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Abstract

Temporal common sense (e.g., duration and
frequency of events) is crucial for understand-
ing natural language. However, its acquisi-
tion is challenging, partly because such in-
formation is often not expressed explicitly in
text, and human annotation on such concepts
is costly. This work proposes a novel se-
quence modeling approach that exploits ex-
plicit and implicit mentions of temporal com-
mon sense, extracted from a large corpus, to
build TACOLM,1 a temporal common sense
language model. Our method is shown
to give quality predictions of various dimen-
sions of temporal common sense (on UDST
and a newly collected dataset from Real-
News). It also produces representations of
events for relevant tasks such as duration com-
parison, parent-child relations, event corefer-
ence and temporal QA (on TimeBank, HiEVE
and MCTACO) that are better than using the
standard BERT. Thus, it will be an important
component of temporal NLP.

1 Introduction

Time is crucial when describing the evolving world.
It is thus important to understand time as expressed
in natural language text. Indeed, many natural lan-
guage understanding (NLU) applications, includ-
ing information retrieval, summarization, causal
inference, and QA (UzZaman et al., 2013; Cham-
bers et al., 2014; Llorens et al., 2015; Bethard et al.,
2016; Leeuwenberg and Moens, 2017; Ning et al.,
2018b), rely on understanding time.

However, understanding time in natural lan-
guage text heavily relies on common sense infer-
ence. Such inference is challenging since common-
sense information is rarely made explicit in text
(e.g., how long does it take to open a door?) Even
when such information is mentioned, it is often

1https://cogcomp.seas.upenn.edu/page/
publication_view/904
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Figure 1: Our model’s predicted distributions of event
duration and frequency. The model is able to attend
to contextual information and thus produce reasonable
estimates.

affected by another type of reporting bias: people
rarely say the obvious, in order to communicate
more efficiently, but sometimes highlight rarities
(Schubert, 2002; Van Durme, 2009; Gordon and
Van Durme, 2013; Zhang et al., 2017; Bauer et al.,
2018; Tandon et al., 2018).

This is an even more pronounced phenomenon
when it comes to temporal common sense (TCS)
(Zhou et al., 2019). In Example 1, human read-
ers know that a typical vacation is likely to last at
least a few days, and they would choose “will not”
to fill in the blank for the first sentence; instead,
with a slight change of context “vacation”→ “walk
outside,” people typically prefer “will” for the sec-
ond one. Similarly, any system which correctly
answers this example for the right reason would
need to incorporate TCS in its reasoning.

Example 1: choosing from “will” or “will not”
Dr. Porter is now (e1:taking) a vacation and be able
to see you soon.
Dr. Porter is now (e2:taking) a walk outside and be
able to see you soon.

Acquiring the multiple dimensions of TCS (e.g.,
duration and frequency) is challenging. As shown

https://cogcomp.seas.upenn.edu/page/publication_view/904
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in Example 1, the duration of “taking a vacation”
and “taking a walk” are not expressed explicitly, so
that systems are required to read between the lines
to support the inference. A pre-trained language
model may not handle this issue well, as it cannot
identify the TCS dimensions in temporal mentions
and effectively learn from them. As a result, it
cannot generalize well to similar events without ex-
plicit temporal mentions. To handle this problem,
we design syntactic rules that can collect a vast
amount of explicit mentions of TCS from unanno-
tated corpus such as Gigaword (Graff et al., 2003)
(§3.3). We use this data to pre-train our model so
that it distinguishes different dimensions.

A second challenge occurs when the text is high-
lighting rare and special cases. As a result, tempo-
ral mentions in natural text may follow a distorted
distribution in which certain kinds of “common”
events are under-represented. For instance, we may
rarely see mentions of “I opened the door in 3 sec-
onds,” but we may see “it took me an hour to open
this door” in text. To overcome this challenge, we
exploit the joint relationship among temporal di-
mensions. Although we rarely observe the true
duration of “opening the door” in free-form text,
we may see phrases like “I opened my door during
the fire alarm,” providing an upper-bound to the
duration of the event (i.e., “opening the door” does
not take longer than the alarm.) We believe that
we are the first to exploit such phenomena among
temporal dimensions.

