Temporal Common Sense Acquisition with Minimal Supervision

Ben Zhou Qiang Ning* Daniel Khashabi* Dan Roth
Choose from “will” or “will not”

Dr. Porter is **taking a vacation** and ___ be able to see you soon.

Dr. Porter is **taking a walk** and ___ be able to see you soon.
Dr. Porter is **taking a vacation** and ___ be able to see you soon.

Dr. Porter is **taking a walk** and ___ be able to see you soon.
Choose from “will” or “will not”

Dr. Porter is taking a vacation and will not be able to see you soon.

Dr. Porter is taking a walk and ___ be able to see you soon.
Choose from “will” or “will not”

Dr. Porter is **taking a vacation** and **will not** be able to see you soon.

Dr. Porter is **taking a walk** and ___ be able to see you soon.
Dr. Porter is **taking a vacation** and
will not be able to see you soon.

Dr. Porter is **taking a walk** and
will be able to see you soon.
Dr. Porter is **taking a vacation** and **will not** be able to see you soon.

Dr. Porter is **taking a walk** and **will** be able to see you soon.

Time and Common Sense

- Choose from “*will*” or “*will not*”

 - An important component for reading comprehension
 - Commonsense-level understanding is required
This work
This work

- **Time**
 - An important component for reading comprehension
 - Commonsense-level understanding is required

- **In this work**
 - TacoLM – A general LM that is aware of time and temporal common sense
 - Minimal Supervision
This work

- **Time**
 - An important component for reading comprehension
 - Commonsense-level understanding is required

- **In this work**
 - TacoLM – A general LM that is aware of time and temporal common sense
 - Minimal Supervision
This work

- **Time**
 - An important component for reading comprehension
 - Commonsense-level understanding is required

- **In this work**
 - TacoLM – A general LM that is aware of time and temporal common sense
 - Minimal Supervision

Predicted Duration from TacoLM

- Dr. Porter is taking a walk.
- Dr. Porter is taking a long vacation.
Time and Common Sense

- **Time**
 - An important component for reading comprehension
 - Commonsense-level understanding is required

- **In this work**
 - TacoLM – A general LM that is aware of time and temporal common sense
 - Minimum Supervision

Predicted Duration from TacoLM

- Dr. Porter is taking a walk.
- Dr. Porter is taking a long vacation.

![Graph](image)
Time and Common Sense

- **Time**
 - An important component for reading comprehension
 - Commonsense-level understanding is required

- **In this work**
 - **TacoLM** - A general LM that is aware of time and temporal common sense
 - Minimal Supervision

![Graph showing predicted duration from TacoLM](image)

- Dr. Porter is taking a walk.
- Dr. Porter is taking a long vacation.
- Dr. Porter is coming back shortly.
- She may not be back for days.

![Confidence chart](image)
Acquiring Temporal Common Sense
Acquiring Temporal Common Sense

- Challenging
 - Reporting Biases:
 - people rarely mention the common sense to be efficient “It took me 2 seconds to move my chair”
 - Sometimes highlight rarities “It took me an hour to move my chair”
 - Highly Contextual:
 - The duration of “Move” depends on the object’s weight/size.
Acquiring Temporal Common Sense

- Challenging
 - Reporting Biases:
 - people rarely mention the common sense to be efficient “It took me 2 seconds to move my chair”
 - Sometimes highlight rarities “It took me an hour to move my chair”
 - Highly Contextual:
 - The duration of “Move” depends on the object’s weight/size.
Acquiring Temporal Common Sense

- Challenging
 - Reporting Biases:
 - people rarely mention the common sense to be efficient "It took me 2 seconds to move my chair"
 - Sometimes highlight rarities "It took me an hour to move my chair"
 - Highly Contextual:
 - The duration of “Move” depends on the object’s weight/size.
Acquiring Temporal Common Sense

- **Challenging**
 - Reporting Biases:
 - people rarely mention the common sense to be efficient “It took me 2 seconds to move my chair”
 - Sometimes highlight rarities “It took me an hour to move my chair”
 - Highly Contextual:
 - The duration of “Move” depends on the object’s weight/size.
Acquiring Temporal Common Sense

- **Challenging**
 - Reporting Biases:
 - people rarely mention the common sense to be efficient “It took me 2 seconds to move my chair”
 - Sometimes highlight rarities “It took me an hour to move my chair”
 - Highly Contextual:
 - The duration of “Move” depends on the object’s weight/size.
Acquiring Temporal Common Sense

- Challenging
 - Reporting Biases:
 - people rarely mention the common sense to be efficient “It took me 2 seconds to move my chair”
 - Sometimes highlight rarities “It took me an hour to move my chair”
 - Highly Contextual:
 - The duration of “Move” depends on the object’s weight/size.
Acquiring Temporal Common Sense

- Challenging
 - Reporting Biases:
 - people rarely mention the common sense to be efficient “It took me 2 seconds to move my chair”
 - Sometimes highlight rarities “It took me an hour to move my chair”
 - Highly Contextual:
 - The duration of “Move” depends on the object’s weight/size.

Predicted Duration from TacoLM

- Confidence
- Duration Units: second, minute, hour, day, week, month, year, decade, century

![Graph showing predicted durations from TacoLM for moving different objects with varying confidence levels.](image-url)
Time and Common Sense

- **Time**
 - An important component for reading comprehension
 - Temporal order
 - Event duration / frequency
 - Typical events and their occurring time
 - ...
 - Explicit textual cues (before, after, at the same time) are rare
 - Commonsense-level understanding is required

- **Example: Choose from “will” or “will not”**
 - Dr. Porter is taking a vacation and ____ be able to see you soon.
 - Dr. Porter is taking a walk and _____ be able to see you soon.
Time and Common Sense

- Time
 - An important component for reading comprehension
 - Temporal order
 - Event duration / frequency
 - Typical events and their occurring time
 - ...
 - Explicit textual cues (before, after, at the same time) are rare
 - Commonsense-level understanding is required

- Example: Choose from “will” or “will not”
 - Dr. Porter is taking a vacation and _____ be able to see you soon.
 - Dr. Porter is taking a walk and ______ be able to see you soon.
Time and Common Sense

