: “The participant engages in small talk when wishing their opponent to 

have a wonderful trip.”

• Input: “Context: … ‘Sounds good, I need food the most, what is your most needed 
item?!’ Utterance: ‘My item is food too’.”
•Output: “Yes”
• Explanation: “The utterance only takes the negotiation forward and there is no side 

talk. Hence, the correct answer is ‘No’.” 

Definition
“... Given an utterance and recent dialogue context containing past 3 utterances
(wherever available), output ‘Yes’ if the utterance contains the small-talk strategy,
otherwise output ‘No’. Small-talk is a cooperative negotiation strategy. It is used for
discussing topics apart from the negotiation, to build a rapport with the opponent.”

Task Instruction

• Input: “Context: … ‘I am excited to spend time with everyone 
from camp!’ Utterance: ‘That’s awesome! I really love being out 
here with my son. Do you think you could spare some food?’ ”
• Expected Output: “Yes”

Positive Examples

Negative Examples

Evaluation InstancesTk-Instruct
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Resource → SUP-NATINST
(this work)

NATINST
(Mishra et al., 2022b)

CROSSFIT
(Ye et al., 2021)

PROMPTSOURCE
(Bach et al., 2022)

FLAN
(Wei et al., 2022)

INSTRUCTGPT
(Ouyang et al., 2022)

Has task instructions? 3 3 7 3 3 3
Has negative examples? 3 3 7 7 7 7
Has non-English tasks? 3 7 7 7 3 3
Is public? 3 3 3 3 3 7
Number of tasks 1616 61 269 176 62 –
Number of instructions 1616 61 – 2052 620 14378
Number of annotated tasks types 76 6 13 13⇤ 12 10
Task definition length (words) 56.6 134.4 – 24.8 8.2 –

Table 1: A comparison of SUP-NATINST to a few notable datasets in the field. We obtain the number of tasks,
instructions, and task types of other datasets from their original paper. “–” indicates the fields are not applicable or
unknown. Standards for categorizing task types vary across different datasets (see Fig. 2). * PROMPTSOURCE does
not provide task type annotation for all their tasks, for which we report only the 13 task types annotated for training
T0 (Sanh et al., 2022) instead.
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Figure 2: Compared to other datasets, SUP-NATINST covers a more diverse range of task types. InstructGPT reports
a very coarse categorization of their task types. Bubble size represents the number of tasks of each type in log scale.

benchmarks of a broad range of NLP tasks and their
instructions to facilitate developing and evaluating
models that can generalize to unseen tasks.

In this paper, we construct a meta-dataset (i.e.,
dataset of datasets (Triantafillou et al., 2019)) that
consists of a wide variety of NLP tasks with their
instructions, and train a model that can perform a
new task given instruction, outperforming Instruct-
GPT that uses 16⇥ more parameters.

Our dataset, SUPER-NATURALINSTRUCTIONS
(SUP-NATINST for short), is a large benchmark of
1,616 NLP tasks and their language instructions.
It brings in a diverse variety of tasks—76 broad
task types spanning 55 different languages. Each
task is paired up with an instruction that consists
of the task definition for mapping an input text to a
task output and several examples for demonstrating
the desired or undesired output (see Fig.1 as an ex-
ample task). These tasks and their instructions are

contributed by 88 NLP practitioners, in response
to our public call. These contributions are con-
solidated after several rounds of peer-review and
crowdsourced feedback to ensure quality. Having
this diverse and large-scale data enables us to care-
fully split the tasks into training and test sets, and
systematically study how state-of-the-art methods
perform on them. Table 1 and Figure 2 highlight
properties of SUP-NATINST compared to relevant
benchmarks, emphasizing the diversity of tasks and
instruction types in our benchmark.

Our model, Tk-INSTRUCT, is a generative
model for transforming task input given declarative
in-context instructions (task definition or k-shot
examples). It is built by multi-task training of the
T5 model (Raffel et al., 2020) over all the task in-
structions in our training set, and is evaluated on
unseen tasks in the test set. Interestingly, an 11B-
parameter Tk-INSTRUCT can outperform the 175B-
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Figure 2: Compared to other datasets, SUP-NATINST covers a more diverse range of task types. InstructGPT reports
a very coarse categorization of their task types. Bubble size represents the number of tasks of each type in log scale.

benchmarks of a broad range of NLP tasks and their
instructions to facilitate developing and evaluating
models that can generalize to unseen tasks.