This paper studies several important dimensions
of TCS inference: duration (how long an event
takes), frequency (how often an event occurs) and
typical time (when an event typically happens).2

As a highlight, Fig. 1 shows the distributions (over
time units) we predict for the duration and fre-
quency of three events. We can see that “taking a
vacation” lasts from days to months while “taking
a walk” lasts from minutes to hours. As shown,
our model is able to produce different and sensible
distributions for the “take” event, depending on the
context in which “take” occurs.

Our work builds upon pre-trained contextual lan-
guage models (Peters et al., 2018; Devlin et al.,
2019; Liu et al., 2019). However, a standard lan-
guage modeling objective does not lead to a model
that handles the two challenges mentioned above;
in addition, other systematic issues limit its ability
to handle TCS. In particular, language models do

2E.g., typical time in a day (the morning), typical day of a
week (on Sunday), and typical time of a year (summer).

not directly utilize the ordinal relationships among
temporal units. For example, “hours” is longer
than “minutes,” and “minutes” are longer than “sec-
onds.”3 Fig. 2 shows that BERT does not produce a
meaningful duration distribution for a set of events
with a gold duration of “day” (extracted in §3.3).
Our proposed system, on the other hand, is able to
utilize the ordinal relationships and produce uni-
modal distributions around the correct labels in
both Fig. 1 and Fig. 2 .
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Figure 2: The predictive distribution of two models
(ours and vanilla BERT) for a set of events labeled with
“days” as their duration. Experiments show our model
is about 40% better on duration predictions. (RealNews
corpus; details in §4.2).

Contributions. This work proposes an aug-
mented pre-training for language models to im-
prove their understanding of several important tem-
poral phenomena. We address two kinds of re-
porting biases by effectively acquiring weak su-
pervision from free-form text and utilizing it to
learn multiple temporal dimensions jointly. Our
model incorporates other desirable properties of
time in its objective (ordinal relations between tem-
poral phrases, the circularity of certain dimensions,
etc.) to improve temporal modeling. Our experi-
ments show 19% relative improvement over BERT
in intrinsic evaluations, and 5-10% improvements
in most extrinsic evaluations done on three time-
related datasets. Furthermore, the ablation study
shows the value of each proposed component of
our construction. Overall, this is the first work to
incorporate a wide range of temporal phenomena
within a contextual language model.

The rest of this paper is organized as follows. We
distinguish our work with the prior work in §2. The
core of our construction, including extraction of
cheap supervision from raw data and augmenting a
language model objective function with temporal
signals, is in §3 . We conclude by showing intrinsic
and extrinsic experiments in §4.

3The relationship can be more complex. E.g., “hours” is
closer to “minutes” than “centuries” is; days of a week forms
a circle: “Mon.” is followed by “Tue.” and preceded by “Sun.”



2 Related Work

Common sense has been a popular topic in recent
years, and existing NLP works have mainly inves-
tigated the acquisition and evaluation of common
sense reasoning in the physical world. These works
include but are not limited to size, weight, and
strength (Bagherinezhad et al., 2016; Forbes and
Choi, 2017; Elazar et al., 2019), roundness and deli-
ciousness (Yang et al., 2018), and intensity (Cocos
et al., 2018). A handful of these works uses cheap
supervision. For example, Elazar et al. (2019) re-
cently proposed a general framework that discovers
distributions of quantitative attributes (e.g., length,
mass, speed, and duration) from explicit mentions
(or co-occurrences) of these attributes in a large cor-
pus. However, Elazar et al. (2019) restrict events
to be verb tokens, while we handle verb phrases
containing more detailed information (e.g., “taking
a vacation” is very different from “taking a break,”
although they share the same verb “take”). Besides,
there has been no report on the effectiveness of this
method on temporal attributes.

On the other hand, time has long been an im-
portant research area in NLP. Prior works have
focused on the extraction and normalization of tem-
poral expressions (Strötgen and Gertz, 2010; An-
geli et al., 2012; Lee et al., 2014; Vashishtha et al.,
2019), temporal relation extraction (Ning et al.,
2017, 2018c; Vashishtha et al., 2019), and time-
line construction (Leeuwenberg and Moens, 2018).
Recently, MCTACO (Zhou et al., 2019) summa-
rizes five types of TCS and the three temporal di-
mensions studied here are all in their proposal.4

MCTACO shows that modern NLU techniques are
still a long way behind humans on TCS understand-
ing, suggesting that further research on this topic
is needed.