- **Time**
 - An important component for reading comprehension
 - Temporal order
 - Event duration / frequency
 - Typical events and their occurring time
 - ...
 - Explicit textual cues (before, after, at the same time) are rare
 - Commonsense-level understanding is required

- **Example: Choose from “will” or “will not”**
 - Dr. Porter is taking a vacation and ____ be able to see you soon.
 - Dr. Porter is taking a walk and _____ be able to see you soon.
Time and Common Sense

- **Time**
 - An important component for reading comprehension
 - Temporal order
 - Event duration / frequency
 - Typical events and their occurring time
 - ...
 - Explicit textual cues (before, after, at the same time) are rare
 - Commonsense-level understanding is required

- **Example: Choose from “will” or “will not”**
 - Dr. Porter is taking a vacation and ____ be able to see you soon.
 - Dr. Porter is taking a walk and _____ be able to see you soon.
Time and Common Sense

- **Time**
 - An important component for reading comprehension
 - Temporal order
 - Event duration / frequency
 - Typical events and their occurring time
 - ...
 - Explicit textual cues (before, after, at the same time) are rare
 - Commonsense-level understanding is required

- **Example: Choose from “will” or “will not”**
 - Dr. Porter is taking a vacation and ____ be able to see you soon.
 - Dr. Porter is taking a walk and _____ be able to see you soon.
Time and Common Sense

- **Time**
 - An important component for reading comprehension
 - Temporal order
 - Event duration / frequency
 - Typical events and their occurring time
 - ...
 - Explicit textual cues (before, after, at the same time) are rare
 - Commonsense-level understanding is required

- **Example: Choose from “will” or “will not”**
 - Dr. Porter is taking a vacation and ____ be able to see you soon.
 - Dr. Porter is taking a walk and _____ be able to see you soon.
Time and Common Sense

- **Time**
 - An important component for reading comprehension
 - Temporal order
 - Event duration / frequency
 - Typical events and their occurring time
 - ...
 - Explicit textual cues (before, after, at the same time) are rare
 - Commonsense-level understanding is required

- **Example: Choose from “will” or “will not”**
 - Dr. Porter is taking a vacation and ____ be able to see you soon.
 - Dr. Porter is taking a walk and ____ be able to see you soon.
Time and Common Sense

- **Time**
 - An important component for reading comprehension
 - Temporal order
 - Event duration / frequency
 - Typical events and their occurring time
 - ...
 - Explicit textual cues (before, after, at the same time) are rare
 - Commonsense-level understanding is required

- **Example: Choose from “will” or “will not”**
 - Dr. Porter is taking a vacation and **will not** be able to see you soon.
 - Dr. Porter is taking a walk and **will** be able to see you soon.
Temporal Common Sense
Temporal Common Sense

- This work: acquire temporal commonsense knowledge
 - Duration, Frequency, Typical time
 - Minimal Supervision
- It is challenging:
 - Highly contextual
 - Hard to understand event arguments’ relation to its duration/frequency
 - Duration: I move a chair < I move a piano (weight)
 - Duration: I build a chair < I build a piano (complexity)
 - Reporting Biases
 - Rare to see people describing how long they brushed their teeth
- Our view: model distributions of temporal properties of events in fine grained contexts
Temporal Common Sense

- This work: acquire temporal commonsense knowledge
 - Duration, Frequency, Typical time
 - Minimal Supervision

- It is challenging:
 - Highly contextual
 - Hard to understand event arguments’ relation to its duration/frequency
 - Duration: I move a chair < I move a piano (weight)
 - Duration: I build a chair < I build a piano (complexity)
 - Reporting Biases
 - Rare to see people describing how long they brushed their teeth

- Our view: model distributions of temporal properties of events in fine grained contexts
Temporal Common Sense

- This work: acquire temporal commonsense knowledge
 - Duration, Frequency, Typical time
 - Minimal Supervision

- It is challenging:
 - Highly contextual
 - Hard to understand event arguments’ relation to its duration/frequency
 - Duration: I move a chair < I move a piano (weight)
 - Duration: I build a chair < I build a piano (complexity)
 - Reporting Biases
 - Rare to see people describing how long they brushed their teeth

- Our view: model distributions of temporal properties of events in fine grained contexts
Temporal Common Sense

- This work: acquire temporal commonsense knowledge
 - Duration, Frequency, Typical time
 - Minimal Supervision
- It is challenging:
 - Highly contextual
 - Hard to understand event arguments’ relation to its duration/frequency
 - Duration: I move a chair < I move a piano (weight)
 - Duration: I build a chair < I build a piano (complexity)
 - Reporting Biases
 - Rare to see people describing how long they brushed their teeth
- Our view: model distributions of temporal properties of events in fine grained contexts
Temporal Common Sense

- This work: acquire temporal commonsense knowledge
 - Duration, Frequency, Typical time
 - Minimal Supervision

- It is challenging:
 - Highly contextual
 - Hard to understand event arguments’ relation to its duration/frequency
 - Duration: I move a chair < I move a piano (weight)
 - Duration: I build a chair < I build a piano (complexity)
 - Reporting Biases
 - Rare to see people describing how long they brushed their teeth

- Our view: model distributions of temporal properties of events in fine grained contexts
This work: acquire temporal commonsense knowledge
- Duration, Frequency, Typical time
- Minimal Supervision

It is challenging:
- Highly contextual
- Hard to understand event arguments’ relation to its duration/frequency
 - Duration: I move a chair < I move a piano (weight)
 - Duration: I build a chair < I build a piano (complexity)
- Reporting Biases
 - Rare to see people describing how long they brushed their teeth

Our view: model distributions of temporal properties of events in fine grained contexts
This work: acquire temporal commonsense knowledge
- Duration, Frequency, Typical time
- Minimal Supervision

It is challenging:
- Highly contextual
- Hard to understand event arguments’ relation to its duration/frequency
 - Duration: I move a chair < I move a piano (weight)
 - Duration: I build a chair < I build a piano (complexity)
- Reporting Biases
 - Rare to see people describing how long they brushed their teeth

Our view: model distributions of temporal properties of events in fine grained contexts
Temporal Common Sense

