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Abstract

Question answering (QA) tasks have been
posed using a variety of formats, such as ex-
tractive span selection, multiple choice, etc.
This has led to format-specialized models, and
even to an implicit division in the QA com-
munity. We argue that such boundaries are
artificial and perhaps unnecessary, given the
reasoning abilities we seek to teach are not
governed by the format. As evidence, we
use the latest advances in language modeling
to build a single pre-trained QA model, Uni-
fiedQA, that performs surprisingly well across
17 QA datasets spanning 4 diverse formats.
UnifiedQA performs on par with 9 different
models that were trained on individual datasets
themselves. Even when faced with 12 unseen
datasets of observed formats, UnifiedQA per-
forms surprisingly well, showing strong gener-
alization from its out-of-format training data.
Finally, simply fine-tuning this pre-trained QA
model into specialized models results in a new
state of the art on 6 datasets, establishing Uni-
fiedQA as a strong starting point for building
QA systems.1

1 Introduction

Question answering is a common tool for assessing
how well can computers understand language and
reason with it. To this end, the NLP community
has introduced several distinct QA formats, with
four popular formats illustrated in Figure 1. These
formats differ not only in how the question is pre-
sented but also in some implicit assumptions. For
instance, the assumption that the expected answer
is either “yes” or “no”, or that there is always a
unique answer span in the associated paragraph
(as opposed to multiple or no spans), etc. These
differences have motivated their study in silos, of-
ten encoding QA format and assumptions into the

1https://github.com/allenai/unifiedqa

Extractive [SQuAD] 

 Question: At what speed did the turbine operate? 
 Context: (Nikola_Tesla) On his 50th birthday in 1906, Tesla demonstrated 
 his 200 horsepower (150 kilowatts) 16,000 rpm bladeless turbine. ...  
 Gold answer: 16,000 rpm

Multiple-Choice [ARC-challenge]

Question: What does photosynthesis produce that helps plants grow?            
Candidate Answers: (A) water (B) oxygen (C) protein (D) sugar 
Gold answer: sugar

Yes/No [BoolQ] 

 Question: Was America the first country to have a president? 
 Context: (President) The first usage of the word president to denote the 
 highest official in a government was during the Commonwealth of England ...  
 Gold answer: no

Abstractive [NarrativeQA]

Question: What does a drink from narcissus's spring cause the drinker to do? 
Context: Mercury has awakened Echo, who weeps for Narcissus, and states 
that a drink from Narcissus's spring causes the drinkers to "Grow dotingly
enamored of themselves." ... 
Gold answer: fall in love with themselves 

Figure 1: Four formats (color-coded throughout the
paper) commonly used for posing questions and an-
swering them: Extractive (EX), Abstractive (AB),
Multiple-Choice (MC), and Yes/No (YN). Sample
dataset names are shown in square brackets. We study
generalization and transfer across these formats.

model architecture itself. Efforts to exploit multiple
datasets remain largely restricted to a single format.
For example, Clark et al. (2019c) limit considera-
tion to multiple-choice datasets, while Talmor and
Berant (2019) focus their generalization study on
extractive span prediction models. To the best of
our knowledge, no single QA system targets, not
to mention excels at, all of these formats.

This raises the question: Can QA models learn
linguistic reasoning abilities that generalize across
formats? Our intuition is simple: while question
format and relevant knowledge may vary across
QA datasets, the underlying linguistic understand-
ing and reasoning abilities are largely common. A
multiple-choice model may, therefore, benefit from
training on an extractive answers dataset. Building
upon this intuition, we present a single pre-trained

https://github.com/allenai/unifiedqa


Datasets SQuAD11 SQuAD2 NewsQA Quoref ROPES NQA DROP RACE MCTest OBQA ARC Regents QASC CQA BoolQ NP-BoolQ MultiRC

Format Extractive QA (EX) Abstractive QA (AB) Multiple-choice QA (MC) Yes/NO QA (YN)
Has paragraphs? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Has explicit candidate ans? ✓ ✓ ✓ ✓ ✓ ✓ ✓

# of explicit candidates 4 4 4 4 4 8 5

Para contains ans as substring? ✓ ✓ ✓ ✓

Has idk questions? ✓

Figure 2: Properties of various QA datasets included in this study: 4 extractive (EX), 3 abstractive (AB), 7 multiple-
choice (MC), and 3 yes/no (YN). ‘idk’ denotes ‘I don’t know’ or unanswerable questions. Regents denotes both
4th and 8th grade datasets. BoolQ represents both the original dataset and its contrast-sets extension BoolQ-CS;
similarly for ROPES, Quoref, and DROP.

QA system, named UnifiedQA, that exploits infor-
mation across 4 different QA formats to achieve
surprisingly strong performance across 17 different
datasets listed in Figure 2.

Our work is enabled by recent progress in text-
to-text neural architectures (Raffel et al., 2019;
Lewis et al., 2019; Radford et al., 2019). This
paradigm conceptually unifies many NLP mod-
els that formerly had task-specific designs. While
there have been hopes of—and a few attempts at—
using this paradigm to achieve strong generaliza-
tion and transfer across tasks, success so far has
been limited. Most approaches fine-tuned a dif-
ferent set of parameters for each end task (Raf-
fel et al., 2019; Radford et al., 2019), and when
they have attempted to make a single model for
different NLP tasks (Raffel et al., 2019), they
have underperformed compared to the standard pre-
training plus fine-tuning setup, with a need for ex-
plicit task-specific prefixes.

In contrast, by narrowing the scope to tasks that
stay within the boundaries of QA, we are able
to demonstrate that the text-to-text paradigm can,
in fact, be quite powerful for multi-task learning
across QA formats. We find that out-of-format
training can lead to a single pre-trained QA model
that can be applied as-is to different QA tasks, takes
in natural text inputs without explicitly specifying
a task-specific prefix, generalizes better to other
unseen datasets, and with further fine-tuning can
achieve state-of-the-art results on many QA tasks.