There have been works on temporal common
sense, such as event duration (Pan et al., 2006; Gu-
sev et al., 2011; Williams, 2012; Vempala et al.,
2018; Vashishtha et al., 2019), typical temporal or-
dering (Chklovski and Pantel, 2004; Ning et al.,
2018a,b), and script learning (i.e., what happens
next after certain events) (Granroth-Wilding and
Clark, 2016; Li et al., 2018; Peng et al., 2019).
Those on duration are highly relevant to this work.
(Pan et al., 2006) annotates a subset of documents
from TimeBank (Pustejovsky et al., 2003) with

4They additionally propose typical order of events and
stationarity (whether a state holds for a very long time or
indefinitely).

“less-than-one-day” and “more-than-one-day” an-
notations and provides the first baseline system for
this dataset. Vempala et al. (2018) significantly
improve earlier work by using additional aspec-
tual features for this task. Vashishtha et al. (2019)
annotate the UDS-T dataset with event duration an-
notations and propose a joint method that extracts
both temporal relations and event durations. Our
approach has two notable differences from this line
of work. First, we work on duration, frequency, and
typical time—jointly on three dimensions of TCS,
while the works above only focused on duration.
Second, we focus more on obtaining cheap supervi-
sion signals from unlabeled data, while these other
works all have access to human annotations. With
respect to harnessing cheap supervision, Williams
(2012); Gusev et al. (2011) propose to mine web
data using a collection of hand-designed query pat-
terns. In contrast to our approach, they are based
on counting instead of machine learning and cannot
handle the contextualization of events.

3 Temporally Focused Joint Learning
with Minimal Supervision

In this section, we elaborate our approach to de-
signing and pre-training TACOLM, a time-aware
language model.

3.1 Scope
In this work, we focus on three major temporal
dimensions of events, namely Duration, Frequency
and Typical Time. Here, Typical Time means the
typical occurring time of events during a day, day of
a week, and month or season of a year. We follow
the same definition to each of the dimensions (also
called properties) in Zhou et al. (2019).

3.2 Joint Learning and Auxiliary Dimensions
As mentioned earlier, commonsense information
extraction comes with the challenge of reporting
biases. For example, people may not report the
duration of “opening the door,” or the frequency
of “going to work.” However, it is often possible
to get supportive signals from other dimensions, as
people mention “going to work” associated mostly
with “a day” in a week, hence we may know the
frequency of such an event.

We argue that many temporal dimensions are
interrelated and a joint learning scheme would suit
this task. Beyond duration, frequency and typical
time, we also introduce auxiliary dimensions that
are not meant to be used by themselves but will



Figure 3: Examples of the extraction process for each
temporal dimensions. The temporal arguments are
marked orange and the result of the extraction are tu-
ples of the form (event,value,dimension).

help the prediction of other dimensions. The auxil-
iary dimensions we define here are event Duration
Upper-bound and event Relative Hierarchy. The
former represents values that are upper-bounds to
an event’s duration but not necessarily the exact
duration. The latter consists of two sub-relations,
namely temporal ordering and duration inclusion
of event-pairs.

3.3 Cheap Supervision from Patterns

We collect a few pattern-based extraction rules
based on SRL parses for each temporal dimension
(including the auxiliary dimensions). We design
the rules to have high precision, while not com-
promising too much on recall. We overcome the
potential sparsity issue (and the resulting low re-
call problem) by extracting from a massive amount
of data. Fig. 3 provides some examples of the in-
put/output for each dimension, as we describe the
specific extraction process below.