- This work: acquire temporal commonsense knowledge
 - Duration, Frequency, Typical time
 - Minimal Supervision

- It is challenging:
 - Highly contextual
 - Hard to understand event arguments’ relation to its duration/frequency
 - Duration: I move a chair < I move a piano (weight)
 - Duration: I build a chair < I build a piano (complexity)
 - Reporting Biases
 - Rare to see people describing how long they brushed their teeth

- Our view: model distributions of temporal properties of events in fine grained contexts
Temporal Common Sense

- This work: acquire temporal commonsense knowledge
 - Duration, Frequency, Typical time
 - Minimal Supervision

- It is challenging:
 - Highly contextual
 - Hard to understand event arguments’ relation to its duration/frequency
 - Duration: I move a chair < I move a piano (weight)
 - Duration: I build a chair < I build a piano (complexity)
 - Reporting Biases
 - Rare to see people describing how long they brushed their teeth

- Our view: model distributions of temporal properties of events in fine grained contexts
Temporal Common Sense

- This work: acquire temporal commonsense knowledge
 - Duration, Frequency, Typical time
 - Minimal Supervision
- It is challenging:
 - Highly contextual
 - Hard to understand event arguments’ relation to its duration/frequency
 - Duration: I move a chair < I move a piano (weight)
 - Duration: I build a chair < I build a piano (complexity)
 - Reporting Biases
 - Rare to see people describing how long they brushed their teeth
- Our view: model distributions of temporal properties of events in fine grained contexts
This Work

TacoLM

- a general time-aware language model that distinguishes temporal properties in fine-grained contexts.

I moved my chair I moved my piano I moved to a different city
Example: Choose from “will” or “will not”

- Dr. Porter is taking a vacation and will not be able to see you soon.
- Dr. Porter is taking a walk and will be able to see you soon.
TacoLM – the Big Picture
TacoLM – the Big Picture

Goal: build a general time-aware LM with minimal supervision
Step 1: Information Extraction

Goal: build a general time-aware LM with minimal supervision
TacoLM – the Big Picture

Step 1: Information Extraction

- Use high-precision patterns to acquire temporal information
 - Unsupervised automatic extraction
- Overcomes reporting biases with a large amount of natural text

- Multiple temporal dimensions
 - Duration $\sim 1 / \text{Frequency}$

- Further generalization to combat reporting biases

Goal: build a general time-aware LM with minimal supervision
TacoLM – the Big Picture

Step 1: Information Extraction

- Use high-precision patterns to acquire temporal information
 - Unsupervised automatic extraction
- Overcomes reporting biases with a large amount of natural text

- Multiple temporal dimensions
 - Duration ~ 1 / Frequency

- Further generalization to combat reporting biases

Goal: build a general time-aware LM with minimal supervision
TacoLM – the Big Picture

Step 1: Information Extraction

- Use high-precision patterns to acquire temporal information
 - Unsupervised automatic extraction
- Overcomes reporting biases with a large amount of natural text

Goal: build a general time-aware LM with minimal supervision

Step 2: Joint Language Model Pre-training

- Multiple temporal dimensions
 - Duration \(\sim 1 / \text{Frequency}\)
- Further generalization to combat reporting biases
TacoLM – the Big Picture

Step 1: Information Extraction
- Use high-precision patterns to acquire temporal information
 - Unsupervised automatic extraction
- Overcomes reporting biases with a large amount of natural text

Goal: build a general time-aware LM with minimal supervision

Step 2: Joint Language Model Pre-training
- Multiple temporal dimensions
 - Duration $\sim 1 / \text{Frequency}$
- Further generalization to combat reporting biases
TacoLM – the Big Picture

Step 1: Information Extraction

- Use high-precision patterns to acquire temporal information
 - Unsupervised automatic extraction
- Overcomes reporting biases with a large amount of natural text

Step 2: Joint Language Model Pre-training

- Multiple temporal dimensions
 - Duration $\sim 1 / \text{Frequency}$
- Further generalization to combat reporting biases

Goal: build a general time-aware LM with minimal supervision
TacoLM – the Big Picture

Step 1: Information Extraction

- Use high-precision patterns to acquire temporal information
 - Unsupervised automatic extraction
- Overcomes reporting biases with a large amount of natural text

Goal: build a general time-aware LM with minimal supervision

Step 2: Joint Language Model Pre-training

- Multiple temporal dimensions
 - Duration $\sim 1 / \text{Frequency}$
 - “I brush my teeth every morning” | Duration of “brushing teeth” $< \text{morning}$
 - Further generalization to combat reporting biases
TacoLM – the Big Picture

Step 1: Information Extraction
- Use high-precision patterns to acquire temporal information
 - Unsupervised automatic extraction
- Overcomes reporting biases with a large amount of natural text

Step 2: Joint Language Model Pre-training
- Multiple temporal dimensions
 - Duration ~ 1 / Frequency
 - Further generalization to combat reporting biases

Goal: build a general time-aware LM with minimal supervision

"I brush my teeth every morning"
Duration of “brushing teeth” < morning
TacoLM – the Big Picture

Step 1: Information Extraction
- Use high-precision patterns to acquire temporal information
 - Unsupervised automatic extraction
- Overcomes reporting biases with a large amount of natural text

Goal: build a general time-aware LM with minimal supervision

Step 2: Joint Language Model Pre-training
- Multiple temporal dimensions
 - Duration ~ 1 / Frequency
 - "I brush my teeth every morning" ➤ Duration of "brushing teeth" < morning
 - Further generalization to combat reporting biases

Output: TacoLM - a time-aware general BERT
Step 1: Information Extraction

Step 2: Joint Language Model Pre-training

Output: TacoLM - a time-aware general BERT
Joint learning from free text
Joint learning from free text

- In general: we trained a BERT that is aware of time in a more unbiased way

- Pattern Extraction:
 - Unsupervised
 - Multiple Dimensions (duration, frequency, auxiliaries...)
 - Natural constraints: duration <= 1/frequency

- Joint Pretraining
 - Use soft cross entropy that assumes a bell-shaped distribution across values
 - Also allows for circular relationships like day of weeks
 - Use full event masking and label adjustment to combat reporting biases further