Contributions. This work advocates for a uni-
fied view of different QA formats, and for building
format-agnostic QA systems. To support this view,
we present UnifiedQA, a single pre-trained QA sys-
tem that works well on and generalizes to datasets
with different formats (§6.2), while performing on
par with state-of-the-art dedicated systems tailored
to each dataset (§6.1). Additionally, fine-tuning
UnifiedQA into specialized systems sets a new
state of the art for 6 datasets (§6.3), establishing
it as a powerful starting point for QA research.

Our findings demonstrate that crossing QA format
boundaries is not only qualitatively desirable but
also quantitatively beneficial.

2 Related Work

Several QA efforts have studied generalization
across datasets of a single format. For instance,
in MultiQA, Talmor and Berant (2019) study gen-
eralization and transfer, but only across extractive
span selection datasets. Further, while they show
strong leave-one-out style results, they find a sin-
gle system performs substantially worse than one
tuned to each dataset. In ORB, Dua et al. (2019a)
propose a multi-dataset evaluation benchmark span-
ning extractive and abstractive formats. However,
that study is limited to an evaluation of systems,
falling short of addressing how to build such gen-
eralizable models. Similarly, the MRQA shared
task (Fisch et al., 2019) focuses on span-prediction
datasets. Unlike all these efforts, our goal is to
investigate transfer and generalization across differ-
ent QA formats, as well as to build a single system
that does this well.

Exploiting commonality across machine learn-
ing tasks has a rich history studied under transfer
learning (Caruana, 1997; Clark et al., 2019b). Mc-
Cann et al. (2018) and Keskar et al. (2019) study
transfer among various NLP tasks by casting them
into a single QA format—an elegant transfer learn-
ing approach but orthogonal to the goal of this
work. As noted earlier, Raffel et al. (2019) investi-
gate the transfer between several diverse NLP tasks
(machine translation, summarization, etc). Their
key contribution is a text-to-text framework, and
a powerful model called T5, that makes it easier
to mix multiple tasks by encoding both inputs and
outputs as text. They rely on textual prefixes to ex-
plicitly define the task corresponding to each input
instance. While we build upon their framework, we
narrow our focus to variations of QA. This allows
us to achieve strong results while avoiding reliance
on any format-specific prefixes. Our models learn
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to infer the format of each input question based on
its content (e.g., whether the phrasing of the ques-
tion demands a yes/no answer). Moreover, we are
able to demonstrate generalization across QA tasks,
which prior work failed to achieve presumably due
to its focus on too broad a set of NLP tasks.

3 UnifiedQA: Multi-format Training

Suppose we would like to train a unified QA model
that can operate over k question-answering for-
mats F1, F2, . . . , Fk. For each format Fi, suppose
we have ki datasets sets Di

1, D
i
2, . . . , D

i
ki

where
Di

j = (T i
j , E

i
j) includes both training and evalua-

tion examples. In some cases, the training set T i
j

may be empty or we may want to ignore it in order
to treat Di

j as an ‘unseen’, evaluation-only dataset
and assess a model’s generalization to it.

We use the text-to-text paradigm to convert each
training question q in format Fi into a plain-text
input representation enci(q). This conversion uses
a natural encoding process that will be described
shortly (§3.1) for four common QA formats, and is
easily extensible to other formats as well. We fol-
low a simple possible approach of creating a mixed
training pool consisting of all available training
instances:

T̃ =

k⋃
i=1

ki⋃
j=1

{
enci(q) | q ∈ T i

j

}
Training batches are drawn from this pooled data,
T̃ , by including each q ∈ T i

j with a probability
proportional 1/|T i

j |. Each batch thus, on average,
contains the same number of instances from each
training set, regardless of its size. As we will see
in the experiments section, our multi-format mix-
ing approach works surprisingly well. It clearly
highlights the value of training on out-of-format
data and confirms our intuition that there are strong
ties across QA formats in terms of the underlying
reasoning abilities.2

Our unified question-answering system is based
on the T5 framework (Raffel et al., 2019), a recent
text-to-text transformer model. For all experiments,
we use token-limits of size 512 and 100 for inputs
and outputs sequences, respectively. All models

2A more sophisticated teaching curriculum (Sachan and
Xing, 2016) or approaches such as model distillation and
teacher annealing (Clark et al., 2019b) are likely to further
improve the performance of the resulting unified model, bol-
stering the strength of our advocacy for a unified view of all
QA formats. We leave their exploration to future work.

are trained for 100k steps, on top of the 1M steps
pretraining of the T5 model.

We first define a unifying encoding of the in-
stances across various formats (in §3.1). We then
introduce UnifiedQA (in §3.2) that is a QA system
trained on datasets in multiple formats, indicating
new state-of-the-art results on 7 datasets and gener-
alization to unseen datasets.

3.1 Text-to-Text Encoding

We convert each of our target datasets into a text-
in/text-out format (Raffel et al., 2019; Lewis et al.,
2019; Radford et al., 2019). The question always
comes first, followed by some additional informa-
tion (context paragraph or candidate answers, or
both). We use “\n” separators between different
parts of the input. This ensures having a human-
like encoding while not making it overly-specific
to a certain format.

The unified model explored in this work in-
corporates the following four common question-
answering formats:

Extractive (EX) questions Q include a context
paragraph C (typically a paragraph) and re-
quire models to extract the answer as a sub-
string from the context. In some datasets,
‘unanswerable’ can sometimes be the correct
response.

Abstractive (AB) questions Q require models to
produce answers that are often not mere sub-
strings of the provided context paragraph C.

Multiple-choice (MC) questions Q come with a
set of candidate answers {Ai}, of which gen-
erally exactly one is correct. In some cases,
they also include a context paragraph C.

Yes/No (YN) questions Q expect a ‘yes’ or ‘no’
answer as the response, and may include a
context paragraph C.

Further details of these formats and specific
datasets within them are deferred to Section 4.1.