In this paper, we construct a meta-dataset (i.e.,
dataset of datasets (Triantafillou et al., 2019)) that
consists of a wide variety of NLP tasks with their
instructions, and train a model that can perform a
new task given instruction, outperforming Instruct-
GPT that uses 16⇥ more parameters.

Our dataset, SUPER-NATURALINSTRUCTIONS
(SUP-NATINST for short), is a large benchmark of
1,616 NLP tasks and their language instructions.
It brings in a diverse variety of tasks—76 broad
task types spanning 55 different languages. Each
task is paired up with an instruction that consists
of the task definition for mapping an input text to a
task output and several examples for demonstrating
the desired or undesired output (see Fig.1 as an ex-
ample task). These tasks and their instructions are

contributed by 88 NLP practitioners, in response
to our public call. These contributions are con-
solidated after several rounds of peer-review and
crowdsourced feedback to ensure quality. Having
this diverse and large-scale data enables us to care-
fully split the tasks into training and test sets, and
systematically study how state-of-the-art methods
perform on them. Table 1 and Figure 2 highlight
properties of SUP-NATINST compared to relevant
benchmarks, emphasizing the diversity of tasks and
instruction types in our benchmark.

Our model, Tk-INSTRUCT, is a generative
model for transforming task input given declarative
in-context instructions (task definition or k-shot
examples). It is built by multi-task training of the
T5 model (Raffel et al., 2020) over all the task in-
structions in our training set, and is evaluated on
unseen tasks in the test set. Interestingly, an 11B-
parameter Tk-INSTRUCT can outperform the 175B-
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benchmarks of a broad range of NLP tasks and their
instructions to facilitate developing and evaluating
models that can generalize to unseen tasks.

In this paper, we construct a meta-dataset (i.e.,
dataset of datasets (Triantafillou et al., 2019)) that
consists of a wide variety of NLP tasks with their
instructions, and train a model that can perform a
new task given instruction, outperforming Instruct-
GPT that uses 16⇥ more parameters.

Our dataset, SUPER-NATURALINSTRUCTIONS
(SUP-NATINST for short), is a large benchmark of
1,616 NLP tasks and their language instructions.
It brings in a diverse variety of tasks—76 broad
task types spanning 55 different languages. Each
task is paired up with an instruction that consists
of the task definition for mapping an input text to a
task output and several examples for demonstrating
the desired or undesired output (see Fig.1 as an ex-
ample task). These tasks and their instructions are

contributed by 88 NLP practitioners, in response
to our public call. These contributions are con-
solidated after several rounds of peer-review and
crowdsourced feedback to ensure quality. Having
this diverse and large-scale data enables us to care-
fully split the tasks into training and test sets, and
systematically study how state-of-the-art methods
perform on them. Table 1 and Figure 2 highlight
properties of SUP-NATINST compared to relevant
benchmarks, emphasizing the diversity of tasks and
instruction types in our benchmark.

Our model, Tk-INSTRUCT, is a generative
model for transforming task input given declarative
in-context instructions (task definition or k-shot
examples). It is built by multi-task training of the
T5 model (Raffel et al., 2020) over all the task in-
structions in our training set, and is evaluated on
unseen tasks in the test set. Interestingly, an 11B-
parameter Tk-INSTRUCT can outperform the 175B-
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• Input: “Context: … ‘That's fantastic, I'm glad we came to something we both agree 
with.’ Utterance: ‘Me too. I hope you have a wonderful camping trip.’”
•Output: “Yes”
• Explanation: “The participant engages in small talk when wishing their opponent to 

have a wonderful trip.”

• Input: “Context: … ‘Sounds good, I need food the most, what is your most needed 
item?!’ Utterance: ‘My item is food too’.”
•Output: “Yes”
• Explanation: “The utterance only takes the negotiation forward and there is no side 

talk. Hence, the correct answer is ‘No’.” 

Definition
“... Given an utterance and recent dialogue context containing past 3 utterances
(wherever available), output ‘Yes’ if the utterance contains the small-talk strategy,
otherwise output ‘No’. Small-talk is a cooperative negotiation strategy. It is used for
discussing topics apart from the negotiation, to build a rapport with the opponent.”

Task Instruction

• Input: “Context: … ‘I am excited to spend time with everyone 
from camp!’ Utterance: ‘That’s awesome! I really love being out 
here with my son. Do you think you could spare some food?’ ”
• Expected Output: “Yes”

Positive Examples

Negative Examples
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