We first process the entire Gigaword (Graff
et al., 2003) corpus and use AllenNLP’s SRL
model (Gardner et al., 2018; Shi and Lin, 2019)
to annotate all sentences. We extract the ones that
contain at least one temporal argument (i.e., the
arg-tmp constituent of SRL annotations) and use
textual patterns to categorize each sentence into a
corresponding dimension with respect to an asso-
ciated verb. These patterns are inspired by earlier
works and are extensively improved with iterative
manual error analysis. The rest of this section is
devoted to explaining the key design ideas used for
these patterns.
Duration. We check if the temporal argument
starts with “for,” extract the numerical value and

the temporal unit word, and normalize them into
the nearest unit among the nine units in our
scope: (“second,” “minute,” “hour,” “day,” “week,”
“month,” “year,” “decade,” “century.”) We ignore
particular phrases such as “for a second chance”
where the semantic of “second” is not temporal
related. We found that “for” is the only high-
precision preposition that indicates exact values
of duration.
Frequency. Such temporal arguments are usually
composed of a duration phrase and a numerical
head (e.g., “four times per”) indicating the fre-
quency within the duration (e.g., “week”). Thus,
we check for multiple keywords that indicate the
start of a frequency expression, including “every,”
“per,” “once,” . . . “times.” If so, we extract the du-
ration value as well as the numerical head’s value.
We ignore any temporal phrases that contain “when”
since they often convey semantics that does not fit
any of our temporal categories; e.g., “when every-
day life...” is not describing the frequency of the
corresponding verb. We represent the frequency
with duration d, with a definition of occurring once
every d elapses. For example, the frequency of
“four times per week” is represented as “1.75 days.”
Similarly, we normalize them into the nearest unit
among the nine duration units described above, and
“1.75 days” is extracted as “days.”
Typical Time. We pre-define a list of typical time
keywords, including the time of day (e.g., “morning”
etc.), time of week (e.g., “Monday” etc.), month
(e.g., “January” etc.) and season (e.g., “winter”
etc.) We check if any of the typical time keywords
appear in the temporal argument and verify if the
temporal argument is, in fact, describing the time
of occurrence. This is done by filtering out the
temporal arguments that contain a set of invalid
prepositions, including “until,” “since,” “following,”
since such keywords often do not indicate the actual
time of occurrence.
Duration Upper-bound. Many temporal argu-
ments describe the duration upper-bound instead of
the exact duration value. For example, as described
in (Gusev et al., 2011), “did [activity] yester-
day” indicates something that happened within
a day. We extend the set of patterns to include
“in [temporal expression]” or keywords such
as “next” (e.g., “the next day”), “last” (e.g., “last
week”), “previous” (e.g., “previous month”), or
“recent” (e.g., “recent years”). We normalize the
values into the same label set of the nine unit words
as the duration dimension.



Event Relative Hierarchy. A system can learn
about an event with comparisons to other ones,
as we show in §1. To acquire hierarchical rela-
tionships between events, we check whether the
SRL temporal argument starts with a keyword that
indicates a relation between the main event and
another event phrase. We consider five such key-
words, namely “before,” “after,” “during,” “while”
and “when.” We use these keywords to label the
relative relationship between the two events. Here,
we assume that “during” and “while” are the same,
which indicates that the main event is not longer
than the one in the argument. Note that certain
keywords might have meanings that do not suggest
temporal relationships (e.g., “while” has a differ-
ent sense similar to “whereas.”) We rely on SRL
annotations to identify the appropriate sense of the
keywords. We use the temporal keyword as labels,
but keep the entire event phrase in the SRL tempo-
ral argument for later use in §3.5.
Resulting data. We collect 25 million instances
that are successfully parsed into one of our tem-
poral dimensions from the entire Gigaword cor-
pus (Graff et al., 2003). Each instance is in the
form of (event,value,dimension) tuples (Fig. 3),
with a dimension distribution shown in Fig. 4. For
all events, we remove the related temporal argu-
ment so that it does not contain direct information
about the dimension or the value. For example, as
shown in Fig. 3, “for 2 hours” is removed, and only
“Jack rested before the speech” is kept so that the
target duration does not present in the event. Note
that value is also called and used as “label” in later
contexts related to classification tasks.
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Figure 4: The distributions of different temporal dimen-
sions in the collected data.