Table 1 provides examples of the natural input
and output encoding for each of these formats. Im-
portantly, both input and output representations are
raw text. There is no explicit information regarding
a question being an MC question or having exactly
four candidate answers. The expectation is that a
model will learn to infer such notions from the raw
text training data, just like humans are able to do.
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EX

Dataset SQuAD 1.1

Input
At what speed did the turbine operate? \n 
(Nikola_Tesla) On his 50th birthday in 1906, Tesla 
demonstrated his 200 horsepower (150 kilowatts) 
16,000 rpm bladeless turbine. ...

Output 16,000 rpm

AB

Dataset NarrativeQA 

Input

What does a drink from narcissus's spring cause the 
drinker to do?  \n  Mercury has awakened Echo, who 
weeps for Narcissus, and states that a drink from 
Narcissus's spring causes the drinkers to ``Grow 
dotingly enamored of themselves.'' ...

Output fall in love with themselves 

MC

Dataset ARC-challenge 

Input What does photosynthesis produce that helps plants 
grow? \n (A) water (B) oxygen (C) protein (D) sugar 

Output sugar

Dataset MCTest

Input

Who was Billy? \n (A) The skinny kid (B) A teacher 
(C) A little kid (D) The big kid \n Billy was like a 
king on the school yard. A king without a queen. He 
was the biggest kid in our grade, so he made all the 
rules during recess. ...

Output The big kid

YN

Dataset BoolQ 

Input
Was America the first country to have a president?  
\n (President) The first usage of the word president 
to denote the highest official in a government was 
during the Commonwealth of England ...

Output no

Table 1: Example text-to-text encoding of instances.

Specifically, MC questions without any con-
text paragraph are encoded as question \n (A)

c1 (B) c2 . . . where c1, c1, . . . are the set of
candidate answers (see the example from ARC
dataset in Table 1). If the question includes a
context paragraph, it is appended after the candi-
date answers: question \n (A) c1 (B) c2 . . .

\n paragraph, as shown in the example from the
MCTest dataset in Table 1. Questions in the other
three formats (EX, AB, and YN) are encoded sim-
ply as question \n paragraph.

To re-emphasize, unlike prior work (Raffel et al.,
2019), we do not specify any task-, dataset-, or
format-specific prefixes in the input representa-
tion. Whether the answer should be extracted or
abstracted, and whether from the provided context
paragraph or candidate answers (or the fact that
these even are candidate answers) is expected to be
inferred by the system.

3.2 UnifiedQA: The Pre-Trained Model
The specific pre-trained QA model we provide and
use in all our experiments is trained on representa-
tive datasets for each of the 4 formats discussed ear-
lier. We empirically chose the following 9 datasets
for training UnifiedQA, based on their effective-
ness in our pilot study (details deferred to Section 5)
assessing which datasets are most valuable for out-
of-format training:

• EX: SQuAD 1.1, SQuAD 2.0

• AB: NarrativeQA
• MC: RACE, Regents, ARC, OBQA, MCTest
• YN: BoolQ

One can obviously use other combinations of
formats and datsets to create variants of our Uni-
fiedQA model, or extend it as future datasets be-
come available or new formats are introduced.

Unless otherwise noted, we use the largest avail-
able T5 model (11B parameters) as the starting
point for training UnifiedQA. Similar to pre-trained
language models, the resulting pre-trained QA
model can be used as a starting point for fine-tuning
on other QA datasets.

4 Formats and Datasets

4.1 Datasets
We selected 17 existing datasets that target vari-
ous formats, as well as various complex linguistic
phenomena. Table 2 shows different properties
for our datasets (whether it comes with a para-
graph, whether the paragraph explicitly contains
the answer, whether there are candidate-answers as
part of the input, etc.) Most importantly, they are
grouped into several formats/categories described
below. Table 2 gives summary statistics of these
datasets.

Extractive QA (EX). All the datasets in this for-
mat require models to extract the answer to a given
question as a substring from a context paragraph.
SQuAD 1.1 (Rajpurkar et al., 2016) contains ques-
tions about Wikipedia paragraphs. A later ver-
sion of this dataset, SQuAD 2 (Rajpurkar et al.,
2018), includes unanswerable questions which em-
pirically makes the task much harder. For our eval-
uation, we use the development sets of SQuAD
1.1 and SQuAD 2. NewsQA (Trischler et al.,
2017) dataset focuses on paraphrased questions
with predicate-argument structure understanding
collected from news articles from CNN/DailyMail
articles. Quoref (Dasigi et al., 2019) contains
questions that require coreference resolution in
Wikipedia articles and can even have disjoint spans
as answers. ROPES (Lin et al., 2019) centers
around situation understanding, where the model
must under the causes and effects implicit in the
given situation.

Abstractive QA (AB). All the datasets in this
format require models to produce answers that
are often not mere substrings of the given con-
text paragraph. NarrativeQA (Kociský et al., 2018)
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Dataset Train
set size

Eval.
set size

95% CI
(as %) Input

length
Output
length

SQuAD 1.1 87k 10k 1.0 136.2 3.0
SQuAD 2.0 130k 11k 0.9 139.9 2.6
NewsQA 76k 4k 1.6 606.6 4.0
Quoref 22k 2k 2.2 352.7 1.7
Quoref-CS - 700 3.7 324.1 2.2
ROPES 10k 1.4k 2.6 169.1 1.4
ROPES-CS - 974 3.1 182.7 1.3

NQA 65k 21k 0.7 563.6 6.2
DROP 77k 9k 1.0 189.1 1.6
DROP-CS - 947 3.2 206.0 2.1

RACE 87k 4k 1.6 317.9 6.9
OBQA 4k 0.5k 4.4 28.7 3.6
MCTest 1.4k 0.3k 5.8 245.4 4.0
ARC (easy) 2k 2k 2.2 39.4 3.7
ARC (chal.) 1k 1k 3.1 47.4 5.0
Regents 1k 1k 3.1 51.0 4.9
CQA 9.7k 1.2k 2.8 26.8 1.5