- General LM: with the off-the-shelf capability of predicting temporal properties
Joint learning from free text

- In general: we trained a BERT that is aware of time in a more unbiased way

 - Pattern Extraction:
 - Unsupervised
 - Multiple Dimensions (duration, frequency, auxiliaries...)
 - Natural constraints: duration <= 1/frequency

 - Joint Pretraining
 - Use soft cross entropy that assumes a bell-shaped distribution across values
 - Also allows for circular relationships like day of weeks
 - Use full event masking and label adjustment to combat reporting biases further

- General LM: with the off-the-shelf capability of predicting temporal properties
Joint learning from free text

- In general: we trained a BERT that is aware of time in a more unbiased way

- **Pattern Extraction:**
 - Unsupervised
 - Multiple Dimensions (duration, frequency, auxiliaries...)
 - Natural constraints: duration <= 1/frequency

- **Joint Pretraining**
 - Use soft cross entropy that assumes a bell-shaped distribution across values
 - Also allows for circular relationships like day of weeks
 - Use full event masking and label adjustment to combat reporting biases further

- **General LM:** with the off-the-shelf capability of predicting temporal properties
In general: we trained a BERT that is aware of time in a more unbiased way

Pattern Extraction:
- Unsupervised
- Multiple Dimensions (duration, frequency, auxiliaries...)
- Natural constraints: duration ≤ 1/frequency

Joint Pretraining
- Use soft cross entropy that assumes a bell-shaped distribution across values
- Also allows for circular relationships like day of weeks
- Use full event masking and label adjustment to combat reporting biases further

General LM: with the off-the-shelf capability of predicting temporal properties
Joint learning from free text

- In general: we trained a BERT that is aware of time in a more unbiased way

- Pattern Extraction:
 - Unsupervised
 - Multiple Dimensions (duration, frequency, auxiliaries...)
 - Natural constraints: duration ≤ 1/frequency

- Joint Pretraining
 - Use soft cross entropy that assumes a bell-shaped distribution across values
 - Also allows for circular relationships like day of weeks
 - Use full event masking and label adjustment to combat reporting biases further

- General LM: with the off-the-shelf capability of predicting temporal properties
Joint learning from free text

- In general: we trained a BERT that is aware of time in a more unbiased way

- Pattern Extraction:
 - Unsupervised
 - Multiple Dimensions (duration, frequency, auxiliaries...)
 - Natural constraints: duration <= 1/frequency

- Joint Pretraining
 - Use soft cross entropy that assumes a bell-shaped distribution across values
 - Also allows for circular relationships like day of weeks
 - Use full event masking and label adjustment to combat reporting biases further

- General LM: with the off-the-shelf capability of predicting temporal properties
In general: we trained a BERT that is aware of time in a more unbiased way

- Pattern Extraction:
 - Unsupervised
 - Multiple Dimensions (duration, frequency, auxiliaries...)
 - Natural constraints: duration $\leq 1/$frequency

- Joint Pretraining
 - Use soft cross entropy that assumes a bell-shaped distribution across values
 - Also allows for circular relationships like day of weeks
 - Use full event masking and label adjustment to combat reporting biases further

- General LM: with the off-the-shelf capability of predicting temporal properties
In general: we trained a BERT that is aware of time in a more unbiased way.

Pattern Extraction:
- Unsupervised
- Multiple Dimensions (duration, frequency, auxiliaries...)
- Natural constraints: duration <= 1/frequency

Joint Pretraining
- Use soft cross entropy that assumes a bell-shaped distribution across values
- Also allows for circular relationships like day of weeks
- Use full event masking and label adjustment to combat reporting biases further

General LM: with the off-the-shelf capability of predicting temporal properties
Joint learning from free text

- In general: we trained a BERT that is aware of time in a more unbiased way

 - Pattern Extraction:
 - Unsupervised
 - Multiple Dimensions (duration, frequency, auxiliaries...)
 - Natural constraints: duration <= 1/frequency

 - Joint Pretraining
 - Use soft cross entropy that assumes a bell-shaped distribution across values
 - Also allows for circular relationships like day of weeks
 - Use full event masking and label adjustment to combat reporting biases further

- General LM: with the off-the-shelf capability of predicting temporal properties
Joint learning from free text

- In general: we trained a BERT that is aware of time in a more unbiased way

- Pattern Extraction:
 - Unsupervised
 - Multiple Dimensions (duration, frequency, auxiliaries...)
 - Natural constraints: duration <= 1/frequency

- Joint Pretraining
 - Use soft cross entropy that assumes a bell-shaped distribution across values
 - Also allows for circular relationships like day of weeks
 - Use full event masking and label adjustment to combat reporting biases further

- General LM: with the off-the-shelf capability of predicting temporal properties
Information Extraction

- Use high-precision patterns based on SRL
 - Duration
 - Frequency
 - Typical Time
 - Duration Upperbound
 - Hierarchy

- Labels
 - Units (seconds, ... centuries)
 - Temporal keywords (Monday, January, ...)

- Output
 - 4.3M instances of (event, dimension, value) tuple
Information Extraction

- Use high-precision patterns based on SRL
 - Duration
 - Frequency
 - Typical Time
 - Duration Upperbound
 - Hierarchy

- Labels
 - Units (seconds, ... centuries)
 - Temporal keywords (Monday, January, ...)

- Output
 - 4.3M instances of (event, dimension, value) tuple
Use high-precision patterns based on SRL
- Duration
- Frequency
- Typical Time
- Duration Upperbound
- Hierarchy

Labels
- Units (seconds, ... centuries)
- Temporal keywords (Monday, January, ...)

Output
- 4.3M instances of (event, dimension, value) tuple
Information Extraction

- Use high-precision patterns based on SRL
 - Duration
 - Frequency
 - Typical Time
 - Duration Upperbound
 - Hierarchy

- Labels
 - Units (seconds, ... centuries)
 - Temporal keywords (Monday, January, ...)