3.4 Soft Cross-Entropy Objective for Ordinal
Classification

The temporal values in one dimension are naturally
related to each other via a certain ordering and
appropriate distance measures. To account for and
utilize this external knowledge, we use a soft cross-
entropy to encourage predictions that are aligned

with the external knowledge.
Consider x as a system’s output logits across

labels, and we express our soft loss function as
follows:

` = −
∑
i∈D

y>i log(softmax(xi)), (1)

where D is the instances in the training data and
y represent the degree to which the target labels
align with the external knowledge. Thus, y is a
probability vector, i.e., has non-zero values and
sum to 1.0.

Now we describe how we construct y to apply
the aforementioned external knowledge. Duration,
Frequency, and Upper-bound take the same set of
labels of duration units. We first define a function
logsec(.) which takes a unit and normalizes it to its
logarithmic value in “seconds” (e.g., “minute”→
60→ 4.1). For each instance in these dimensions,
with an observed gold label g, we assume a normal
distribution with a mean value of µ = logsec(g)
and a fixed standard deviation of σ = 4. Then, we
construct y so that,

y[i] =
1

σ
√
2π
e−(logsec(l)−µ)2/2σ2

(2)

where l is the ith label. We apply softmax at the
end to ensure y sums to 1.

For typical time, the labels are placed with ap-
proximately equal distances in a circular fashion.
For example, “Monday” is before “Tuesday” and
after “Sunday.” We assume adjacent units have a
distance of 1, and we generate y based on a Gaus-
sian distribution with a standard deviation of 0.5. In
other words, we assume the two immediate neigh-
bors of a gold label are reasonably possible.

For hierarchy, we construct y as a one-hot vector
where only the gold label has a value of 1, and the
rest are zeroes.

3.5 Sequential Language Modeling
Our goal is to build a model that is able to predict
temporal labels (values) given events and dimen-
sions. Instead of building a classification layer
on top of a pre-trained model, we follow previ-
ous work (Huang et al., 2019) and place the la-
bel into the input sequence. We mask the label
in the sequence and use the masked token predic-
tion objective as the classification objective. To
produce more general representations, we also
keep the temporal label and mask the event to-
kens instead at a certain probability, so that we are



able to maximize both P (Tmp-Label|Event) and
P (Event|Tmp-Label) in the same learning process,
where Tmp-Label refers to the temporal label asso-
ciated with the event.

Specifically, we use the reserved “unused” to-
kens in BERT-base model lexicon to construct
a 1-to-1 mapping from every value in every di-
mension to the new vocabulary. We choose not
to use the existing representations for temporal
terms that are already included in BERT’s “in-
use” lexicon, such as “minutes” or “weeks,” be-
cause these keywords have different temporal se-
mantics in different dimensions. Instead, we as-
sign unique and separate lexicon entries to differ-
ent values in different dimensions, even though
the values may share the same surfaces. Con-
sider each (event,value,dimension) tuple, we
map value and dimension to their new vocabular-
ies [Val] and [Dim], and we use [W1, W2, . . ., Wn]
to represent the tokens in the sentence, and Wverb

the event verb anchor from SRL. We now form
a sequence [W1, W2,. . .[Vrb], Wverb, . . .Wn, [SEP],
[Vrb], [Dim], [Val], [Arg-Tmp-Event]], where
[Vrb] is a marker token that is the same across all
instances. [Arg-Tmp-Event] is the event phrase in
the SRL temporal argument, as described in hierar-
chy. [Arg-Tmp-Event] is empty for all dimensions
other than hierarchy.

We mask [Val] with probability pmask and
[Dim] with probability pdim. We individually mask
each event tokens with probability pevent when
we do not mask [Val] nor [Dim]. Soft cross-
entropy is used when predicting [Val], and a regu-
lar Cross-entropy is used for other tokens. We use
the pre-trained token-recovery layer, and follow
BERT’s setting to randomly keep a token’s surface
or change it to noise during recovery.

In the experiments, we explore a set of config-
urations of the system. We explore the effect of
having only one sentence or the two additional
neighboring sentences as input contexts. We also
experiment with all-event-masking, where we mask
tokens in the event with a much higher probability.
The goal of this masking scheme is to reduce the
predictability of event tokens based on other event
tokens to alleviate prior biases and focus more on
the temporal argument. For example, BERT pre-
dicts “coffee” for the [MASK] in “I had a cup of
[MASK] this evening” because of the strong prior
of “cup of.” By masking more tokens in the event,
the remaining ones will be more conditioned to the
temporal cue.