BoolQ 9k 3k 1.8 105.1 1.0
BoolQ-CS - 461 4.6 108.9 1.0
NP-BoolQ 10k 3k 1.8 106.2 1.0
MultiRC - 312 5.7 293.3 1.0

Table 2: Dataset Statistics. CQA, OBQA, and NQA
refer to CommonsenseQA, OpenBookQA, and Narra-
tiveQA, respectively. The CI column shows the 95%
confidence interval for the evaluation set as a percent-
age, around a mean score of 50%. Input and output
representation lengths are measured in the number of
tokens and averaged across the dataset.

focuses on understanding various events that hap-
pen in a given movie plot, based on summaries of
their movie adaptations from various web resources.
Many of the answers do not have high overlap with
the context. DROP (Dua et al., 2019b) contains
questions that involve rudimentary mathematical
skills (such as counting, addition, subtraction, max-
imum, minimum, etc.) and questions query mul-
tiple parts of the paragraph. The answer can be
either a number or a date that can be inferred from
the paragraph, or several spans from the context
paragraph.

Multiple-choice QA (MC). All the datasets in
this format contain questions that come with can-
didate answers. MCTest (Richardson et al., 2013)
contains questions about simple, fictional stories.
RACE (Lai et al., 2017) is a challenging set of
English comprehension multiple choice exams
given in Chinese middle and high schools. Open-
BookQA (Mihaylov et al., 2018), ARC (Clark et al.,
2018), Regents Science Exams (Clark et al., 2016),
QASC (Khot et al., 2019) are different MC tests fo-
cusing on elementary/high school-style science ex-
ams. A slightly different dataset within this format

is CommonsenseQA (Talmor et al., 2019) which
is geared towards activity/concept commonsense
questions. Other than MCTest and RACE, the rest
of the datasets do not come with accompanying
paragraphs. On such datasets, occasionally a re-
trieval system is used to supplement each question
with a relevant retrieved context paragraph. For
most of this the work, we keep the questions as
is with no additional retrieval (unless otherwise
mentioned), except in §6.3 where we use IR to get
numbers comparable to earlier work. One other
variability among these datasets is their number of
candidate answers. While many datasets have four
candidates (see Figure 2), others have more. Later,
in §6.2 we will see that our approach generalizes to
datasets with different number of candidates, even
if it’s not seen during training.

Yes/No QA (YN). All the datasets in this for-
mat contain questions that could be responded
with yes/no answers. One can think of these as
multiple-choice questions with 2 candidates; how-
ever, they’re usually treated differently. Several ex-
amples we use are BoolQ (Clark et al., 2019a) and
a version of this dataset with natural-perturbations,
BoolQ-NP (Khashabi et al., 2020), the subset of
MultiRC (Khashabi et al., 2018) that have bi-
nary(yes/no) answers.

Contrast-sets. Additionally, we use contrast-
sets (Gardner et al., 2020) corresponding to several
of our datasets (indicated by “CS” tag): BoolQ-CS,
ROPES-CS, Quoref-CS, DROP-CS. These evalu-
ation sets are expert-generated perturbations that
deviate from the patterns common in the original
dataset.

4.2 Evaluation Metrics for Textual Output
We evaluate each dataset using the metric most
often used for it in prior work. Specifically, for the
EX format, we use the F1 score for the extracted
span relative to the gold label. For the AB format,
we use ROUGE-L metric (Lin et al., 2006; Min
et al., 2019; Nishida et al., 2019). For the MC
format, we match the generated the text with the
closest answer candidate (by token overlap) and
measure how often this is the correct answer. For
the YN format, we follow Clark et al. (2019a) to
measure if the generated output matches the correct
‘yes’ or ‘no’ label. In rare cases where the output
is longer than one word (e.g., ‘yes it is’), we check
if it contains the correct label but not the incorrect
one.
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Trained on ↓ - Evaluated on → SQuAD11 SQuAD2 NewsQA Quoref Quoref-CS

SQuAD11 85.9 42.8 51.7 28.2 28.11
SQuAD11 + X 85.8 42.8 52.1 29.4 29.84

Best X BoolQ OBQA OBQA NQA OBQA

Trained on ↓ - Evaluated on → RACE OBQA ARC-easy ARC-chal Regents-4th Reg-8th MCTest QASC CQA

RACE 55.8 26.6 31.8 28.0 32.3 32.7 62.5 17.9 28.3
RACE + X 59.1 32.2 32.4 28.4 32.7 34.2 69.4 23.5 36.1

Best X SQuAD11 NQA SQuAD11 NewsQA NQA NewsQA SQuAD11 SQuAD11 SQuAD11

Trained on ↓ - Evaluated on → BoolQ MultiRC NP-BoolQ BoolQ-CS

BoolQ 76.36 64.10 51.33 53.37
BoolQ + X 78.93 66.03 59.38 61.00

Best X SQuAD2 OBQA SQuAD2 NQA

Trained on ↓ - Evaluated on → NQA DROP DROP-CS

NQA 51.5 10.2 11.1
NQA + X 53.0 14.4 14.6

Best X SQuAD2 SQuAD2 SQuAD2

Table 3: Pilot study showing that out-of-format training can help improve performance. Each table compares
training on just the anchor dataset (e.g., BoolQ in the top-left table) with training also on an out-of-format dataset
denoted ‘X’. Evaluation is on the anchor dataset as well as unseen datasets of that format. The last row identifies
the out-of-format dataset that helped most on each evaluation dataset. All results are based on the “small” size T5
model. Color denotes QA format (see Table 2).

5 Pilot Study: Can Out-of-Format
Training Help?

We first answer the question: Is the broad idea of
benefiting from out-of-format training even viable?
For instance, is our intuition correct that an MC
dataset can, in practice, benefit from training on
an EX dataset? Before discussing our main exper-
imental results, we briefly report on a pilot study
that assesses the following basic question: Given
a training set T i

1 (the anchor dataset) of QA for-
mat Fi, is there an out-of-format training set T j

1

of format Fj such that training jointly on T i
1 ∪ T j

1

improves performance relative to training only on
T i
1? To this end, we evaluate both on the match-

ing evaluation set Ei
1 as well as on ‘unseen’ data

Ei
2, E

i
3, . . . of the same format.