- Output
 - 4.3M instances of (event, dimension, value) tuple

Original sentence:

I played basketball for 2 hours.
Information Extraction

- Use high-precision patterns based on SRL
 - Duration
 - Frequency
 - Typical Time
 - Duration Upperbound
 - Hierarchy

- Labels
 - Units (seconds, ... centuries)
 - Temporal keywords (Monday, January, ...)

- Output
 - 4.3M instances of
 - (event, dimension, value) tuple
Use high-precision patterns based on SRL
- Duration
- Frequency
- Typical Time
- Duration Upperbound
- Hierarchy

Labels
- Units (seconds, ... centuries)
- Temporal keywords (Monday, January, ...)

Output
- 4.3M instances of (event, dimension, value) tuple

I played basketball for 2 hours.

Original sentence

SRL Parse

Pattern Matching

for 2 hours: matches Duration pattern
Information Extraction

- Use high-precision patterns based on SRL
 - Duration
 - Frequency
 - Typical Time
 - Duration Upperbound
 - Hierarchy
- Labels
 - Units (seconds, ... centuries)
 - Temporal keywords (Monday, January, ...)
- Output
 - 4.3M instances of
 (event, dimension, value) tuple

Original sentence: I played basketball for 2 hours.

SRL Parse:
- Verb
- Arg-0
- Arg-1
- Arg-Tmp

Pattern Matching:
- for 2 hours: matches Duration pattern

Formatted Output Instance:
- Event: I played basketball
- Dimension: Duration
- Value: Hours
Information Extraction

- Use high-precision patterns based on SRL
 - Duration
 - Frequency
 - Typical Time
 - Duration Upperbound
 - Hierarchy

- Labels
 - Units (seconds, ... centuries)
 - Temporal keywords (Monday, January, ...)

- Output
 - 4.3M instances of (event, dimension, value) tuple
Information Extraction

- Use high-precision patterns based on SRL
 - Duration
 - Frequency
 - Typical Time
 - Duration Upperbound
 - Hierarchy

- Labels
 - Units (seconds, ... centuries)
 - Temporal keywords (Monday, January, ...)

- Output
 - 4.3M instances of (event, dimension, value) tuple

```
I played basketball for 2 hours.
```

Original sentence

```
I played basketball for 2 hours.
```

SRL Parse

```
Verb
Arg-0
Arg-1
Arg-Tmp
```

Pattern Matching

```
for 2 hours: matches Duration pattern
```

Formatted Output Instance

```
I played basketball, Duration, Hours
```

Event

Value

Dimension

4.3M instances of (event, dimension, value) tuple

Verb

Arg-0

Arg-1

Arg-Tmp

for 2 hours: matches Duration pattern

I played basketball

Units (seconds, ... centuries)

Temporal keywords (Monday, January, ...)

4.3M instances of (event, dimension, value) tuple

Use high-precision patterns based on SRL

- Duration
- Frequency
- Typical Time
- Duration Upperbound
- Hierarchy

Labels

- Units (seconds, ... centuries)
- Temporal keywords (Monday, January, ...)

Output

- 4.3M instances of (event, dimension, value) tuple
Information Extraction

- Use high-precision patterns based on SRL
 - Duration
 - Frequency
 - Typical Time
 - Duration Upperbound
 - Hierarchy
- Labels
 - Units (seconds, ... centuries)
 - Temporal keywords (Monday, January, ...)
- Output
 - 4.3M instances of (event, dimension, value) tuple

Original sentence: I played basketball for 2 hours.

SRL Parse:
- Arg-0: Verb
- Arg-1: Arg-Tmp

Pattern Matching:
- for 2 hours: matches Duration pattern

Formatted Output Instance:
- Event: I played basketball
- Dimension: Duration
- Value: Hours
Step 1: Information Extraction

Step 2: Joint Language Model Pre-training

Output: TacoLM - a time-aware general BERT
Sequence Classification
Sequence Classification

- Consider [Event] [Dimension] [Value] tuples in each instance
- \([E_1, E_2, \ldots, M, ET \ldots En, SEP, M, \text{Dim}, \text{Val}]\)
 - M is a special marker, same across all dimension/value
 - Dim is a marker for each dimension, Val is a marker for the value of the dimension
- With an example:
Sequence Classification

- Consider [Event] [Dimension] [Value] tuples in each instance
- \([E1, E2, \ldots, M, ET, \ldots, En, SEP, M, Dim, Val]\)
 - \(M\) is a special marker, same across all dimension/value
 - \(Dim\) is a marker for each dimension, \(Val\) is a marker for the value of the dimension
- With an example:
Sequence Classification

- Consider [Event] [Dimension] [Value] tuples in each instance
- [E1, E2, ... M, ET ... En, SEP, M, Dim, Val]
 - M is a special marker, same across all dimension/value
 - Dim is a marker for each dimension, Val is a marker for the value of the dimension
- With an example:
Consider [Event] [Dimension] [Value] tuples in each instance

[E1, E2, ... M, ET ... En, SEP, M, Dim, Val]

- M is a special marker, same across all dimension/value
- Dim is a marker for each dimension, Val is a marker for the value of the dimension

With an example:

I played basketball for 2 hours.
Sequence Classification

- Consider [Event] [Dimension] [Value] tuples in each instance
- \[[E1, E2, \ldots, M, ET \ldots En, SEP, M, Dim, Val] \]
 - M is a special marker, same across all dimension/value
 - Dim is a marker for each dimension, Val is a marker for the value of the dimension

- With an example:

 I played basketball for 2 hours.
Sequence Classification

- Consider [Event] [Dimension] [Value] tuples in each instance
- [E1, E2, ... M, ET ... En, SEP, M, Dim, Val]
 - M is a special marker, same across all dimension/value
 - Dim is a marker for each dimension, Val is a marker for the value of the dimension

- With an example:

 I played basketball for 2 hours.

 Information Extraction

 I **played** basketball, Duration, Hours
Sequence Classification

- Consider [Event] [Dimension] [Value] tuples in each instance
- \([E_1, E_2, \ldots, M, ET \ldots En, SEP, M, Dim, Val]\)
 - \(M\) is a special marker, same across all dimension/value
 - \(Dim\) is a marker for each dimension, \(Val\) is a marker for the value of the dimension
- With an example:

 I played basketball for 2 hours.