3.6 Label Weight Adjustment

The label imbalance in the training data largely
hinders our goal, as we should not assume a prior
distribution as expressed in natural language. For
example, “seconds” appears around ten times less
than “years” in the data we collected for duration,
leading to a biased model. We use weight adjust-
ment to fix this. Specifically, we apply weight
adjustment to the total loss with a weight factor
calculated as the observed label’s count relative to
the number of all instances.

4 Experiments

4.1 Variations and Settings

We experiment with several variants of the pro-
posed system to study the effect of each change.
Input Size. A model with three input sentences
(including the event sentence’s left/right neighbors)
are labeled with MS. Non MS models use only one
sentence in which the event occurs.
All Event Masking. A model with pevent = 0.6 is
labeled as AM, and pevent = 0.15 otherwise.
Final Model. Our final model includes all auxil-
iary dimensions (AUX) (mentioned in §3.2), uses
soft cross-entropy loss (SL) and applies weight
adjustment (ADJ) (mentioned in §3.6). We study
each changes’ effect by ablating them individually.

To deal with the skew present in the training
data (§3), we down-sample to ensure roughly the
same occurrences of each dimension (except for fre-
quency because of its low quantity). As a result, 4.3
million sentences were used in pre-training (down-
sampled from 25 million mined sentences). We
employ a learning rate of 2e-5 with 3 epochs and
set pmask = 0.6 and pdim = 0.1. Other parame-
ters are the same as those of the BERT base model.
We use epoch 2’s model for extrinsic evaluations to
favor generalization, and epoch 3’s model for intrin-
sic evaluations as it achieves the best performance
across tasks.

4.2 Intrinsic Evaluation

We evaluate our method on the temporal value re-
covery task, where the inputs are a sentence rep-
resenting the event, an index to the event’s verb,
and a target dimension. The goal is to recover the
temporal value of the given event in the given di-
mension.
Datasets. To ensure a fair comparison, we sample
instances from a new corpus RealNews (Zellers
et al., 2019) that have no document overlap with



our pre-training data and, at the same time making
the data not strictly in-domain. We apply the same
pattern extraction process mentioned in §3.3 on the
new data and collect instances that are uniformly
distributed across dimensions and values. In ad-
dition, we ask annotators on Mechanical Turk to
filter out the events that cannot be recovered by
common sense. For example, “I brush my teeth
[Month]” will be discarded because all candidate
answers are approximately uniformly distributed
so that one cannot identify a subgroup of labels to
be more likely.

Specifically, we ask one annotator to select from
4 choices regarding each (event, temporal value)
tuple. The choices are 1) the event is unclear and
abstract; 2) the event has a uniform distribution
across all labels within the dimension; 3) the given
label is one of the top 25% choices among all other
labels within the dimension and 4) the given label
is not very likely. We keep the instances for which
the annotator selects option 3), verifying that the
label is a very likely choice for the given dimen-
sion. For the RealNews corpus, we annotate 1,774
events that are roughly uniformly distributed across
dimensions and labels, among which 300 events
are preserved.

We also apply the same process to UDST dataset.
We find the majority of the original annotation to
be unsuitable, as there are many annotations to
events that are seemingly undecidable by common
sense. We first apply an initial filtering by using
only events of which the anchor word is a verb and
require all existing annotations from (Vashishtha
et al., 2019) of the same instance to have an aver-
age distance less than two units. We then use our
method to annotate 1,047 events, and eventually,
142 instances are left.
Systems. In both datasets, we compare our pro-
posed system with BERT. To use BERT’s predic-
tions on temporal values without supervision, we
artificially add prepositions querying the target di-
mension as well as a masked token right after the
verb. For example, “I ran to the campus” will be
transformed as “I ran for 1 [MASK] to the campus”.
The specific prepositions added are “for 1” (dura-
tion), “every” (frequency), “in the” (time of the
day), “on” (week), “in” (month), and “in” (season).
We then rank the temporal keywords (singular) in
the given dimension according to the masked to-
ken’s predictions. For our model, we follow the
sequence formulation described above, recover and
rank the masked [Val] token.