The results are summarized in Table 3. The two
rows in each individual table correspond to training
on T i

1 (the anchor dataset) and on T i
1 ∪X , where

X is an out-of-format dataset corresponding to T j
1

above. The columns represent various evaluation
sets of format Fi. For each column, ‘X = . . .’ at
the very bottom indicates the out-of-format dataset
X that was the most helpful in improving perfor-
mance on the evaluation set in that column.3

Consider, for example, the case of the anchor
set T i

1 being BoolQ and the evaluation set being
NP-BoolQ, both of format YN. Here, including
out-of-format training data X = SQuAD2 boosts
performance from 51% to as much as 59%. The
gain in other cases is often not this extreme. Never-

3Appendix A.3 reports extended results, including the per-
formance with various choices of X .

theless, across all anchor and evaluation datasets,
we generally observe that there is at least one out-
of-format training set whose inclusion improves
performance.

This pilot study thus provides a proof of concept
that out-of-format training can indeed help a QA
model in nearly every case. Of course, this study
only shows the existence of such an out-of-format
dataset, rather than provide a single unified model.
Nevertheless, it helps identify representative train-
ing sets from each format that were most helpful.
As hinted to earlier, we used this empirical data to
guide which training sets to include when building
UnifiedQA in Section 3.2.

6 Experimental Results

We now discuss our main experimental results, eval-
uating our proposed UnifiedQA system on seen
(used for training the system) and unseen datasets.

6.1 UnifiedQA vs. 9 Dedicated Models

Is UnifiedQA, a single pre-trained multi-format
QA system, as good as dedicated systems trained
for individual datasets? We emphasize that the an-
swer to this question is not as simple as it may
seem, since earlier works have observed that a sys-
tem addressing multiple tasks often underperforms
a focused system (Raffel et al., 2019).

Figure 3 summarizes the results of the relevant
experiment. As it can be observed from the fig-
ure, UnifiedQA performs almost as good as the
best single dataset experts. In some cases Uni-
fiedQA performs even better than than the single-
dataset experts (e.g., on OBQA or NQA.) On av-
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Seen dataset? Model ↓ - Evaluated on → NewsQA Quoref Quoref-CS ROPES ROPES-CS DROP DROP-CS QASC Common
senseQA NP-BoolQ BoolQ-CS MultiRC Avg

No

UnifiedQA [EX] 58.7 64.7 53.3 43.4 29.4 24.6 24.2 55.3 62.8 20.6 12.8 7.2 38.1
UnifiedQA [AB] 58.0 68.2 57.6 48.1 41.7 30.7 36.8 54.1 59.0 27.2 39.9 28.4 45.8
UnifiedQA [MC] 48.5 67.9 58.0 61.0 44.4 28.9 37.2 67.9 75.9 2.6 5.7 9.7 42.3
UnifiedQA [YN] 0.6 1.7 1.4 0.0 0.7 0.4 0.1 14.8 20.8 79.1 78.6 91.7 24.2

UnifiedQA 58.9 63.5 55.3 67.0 45.5 32.5 40.1 68.5 76.2 81.3 80.4 59.9 60.7

Yes Previous best
66.8 86.1 55.4 61.1 32.5 89.1 54.2 85.2 79.1 78.4 71.1 --

Retro Reader TASE XLNet ROBERTa RoBERTa ALBERT MTMSN KF+SIR+2StepFreeLB-RoBERTa RoBERTa RoBERTa --

Table 4: Generalization to unseen datasets: Multi-format training (UnifiedQA) often outperforms models trained
the same way but solely on other in-format datasets (e.g., UnifiedQA[EX], which is trained on all extractive training
sets of UnifiedQA. When averaged across all evaluation datasets (last column), UnifiedQA shows strong general-
ization performance across all formats. Notably, the “Previous best” models (last row) were trained on the target
dataset’s training data, but are even then outperformed by UnifiedQA (which has never seen these datasets during
training) on the YN tasks.
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Figure 3: UnifiedQA is on-par with, and often outper-
forms, 11 different equally-sized T5-based systems tai-
lored to individual datasets. The figure contains sepa-
rate models for each of the two subsets of the ARC and
Regents datasets.

erage (last column) UnifiedQA is doing much bet-
ter dataset/format-specific systems. In conclusion,
UnifiedQA offers flexibility across multiple QA
formats while compromising almost nothing com-
pared to dataset-specific experts.

6.2 Generalization to Unseen Datasets

The question we want to explore here is whether
UnifiedQA generalizes well to other unseen
datasets. Table 4 summarizes the results of experi-
ments during which we evaluate various models on
datasets that are not used to train them.

The first few rows of the table shows T5 models
trained for individual datasets, followed by Uni-
fiedQA. For completeness, we include the high-
est previous scores for each dataset; one must
be careful when reading these numbers as the
best previous numbers follow the fully super-
vised protocol (for NewsQA (Zhang et al., 2020),
Quoref (Dasigi et al., 2019), DROP (Dua et al.,
2019b), ROPES (Lin et al., 2019), QASC (Khot
et al., 2019), CommonsenseQA (Zhu et al., 2020)
and x-CS datasets (Gardner et al., 2020).)

The key observations are: (1) On average (last
column), UnifiedQA shows a much stronger gen-
eralization across a wide range of datasets. (2) on
5 (out of 12) datasets UnifiedQA shows a better
generalization than any single-dataset experts. For
example, while the system is trained on multiple-
choice questions with 4 candidate answers, it does
work pretty well on datasets with more than 4
candidate answers (QASC and CommonsenseQA
have has 8 and 5 candidate ansers per question,
respectively). (3) single-dataset experts are better
at generalization only when the source and target
datasets are pretty similar (for instance SQuAD and
Quoref).