 I played basketball, Duration, Hours
Sequence Classification

- Consider [Event] [Dimension] [Value] tuples in each instance
- \([E_1, E_2, \ldots, M, ET, \ldots, \text{En}, SEP, M, \text{Dim}, \text{Val}]\)
 - \(M\) is a special marker, same across all dimension/value
 - \(\text{Dim}\) is a marker for each dimension, \(\text{Val}\) is a marker for the value of the dimension
- With an example:
 - \(I \text{ played basketball for 2 hours.}\)
 - \(I \text{ played basketball, Duration, Hours}\)
 - \(I \text{ [M] played basketball [SEP] [M] [DUR] [HRS]}\)
Joint Model with Masked LM

I [M] played basketball [SEP] [M] [DUR] [HRS]
Joint Model with Masked LM

- Baseline Model: Pre-trained BERT-base
- Main objective: mask some tokens and recover them
- How we mask:
 - With some probability, mask temporal value while keeping others
 - Otherwise, mask a certain portion of E1...En while keeping temporal value unchanged
 - Max (P(Event|Dim,Val) + P(Val|Event,Dim)); Preserving original LM capability
- Benefits:
 - Jointly learn one transformer towards all dimensions
 - Labels play a role in the transformer
 - One event may contain more than one (Dim + Val), so the model learns dimension relationships
Joint Model with Masked LM

- Baseline Model: Pre-trained BERT-base
- Main objective: mask some tokens and recover them
- How we mask:
 - With some probability, mask temporal value while keeping others
 - Otherwise, mask a certain portion of E1...En while keeping temporal value unchanged
 - Max (P(Event|Dim,Val) + P(Val|Event,Dim)); Preserving original LM capability
- Benefits:
 - Jointly learn one transformer towards all dimensions
 - Labels play a role in the transformer
 - One event may contain more than one (Dim + Val), so the model learns dimension relationships

I [M] played basketball [SEP] [M] [DUR] [HRS]
Joint Model with Masked LM

- Baseline Model: Pre-trained BERT-base
- Main objective: mask some tokens and recover them
- How we mask:
 - With some probability, mask temporal value while keeping others
 - Otherwise, mask a certain portion of E1...En while keeping temporal value unchanged
 - Max (P(Event|Dim,Val) + P(Val|Event,Dim)); Preserving original LM capability
- Benefits:
 - Jointly learn one transformer towards all dimensions
 - Labels play a role in the transformer
 - One event may contain more than one (Dim + Val), so the model learns dimension relationships
Joint Model with Masked LM

- Baseline Model: Pre-trained BERT-base
- Main objective: mask some tokens and recover them
- How we mask:
 - With some probability, mask *temporal value* while keeping others
 - Otherwise, mask a certain portion of E1...En while keeping *temporal value* unchanged
 - Max \(P(\text{Event}|\text{Dim},\text{Val}) + P(\text{Val}|\text{Event},\text{Dim}) \); Preserving original LM capability
- Benefits:
 - Jointly learn **one** transformer towards **all** dimensions
 - Labels play a role in the transformer
 - One event may contain more than one (Dim + Val), so the model learns dimension relationships
Joint Model with Masked LM

- Baseline Model: Pre-trained BERT-base
- Main objective: mask some tokens and recover them
- How we mask:
 - With some probability, mask temporal value while keeping others
 - I [M] played basketball [SEP] [M] [DUR] [MASK]
 - Otherwise, mask a certain portion of E1...En while keeping temporal value unchanged
 - Max (P(\text{Event}|\text{Dim},\text{Val}) + P(\text{Val}|\text{Event},\text{Dim})); Preserving original LM capability
- Benefits:
 - Jointly learn one transformer towards all dimensions
 - Labels play a role in the transformer
 - One event may contain more than one (\text{Dim} + \text{Val}), so the model learns dimension relationships
Joint Model with Masked LM

Baseline Model: Pre-trained BERT-base

Main objective: mask some tokens and recover them

How we mask:
- With some probability, mask temporal value while keeping others
- Otherwise, mask a certain portion of E1...En while keeping temporal value unchanged
- Max (P(Event|Dim,Val) + P(Val|Event,Dim)); Preserving original LM capability

Benefits:
- Jointly learn one transformer towards all dimensions
- Labels play a role in the transformer
- One event may contain more than one (Dim + Val), so the model learns dimension relationships
Joint Model with Masked LM

- Baseline Model: Pre-trained BERT-base
- Main objective: mask some tokens and recover them
- How we mask:
 - With some probability, mask temporal value while keeping others
 - I [M] played basketball [SEP] [M] [DUR] [MASK]
 - Otherwise, mask a certain portion of E1...En while keeping temporal value unchanged
 - I [M] [MASK] [MASK] [SEP] [M] [DUR] [HRS]
 - Max (P(Event|Dim,Val) + P(Val|Event,Dim)); Preserving original LM capability
- Benefits:
 - Jointly learn one transformer towards all dimensions
 - Labels play a role in the transformer
 - One event may contain more than one (Dim + Val), so the model learns dimension relationships
Joint Model with Masked LM

- Baseline Model: Pre-trained BERT-base
- Main objective: mask some tokens and recover them
- How we mask:
 - With some probability, mask temporal value while keeping others
 \[I \ [M] \text{ played basketball [SEP] [M] [DUR] [HRS]} \]
 - Otherwise, mask a certain portion of E1...En while keeping temporal value unchanged
 \[I \ [M] \text{[MASK]} \text{[MASK]} \text{[SEP] [M] [DUR] [HRS]} \]
 - Max (P(Event|Dim,Val) + P(Val|Event,Dim)); Preserving original LM capability
- Benefits:
 - Jointly learn one transformer towards all dimensions
 - Labels play a role in the transformer
 - One event may contain more than one (Dim + Val), so the model learns dimension relationships
Joint Model with Masked LM