In addition, we also compare with a baseline sys-
tem called BERT + naive finetune, which is BERT
fine-tuned on the same pre-training data we used
for our proposed models, with a higher probabil-
ity of masking a temporally related keyword (i.e.,
all values we used in all dimensions). Unlike our
model, we only use soft cross-entropy loss and do
not distinguish the dimensions each keyword is
expressing.
Metrics. Following Vashishtha et al. (2019), we
employ a metric “distance” that measures the rank
difference between a system’s top prediction and
the gold label with respect to an ordered label set.
For duration and frequency where values are in a
one-directional order, we use the absolute differ-
ence of the label ranks. For other dimensions where
the labels are in circular relationships, we use the
minimal distance between two labels in both direc-
tions, so that “January” will have a distance 1 with
“December.” This is similar to an MAE metric, and
we report the averaged number across instances.
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Figure 5: Representations of events (whose durations
were labeled as seconds, weeks, or centuries) obtained
from the original BERT base model.
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Figure 6: Representations of the same set of events as
in Fig. 5 obtained from the proposed method.



Systems RealNews UDS-T

Typical Time

Duration Freq Day Week Month Season Duration

BERT 1.33 1.68 1.75 1.53 3.78 0.87 1.77
BERT + naive finetune 1.21 1.45 1.47 1.28 3.28 1.08 2.06
TACOLM (ours) 0.75 1.17 1.72 1.19 3.42 0.63 1.49
TACOLM (ours), normalized 8% 13% 22% 17% 29% 16% 17%

TACOLM -ADJ 0.84 1.20 1.82 1.08 2.47 0.74 1.68
TACOLM -SL 0.77 1.30 1.88 1.06 2.50 0.74 1.50
TACOLM -AUX 0.77 1.28 1.61 1.31 3.25 0.78 1.51
TACOLM -MS 0.84 1.12 1.82 1.5 3.17 0.61 1.69
TACOLM -AM 0.68 1.20 1.86 1.31 3.11 0.70 1.58

Table 1: Performance on intrinsic evaluations. The “normalized” row is the ratio of the distance to the gold label
over the total number of labels in each dimension. Smaller is better.

The results on the filtered RealNews dataset and
filtered UDST dataset are shown in Table 1. We
see that our proposed final model is mostly better
than other variants, and achieves 19% improvement
over BERT on average on the normalized scale.

We plot the embedding space of events with du-
ration of “seconds” “weeks” or “centuries” in Fig 5
and Fig 6. We take the verb’s contextual represen-
tation, apply PCA to reduce the dimension from
768 to 50, and then t-SNE to reduce it further to
2. Comparing the two plots, we see that the clus-
ters formed by BERT embeddings have a wider
distribution over the space, and the clusters have
more points in overlap, even though the three sets
of events have drastically different duration values.
Our proposed model’s embedding is able to better
cluster the events based on this temporal feature,
which is expected.

4.3 TimeBank Evaluation

Beyond unsupervised intrinsic experiments, we
also evaluate the capability of the event tem-
poral representation as a product of our model.
That is, we finetune both BERT baseline and our
model with the same process to compare the in-
ternal representations of the transformers. We use
TimeML (Sauréi et al., 2005; Pan et al., 2006), a
dataset with event duration annotated as lower and
upper bounds. The task is to decide whether a
given event has a duration longer or shorter than a
day. This is a suitable task to evaluate the embed-
dings because deciding longer/shorter than a day
requires reasoning with more than one label, and
would also benefit from auxiliary dimensions like
duration upper-bound.

The dataset contains 2,251 events, and we split
the events based on sentences into 1,248/1,003

train/test. We formulate the training as a sequence
classification task by taking the entire sentence and
adding a special marker to the left of the verb indi-
cating its position. The marker is unseen to both
BERT and our model. We use the transformer out-
put of the first token and feed it to an MLP for
classification. We use a learning rate of 5e-5 and
train for 3 epochs, and we repeat every reported
number with 3 different random initialization and
take the average.