6.3 State-of-the-art via Simple Fine-tuning

Fine-tuning of pre-trained language models has
become the standard paradigm for building dataset-
specific stat-of-art systems (Devlin et al., 2019;
Liu et al., 2019). The question we address here
is whether there a value in using UnifiedQA as
a starting point for fine-tuning, as opposed to a
vanilla language model that has not seen other QA
datasets before?

To address question, we fine-tune both Uni-
fiedQA and T5 on several datasets. Table 5 sum-
marizes the results of the experiments. The two last
rows of the table show the performance UnifiedQA
and T5, both fine-tuned for the target task. The
fine-tuning process involves selection of the best
checkpoint on the dev set and evaluation on the test
set.

The columns indicate the evaluation on the test
set corresponding to the data that was used for train-
ing. For several multiple-choice datasets that do not
come with evidence with paragraphs, we include
two variants: use them as is and another variant
which uses paragraphs fetched via an Information
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Model ↓ - Eval. → RACE* OBQA* OBQA 
(w/ IR) ARC-easy* ARC-easy 

(w/ IR) ARC-chal* ARC-chal 
(w/ IR) QASC QASC 

(w/ IR)
Common
senseQA

Previous best
ALBERT RoBERTa KF+SIR RoBERTa FreeLB- 

RoBERTa RoBERTa FreeLB- 
RoBERTa -- KF+SIR 

+2Step
FreeLB- 

RoBERTa

89.5 75.7 80.0 69.9 80.0 55.9 67.8 -- 85.2 72.2

T5 (fine-tuned) 87.1 84.2 84.2 83.8 90.0 65.4 69.7 77.0 88.5 78.1

UnifiedQA 87.3 86.0 71.2 85.7 89.2 75.6 74.7 68.5 80.1 76.2
UnifiedQA (fine-tuned) 89.4 86.0 87.2 86.4 92.0 75.0 78.5 78.5 89.6 79.1

Table 5: Simply fine-tuning UnifiedQA (last row) results in new state-of-the-art performance on 6 datasets. Further,
it consistently improves upon fine-tuned T5 (2nd last row) by a margin ranging from 1% for CommonsenseQA
(CQA) to as much as 13% for ARC-challenge. ‘(w/ IR)’ denotes relevant information is retrieved and appended as
context sentences in the input encoding. Datasets marked with * are used in UnifiedQA’s original training.

Model ↓ - Evaluated on → SQuAD11 SQuAD2 NQA RACE OBQA ARC-easy ARC-hard Regents MCTest BoolQ Avg Δ
UnifiedQA 93.4 89.6 65.2 87.3 86.0 85.7 75.6 86.3 95.0 90.2 85.4

 excluding BoolQ 93.1 90.1 65.0 87.7 85.0 86.1 75.2 85.0 94.7 8.3 77.0 -8.4
 excluding SQuAD 2 95.3 47.3 65.4 87.7 84.8 85.9 75.5 84.8 95.3 90.5 81.3 -4.2
 excluding OBQA 93.6 89.3 65.2 87.4 77.8 85.7 74.0 83.8 94.7 90.1 84.2 -1.3
 excluding NQA 93.6 89.8 52.5 87.7 85.6 86.3 75.9 85.2 95.6 89.9 84.2 -1.2
 excluding RACE 93.9 89.0 65.0 78.5 85.2 85.6 74.7 84.6 95.9 90.1 84.3 -1.2
 excluding ARC-easy 93.4 89.8 65.0 87.0 83.8 84.0 75.9 85.0 94.7 89.9 84.9 -0.6
 excluding ARC-hard 93.6 90.1 64.9 87.3 85.2 85.1 73.8 84.4 95.6 90.5 85.1 -0.4
 excluding Regents 93.4 89.9 64.8 87.1 84.0 86.2 74.5 86.0 95.3 90.6 85.2 -0.3
 excluding MCTest 92.8 90.6 65.0 87.1 84.6 85.6 75.4 85.0 95.6 90.2 85.2 -0.2
 excluding SQuAD 1.1 92.6 90.3 65.3 87.4 85.8 86.5 75.9 85.8 95.3 90.7 85.6 0.1

Table 6: The results of a leave-one-out ablation. The first row indicates the performance of UnifiedQA on each
dataset it was trained on. The rest of the rows exclude one dataset at a time. The rows are sorted based the last
column: the dataset with biggest contribution appear first. The red highlights indicate the top 3 performance drops
at each column.

Retrieval (IR) system as additional evidence, indi-
cated with “w/ IR” tags. We use the same IR sen-
tences as used by the baselines on these datasets:
Aristo corpus for ARC and OBQA datasets (Clark
et al., 2019c), and 2-step IR for QASC (Khot et al.,
2019).

Additionally, we show the best published scores
on each dataset: ALBERT (Lan et al., 2019) (on
RACE), RoBERTa (Clark et al., 2019c) (on OBQA
and ARC), KF+SIR (Banerjee and Baral, 2020) (on
OBQA and QASC), FreeLB+RoBERTa (Zhu et al.,
2020) (on ARC-easy and CommonsenseQA).

As it can be seen, fine-tuning on UnifiedQA
consistently dominates fine-tuning on T5, as well as
the best previous scores on each dataset. Intuitively,
since UnifiedQA has seen different formats should
be positioned to achieve higher scores after a bit of
fine-tuning, comparing to fine-tuning on a vanilla
T5. This could be especially effective when a user
has limited training data for a target QA task.

6.4 Ablation: Training Set Contributions

In this experiment we would like to better under-
stand the contribution of each dataset to UnifiedQA
through a leave-one-out experiment.

We take the system from §3.2 and evaluate the

model when individual models are dropped from
the union. The result of this experiment is sum-
marized in Table 6 compares the performance of
UnifiedQA all the default datasets (the first row)
followed with ablated versions which exclude one
dataset at a time. The rows are sorted based the
last column: the dataset with biggest contribution
appear first.

The top-few datasets have the highest contribu-
tions: BoolQ, SQuAD 2.0, OBQA, NQA are the
top four contributing datasets, each with different
format. SQuAD 1.1 has the least importance in the
union, since its mostly covered by SQuAD 2.0.