- Baseline Model: Pre-trained BERT-base
- Main objective: mask some tokens and recover them
- How we mask:
 - With some probability, mask temporal value while keeping others
 - Otherwise, mask a certain portion of $E_1...E_n$ while keeping temporal value unchanged
 - Max ($P(\text{Event}|\text{Dim},\text{Val}) + P(\text{Val}|\text{Event},\text{Dim})$); Preserving original LM capability
- Benefits:
 - Jointly learn one transformer towards all dimensions
 - Labels play a role in the transformer
 - One event may contain more than one ($\text{Dim} + \text{Val}$), so the model learns dimension relationships
Joint Model with Masked LM

- **Baseline Model**: Pre-trained BERT-base

- **Main objective**: mask some tokens and recover them

- **How we mask**:
 - With some probability, mask *temporal value* while keeping others

 ![I [M] played basketball [SEP] [M] [DUR] [MASK]]

 - Otherwise, mask a certain portion of $E_1...E_n$ while keeping *temporal value* unchanged

 ![I [M] [MASK] [MASK] [SEP] [M] [DUR] [HRS]]

 - Max ($P(\text{Event} | \text{Dim}, \text{Val}) + P(\text{Val} | \text{Event}, \text{Dim})$); Preserving original LM capability

- **Benefits**:
 - Jointly learn one transformer towards all dimensions
 - Labels play a role in the transformer
 - One event may contain more than one (Dim + Val), so the model learns dimension relationships
Joint Model with Masked LM

- Baseline Model: Pre-trained BERT-base
- Main objective: mask some tokens and recover them
- How we mask:
 - With some probability, mask temporal value while keeping others
 - Otherwise, mask a certain portion of E1...En while keeping temporal value unchanged
 - Max (P(Event|Dim,Val) + P(Val|Event,Dim)); Preserving original LM capability
- Benefits:
 - Jointly learn one transformer towards all dimensions
 - Labels play a role in the transformer
 - One event may contain more than one (Dim + Val), so the model learns dimension relationships
Joint Model with Masked LM

I [M] played basketball [SEP] [M] [DUR] [HRS]
1: Soft cross entropy for recovering Val
 - If gold label is “hours”, the label vector y for “minutes, hours, days” will be $[0.16, 0.47, 0.25]$

2: Label weight adjustment
 - Instances with “seconds” have higher loss than those with “years”

3: Full event masking
 - Instead of 15% used by BERT, we use 60% when masking $E_1, ..., E_n$ to reduce biases
Joint Model with Masked LM

1: Soft cross entropy for recovering Val
 - If gold label is “hours”, the label vector y for “minutes, hours, days” will be [0.16, 0.47, 0.25]

2: Label weight adjustment
 - Instances with “seconds” have higher loss than those with “years”

3: Full event masking
 - Instead of 15% used by BERT, we use 60% when masking E1, ... En to reduce biases
1: Soft cross entropy for recovering Val
 - If gold label is “hours”, the label vector y for “minutes, hours, days” will be [0.16, 0.47, 0.25]

$$\hat{x} = \log(\text{softmax}(x))$$

$$\text{loss} = -\hat{x}^T y$$

2: Label weight adjustment
 - Instances with “seconds” have higher loss than those with “years”

3: Full event masking
 - Instead of 15% used by BERT, we use 60% when masking E1, ... En to reduce biases
1: Soft cross entropy for recovering Val

- If gold label is “hours”, the label vector \mathbf{y} for “minutes, hours, days” will be $[0.16, 0.47, 0.25]$

$$\hat{x} = \log(\text{softmax}(x))$$

$$\text{loss} = -\hat{x}^T \mathbf{y}$$

2: Label weight adjustment

- Instances with “seconds” have higher loss than those with “years”

3: Full event masking

- Instead of 15% used by BERT, we use 60% when masking E1, ... En to reduce biases
Joint Model with Masked LM

1: Soft cross entropy for recovering \(\text{Val} \)
 - If gold label is “hours”, the label vector \(\mathbf{y} \) for “minutes, hours, days” will be \([0.16, 0.47, 0.25]\)

 \[
 \hat{x} = \log(\text{softmax}(x))
 \]

 \[
 \text{loss} = -\hat{x}^T \mathbf{y}
 \]

2: Label weight adjustment
 - Instances with “seconds” have higher loss than those with “years”

3: Full event masking
 - Instead of 15% used by BERT, we use 60% when masking \(E_1, \ldots, E_n \) to reduce biases
Joint Model with Masked LM

- **1: Soft cross entropy for recovering Val**
 - If gold label is “hours”, the label vector \mathbf{y} for “minutes, hours, days” will be $[0.16, 0.47, 0.25]$

 $$\hat{x} = \log(\text{softmax}(x))$$

 $$\text{loss} = -\hat{x}^T \mathbf{y}$$

- **2: Label weight adjustment**
 - Instances with “seconds” have higher loss than those with “years”

- **3: Full event masking**
 - Instead of 15% used by BERT, we use 60% when masking E1, ... En to reduce biases

I [M] played basketball [SEP] [M] [DUR] [HRS]

I [M] had a cup of [MASK] [SEP] [M] [TYP] [Evening]
Joint Model with Masked LM

1: Soft cross entropy for recovering Val
- If gold label is “hours”, the label vector \mathbf{y} for “minutes, hours, days” will be $[0.16, 0.47, 0.25]$

$$\hat{x} = \log(\text{softmax}(x))$$

$$\text{loss} = -\hat{x}^T \mathbf{y}$$

2: Label weight adjustment
- Instances with “seconds” have higher loss than those with “years”

3: Full event masking
- Instead of 15% used by BERT, we use 60% when masking E1, ... En to reduce biases

I [M] played basketball [SEP] [M] [DUR] [HRS]

I [M] had a cup of [MASK] [SEP] [M] [TYP] [Evening]

\rightarrow MASK = coffee, because “cup of”
Joint Model with Masked LM

1: Soft cross entropy for recovering Val
 - If gold label is “hours”, the label vector y for “minutes, hours, days” will be \([0.16, 0.47, 0.25]\)

 $$\hat{x} = \log(\text{softmax}(x))$$

 $$\text{loss} = -\hat{x}^T y$$

2: Label weight adjustment
 - Instances with “seconds” have higher loss than those with “years”