System F1 Accuracy <Day F1 ≥Day F1

BERT 73.7 63.7 79.0
TACOLM 81.7 74.8 85.6

Table 2: Performance on TimeBank Classification

Table 2 shows the results of the TimeBank ex-
periment. We see around 7-11% improvement over
BERT on this task. Comparing with the state-of-
the-art (Vempala et al., 2018) with a different train-
ing/testing split, our model is within 1.5% of the
best results but uses 25% less training data.

4.4 Subevent Relation Extraction
We apply our event representations to the task of
event sub-super relation extraction. This is a proper
evaluation because the task naturally benefits from
temporal commonsense knowledge. Intuitively,
short duration or high frequency indicates the event
being at a lower hierarchy and vice versa. We test
if the temporal focused event representations will
improve.

We use HiEVE (Glavaš et al., 2014), a dataset
with annotations of four event relationships: no
relation (NoRel), coreference (Coref), Child-Parent
(C-P) and Parent-Child (P-C). There is no official
split for this dataset, so we randomly 80/20 split



the data at the document level and down-sample
negative NoRel instances with a probability of 0.4.

Similarly, we formulate the problem as a se-
quence classification task, where two events are
put into one sequence separated by “[SEP],” and
verbs are marked by adding a marker token to their
left. We use the representations of the first token
and feed it to an MLP for classification. We train
each model with a 5e-5 learning rate and 3 epochs.
Each reported number is an average from 3 runs
under different random initialization. During infer-
ence time, the probability scores for non-negative
relations are averaged from the same event pair’s
sequences in both orders.

Table 3 shows the results of the HiEVE experi-
ment. We see that TACOLM improves by 4% and
8% on the coreference task and the parent-child
tasks over BERT, respectively.

Systems F1 NoRel Coref C-P P-C

BERT 90.5 47.9 40.7 40.6
TACOLM 91.3 51.5 49.4 48.5

Table 3: Performance on HiEVE. The numbers are in
percentages. Higher is better.

4.5 Temporal Question Answering

We also evaluate on MCTACO (Zhou et al., 2019),
a question answering dataset that requires compre-
hensive understandings of temporal common sense
and reasoning. We compare the exact-match score
across the 5 dimensions defined in MCTACO, al-
though this work only focuses on 3 of them. We
use the original baseline system and interchange
transformer weights to compare between BERT
and ours. However, because our model replaces
temporal expressions with special tokens, it is at
disadvantage to be directly evaluated on the orig-
inal dataset with temporal expressions in natural
language. To fix this, we run the same extraction
system in §3.3 with modifications to identify the
dimension a question is asking, and augment candi-
date answers with our special tokens representing
the temporal values (if any) mentioned. This intro-
duces rule-based dimension identification as well
as coarse unit normalization to the systems, so we
train/evaluated BERT baseline with the same modi-
fied data as well. Each number is an average of 5
runs with different random initializations.

Results on MCTACO are shown in Table 4. As
expected, we find that our model achieves better

System Duration Ordering Stationarity Frequency Typical Time

BERT 33.4 36.5 57.6 43.3 39.5
TACOLM 34.6 35.1 57.9 45.1 40.9

Table 4: Performance on MCTACO. Numbers are per-
centages and indicate exact match (EM) metric. Higher
is better.

performance on the three dimensions that are fo-
cused in this work (i.e., duration, frequency, and
typical time) as well as stationarity. However,
the improvements are not very substantial, indi-
cating the difficulty of this task and motivates fu-
ture works. The model also does slightly worse
on ordering, which is worth investigating in future
works.

5 Conclusion

Temporal common sense (TCS) is an important yet
challenging research topic. Despite the existence
of several prior work on event duration, this is the
first attempt to jointly model three key dimensions
of TCS—duration, frequency, and typical time—
from cheap supervision signals mined from unan-
notated free text. The proposed sequence modeling
framework improves over BERT in terms of han-
dling reporting bias, taking into account the ordinal
relations and exploiting interactions among multi-
ple dimensions of time. The success of this model
is confirmed by intrinsic evaluations on RealNews
and UDS-T (where we see a 19% improvement), as
well as extrinsic evaluations on TimeBank, HiEVE
and MCTACO. The proposed method may be an
important module for future applications related to
time.
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