The conclusion here is that to build an effec-
tive variant of UnifiedQA, one can just use a rela-
tively small number of datasets, so long as that it is
trained on representative members of each format.

7 Conclusion

The question-answering community has fruitfully
explored the design of strong models, but while
staying within the boundaries of individual QA for-
mats. We argued that such boundaries are artificial
and can even limit the performance of systems, be-
cause the desired reasoning abilities being taught
and probed are not tied to specific formats. Train-
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ing data in one format should, in principle, help
QA systems perform better even on questions in
another format.

With this intuition in mind, we presented Uni-
fiedQA, a single pre-trained QA system based
on the T5 text-to-text language model, seeking to
bring unification across four common QA formats.
We showed that even with its simple multi-format
training methodology, UnifiedQA achieves perfor-
mance on par with nearly a dozen dataset-specific
expert models (§6.1), while also generalizing well
to many unseen datasets (of seen formats) (§6.2).
At the same time, we demonstrated that UnifiedQA
is a strong starting point for building QA systems:
it can achieve state-of-the-art performance by sim-
ply fine-tuning on target datasets (6.3).

We hope this effort will inspire a future line of
work in the QA and NLP communities, moving
towards more general and broader system designs.
We leave extensions of UnifiedQA to other formats
such as to direct-answer questions (Kwiatkowski
et al., 2019) as a promising avenue for future work.
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A Appendices

A.1 UnifiedQA: Different Sizes

For completeness we’re also showing the scores of UnifiedQA of different sizes on each dataset. For
these systems each row is a single system.
Trained on ↓ - Evaluated on → SQuAD11 SQuAD2 NewsQA Quoref Quoref-CS ROPES ROPES-CS NQA DROP DROP-CS BoolQ MultiRC NP-BoolQ BoolQ-CS

Small 79.4 67.6 51.1 25.6 27.6 31.0 32.9 53.7 14.6 17.2 77.1 46.9 59.4 58.1
Base 88.2 78.1 54.2 40.0 38.5 33.9 28.4 58.7 19.7 23.7 82.5 64.8 66.3 61.9
Large 91.1 85.9 48.5 45.5 42.1 47.7 37.9 60.8 24.6 30.7 86.1 54.2 72.6 73.0

3B 93.2 87.4 59.6 60.4 54.7 48.7 43.1 63.3 28.5 33.9 89.3 62.6 78.4 77.0
11B 93.4 89.6 58.9 63.5 55.3 67.0 45.6 65.2 32.5 40.9 90.2 59.9 81.3 80.4

Trained on ↓ - Evaluated on → RACE OBQA OBQA ARC-easy ARC-easy 
(w/ IR) ARC-chal ARC-hard 

(w/ IR) Reg-4th Reg-8th MCTest QASC QASC 
(w/ IR) CQA

Small 56.0 50.4 35.4 42.9 59.5 35.9 35.8 42.1 43.4 80.0 19.1 37.9 32.8
Base 70.3 59.0 38.4 53.0 69.4 42.4 44.2 55.4 48.9 86.9 25.8 50.8 45.0
Large 78.1 68.4 54.6 65.9 77.4 54.4 54.8 67.5 61.7 90.0 43.3 62.6 60.9

3B 83.2 80.8 63.2 78.7 86.2 66.7 64.8 83.8 74.1 95.0 62.2 76.6 71.3
11B 87.3 86.0 71.2 85.7 89.2 75.6 74.7 88.9 84.2 95.0 68.5 80.1 76.2

Table 7: UnifiedQA of different sizes on our datasets.

A.2 Comparison with the Dedicated Models: extended results

Here we summarize an extension of the results in §6.1. Table 8 summarizes the results of the relevant
experiment. In the top portion of the table we have evaluations of T5 model fine-tuned for individual
datasets, followed by UnifiedQA. As it can be observed from the table, UnifiedQA performs almost as
good as the best single dataset experts. In some cases UnifiedQA performs even better than than the
single-dataset experts (e.g., on OBQA or NQA.) On average (last column) UnifiedQA is doing much
better dataset/format-specific systems. In conclusion, UnifiedQA offers flexibility across multiple QA
formats while compromising almost nothing compared to dataset-specific experts.

Trained on ↓ - Evaluated on → SQuAD11 SQuAD2 RACE OBQA ARC-easy ARC-chal Reg-4th Reg-8th MCTest BoolQ NQA Avg
T5 (SQuAD 11) 95.2 47.4 44.1 47.4 60.4 44.1 63.5 55.8 77.8 1.2 57.8 54.1
T5 (SQuAD 2) 91.2 91.3 32.6 31.4 50.3 36.0 55.4 48.7 62.5 11.5 50.7 51.0

T5 (RACE) 87.4 42.7 86.6 59.4 77.1 63.1 79.0 71.9 95.6 6.7 53.9 65.8
T5 (OBQA) 44.5 22.0 64.9 85.0 75.3 65.7 80.4 72.3 89.7 0.2 18.3 56.2

T5 (ARC-easy) 49.0 24.3 67.5 70.0 83.5 65.0 83.0 75.7 90.6 0.2 27.9 57.9
T5 (ARC-chal) 53.7 26.4 64.6 67.2 76.4 66.5 79.0 71.7 92.8 0.2 28.6 57.0
T5 (Reg-4th) 57.0 28.1 64.5 60.8 76.9 59.7 79.9 69.5 91.3 0.2 31.4 56.3
T5 (Reg-8th) 53.3 26.2 64.9 61.2 78.8 58.5 79.2 71.6 90.6 0.2 29.4 55.8
T5 (MCTest) 78.8 38.6 69.3 42.4 66.5 49.2 66.6 59.6 95.3 0.5 39.0 55.1
T5 (BoolQ) 6.3 3.6 21.6 28.0 25.4 22.5 27.1 25.8 23.1 90.5 0.3 24.9
T5 (NQA) 90.5 44.8 47.8 38.0 58.2 43.8 58.5 54.5 80.3 46.8 65.2 57.1

UnifiedQA 93.4 89.6 87.3 86.0 85.7 75.6 88.9 84.2 95.0 90.2 65.2 85.6

Table 8: UnifiedQA is on-par with systems tailored to individual datasets (the diagonal cells vs the last row) while
functioning across a wide range of datasets (the last column).

A.3 Pairwise Mixing: extended results

Here we summarize an extension of the results in §5. The question addressed here is whether there is
value in mixing datasets with different formats. We evaluated this by adding one dataset of a different
format to four different datasets (one for each format). The results are summarized in Table 9. The goal
of each sub-table is to measure the within-format generalization one can gain via out-of-format training.
Each sub-table has an anchor dataset, indicated in the first column. For example in the first table the
anchor dataset is SQuAD. Rows of the table: Each table combines datasets of other formats with the
anchor dataset (e.g., SQuAD + RACE, etc). The columns of the sub-tables contain evaluations on the
dataset with the same format as the anchor dataset. For example, on the first table, the evaluation is done
on SQuAD 1.1/2.0, NewsQA, Quoref which have the same format as SQuaD 1.1, the anchor dataset.
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The results show that one can achieve gains for question-answering in a certain format by incorporating
resources in other formats. In the first two sub-tables, we see that NQA (AB) and OBQA (MC) help a
SQuAD models generalize better to other EX datasets. In the third table where the anchor dataset is NQA
(AB), EX datasets help a NQA model generalize better to other AB datasets. In the 4th/5th subtable, EX
and AB datasets help a RACE/OBQA (MC) models generalize better to other MC datasets. Similarly, in
the final sub-table, MC dataset helps improve the scores on a YN datasets.

Anchor 
Dataset / 
Format

Trained on ↓ - Evaluated on → SQuAD11 SQuAD2 NewsQA Quoref Quoref-CS Avg

SQuAD11

SQuAD11 85.9 42.8 51.7 28.2 28.11 47.4
SQuAD11 + RACE 85.6 42.6 51.7 26.6 27.43 46.8
SQuAD11 + OBQA 85.7 42.8 52.1 27.7 29.84 47.6
SQuAD11 + BoolQ 85.8 42.7 52.1 27.7 29.42 47.5
SQuAD11 + NQA 85.6 42.7 51.3 29.4 26.56 47.1

SQuAD2

SQuAD2 76.5 70.7 46.0 17.7 22.04 46.6
SQuAD2 + RACE 76.5 70.6 47.9 18.6 20.40 46.8
SQuAD2 + OBQA 76.7 70.8 48.4 16.9 19.80 46.5
SQuAD2 + BoolQ 75.9 72.0 45.4 16.3 20.35 46.0
SQuAD2 + NQA 72.5 70.9 47.3 20.0 23.39 46.8

Anchor 
Dataset / 
Format

Trained on ↓ - Evaluated on → NQA DROP DROP-CS ROPES ROPES-CS Avg

NQA

NQA 51.5 10.2 11.1 22.8 15.3 22.2
NQA + SQuAD11 52.7 14.1 14.6 30.5 33.2 29.0
NQA + SQuAD2 53.0 14.4 14.6 31.3 33.2 29.3
NQA + NewsQA 52.5 10.4 12.3 16.6 15.6 21.5
NQA + RACE 52.0 10.7 13.5 20.0 17.9 22.8
NQA + OBQA 51.8 10.1 11.3 15.4 17.0 21.1
NQA + BoolQ 51.8 10.2 10.9 20.7 10.9 20.9

Anchor 
Dataset / 
Format

Trained on ↓ - Evaluated on → RACE OBQA ARC-easy ARC-hard Regents-4th Reg-8th MCTest QASC Commonse
nseQA Avg

RACE

RACE 55.8 26.6 31.8 28.0 32.3 32.7 62.5 17.9 28.3 35.1
RACE + SQuAD11 59.1 28.0 32.4 28.1 30.8 33.9 69.4 23.5 36.1 37.9
RACE + NewsQA 57.5 28.0 31.6 28.4 30.3 34.2 65.0 19.9 32.1 36.3

RACE + BoolQ 57.4 26.8 31.8 27.9 31.9 33.7 63.1 18.0 29.6 35.6
RACE + NQ 55.7 32.2 30.6 28.4 32.7 31.5 60.9 17.9 28.1 35.3

OBQA

OBQA 28.8 51.8 26.1 34.8 29.2 failed 33.1 6.9 17.3 28.5
OBQA + SQuAD11 29.6 51.6 27.2 33.3 30.8 26.2 46.3 9.5 23.3 30.9
OBQA + SQuAD2 29.5 53.2 27.2 33.5 31.7 26.1 46.6 9.3 23.1 31.1
OBQA + NewsQA 30.7 49.4 26.1 32.3 30.4 26.8 37.8 8.9 22.9 29.5

OBQA + BoolQ 25.0 50.4 26.0 34.3 28.0 25.2 27.2 7.1 18.3 26.8
OBQA + NQA 29.7 52.8 25.6 33.0 28.6 23.4 49.1 8.9 19.1 30.0

Anchor 
Dataset / 
Format

Trained on ↓ - Evaluated on → BoolQ MultiRC NP-BoolQ BoolQ-CS Avg

BoolQ

BoolQ 76.36 64.10 51.33 53.37 61.3
BoolQ + SQuAD11 78.41 51.28 54.33 58.36 60.6
BoolQ + SQuAD2 78.93 56.89 59.38 58.06 63.3
BoolQ + NewsQA 77.61 54.17 55.46 59.82 61.8
BoolQ + RACE 75.69 61.22 54.59 56.89 62.1
BoolQ + OBQA 76.42 66.03 52.03 57.77 63.1
BoolQ + NQA 78.90 59.02 55.33 61.00 63.6

Table 9: Pairwise mixing of formats: mixing with QA of datasets with different formats helps.
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