3: Full event masking
 - Instead of 15% used by BERT, we use 60% when masking E1, ... En to reduce biases

```
I [M] played basketball [SEP] [M] [DUR] [HRS]
```

```
I [M] had a cup of [MASK] [SEP] [M] [TYP] [Evening]  -> MASK = coffee, because “cup of”
```

```
I [M] had [MASK] [MASK] of [MASK] [SEP] [M] [TYP] [Evening]
```
Evaluation

Step 1: Information Extraction

Step 2: Joint Language Model Pre-training

Output: TacoLM- a time-aware general BERT
Evaluation: Intrinsic (Embedding space)

- A collection of events with duration of “seconds,” “weeks” or “centuries” (three extremes)
- BERT (left), Ours (right) representation on the event’s trigger
 - PCA + t-SNE to 2D visualization
- Our model separates the events much better (⇒ our model is aware of time)
A collection of events with duration of “seconds,” “weeks” or “centuries” (three extremes)

- BERT (left), Ours (right) representation on the event’s trigger
 - PCA + t-SNE to 2D visualization
- Our model separates the events much better (our model is aware of time)
A collection of events with duration of “seconds,” “weeks” or “centuries” (three extremes)

- BERT (left), Ours (right) representation on the event’s trigger
 - PCA + t-SNE to 2D visualization
- Our model separates the events much better (⇒ our model is aware of time)

Evaluation: Intrinsic (Embedding space)
Evaluation: Intrinsic (Quantitatively)
Evaluation: Intrinsic (Quantitatively)

- Metric: Distance to gold label
 - Dist (seconds, hours)=2, Dist (minutes, hours)=1
 - Lower the better

- RealNews [Zellers et al. 2019]: no document overlap
 - Raw corpus + MTurk annotation

- UDS-T [Vashishtha et al. 2019]: duration only
Evaluation: Intrinsic (Quantitatively)

- Metric: Distance to gold label
 - Dist (seconds, hours)=2, Dist (minutes, hours)=1
 - **Lower the better**
- RealNews [Zellers et al. 2019]: no document overlap
 - Raw corpus + MTurk annotation

- UDS-T [Vashishtha et al. 2019]: duration only
Evaluation: Intrinsic (Quantitatively)

- Metric: Distance to gold label
 - Dist (seconds, hours)=2, Dist (minutes, hours)=1
 - Lower the better
- RealNews [Zellers et al. 2019]: no document overlap
 - Raw corpus + MTurk annotation

- UDS-T [Vashishtha et al. 2019]: duration only
Evaluation: Intrinsic (Quantitatively)

- Metric: Distance to gold label
 - Dist (seconds, hours)=2, Dist (minutes, hours)=1
 - **Lower the better**

- RealNews [Zellers et al. 2019]: no document overlap
 - Raw corpus + MTurk annotation

- UDS-T [Vashishtha et al. 2019]: duration only
Evaluation: Intrinsic (Quantitatively)

- Metric: Distance to gold label
 - Dist (seconds, hours)=2, Dist (minutes, hours)=1
 - Lower the better
- RealNews [Zellers et al. 2019]: no document overlap
 - Raw corpus + MTurk annotation

- UDS-T [Vashishtha et al. 2019]: duration only

![Bar chart showing performance metrics for BERT and TacoLM](chart.png)

- 19% average improvement
Evaluation: Intrinsic (Quantitatively)

- Metric: Distance to gold label
 - Dist (seconds, hours)=2, Dist (minutes, hours)=1
 - **Lower the better**
- RealNews [Zellers et al. 2019]: no document overlap
 - Raw corpus + MTurk annotation

<table>
<thead>
<tr>
<th></th>
<th>BERT</th>
<th>TacoLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>1.33</td>
<td>0.75</td>
</tr>
<tr>
<td>Frequency</td>
<td>1.68</td>
<td>1.17</td>
</tr>
<tr>
<td>Typical Time (avg)</td>
<td>1.98</td>
<td>1.74</td>
</tr>
</tbody>
</table>

- UDS-T [Vashishtha et al. 2019]: duration only

19% average improvement
Evaluation: Intrinsic (Quantitatively)

- **Metric**: Distance to gold label
 - Dist (seconds, hours)=2, Dist (minutes, hours)=1
 - **Lower the better**

- **RealNews [Zellers et al. 2019]**: no document overlap
 - Raw corpus + MTurk annotation

- **UDS-T [Vashishtha et al. 2019]**: duration only

![Bar chart comparing BERT and TacoLM](chart)

- Duration:
 - BERT: 1.33
 - TacoLM: 0.75

- Frequency:
 - BERT: 1.68
 - TacoLM: 1.17

- Typical Time (avg):
 - BERT: 1.98
 - TacoLM: 1.74

- **19% average improvement**
Evaluation: Extrinsic (TimeBank)

- Task: Identify if an event’s duration is longer than a day or shorter
- Model (finetuned):
 - Demonstrate the model as a general purpose LM
 - Pre-trained duration prediction layer is not used
- Results

<table>
<thead>
<tr>
<th></th>
<th>BERT</th>
<th>TacoLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>73.7</td>
<td>81.7</td>
</tr>
<tr>
<td><Day F1</td>
<td>63.7</td>
<td>74.8</td>
</tr>
<tr>
<td>>Day F1</td>
<td>79</td>
<td>85.6</td>
</tr>
</tbody>
</table>
Evaluation: Extrinsic
Use as a general language model with finetuning

Task: Identify event-event hierarchical relations

- HiEVE [Glavas et al. 2014]
- Child-Parent / Parent-Child / Coreference
 - A bomb exploded. This is the sixth accident since the war started.

Model (finetuned):
- Sentence pair classification

Results (F1, higher the better)
Evaluation: Extrinsic

- Use as a general language model with finetuning
- Task: Identify event-event hierarchical relations
 - HiEVE [Glavas et al. 2014]
 - Child-Parent / Parent-Child / Coreference
 - A bomb exploded. This is the sixth accident since the war started.
- Model (finetuned):
 - Sentence pair classification
- Results (F1, higher the better)
Use as a general language model with finetuning

Task: Identify event-event hierarchical relations

- HiEVE [Glavas et al. 2014]
- Child-Parent / Parent-Child / Coreference
 - A bomb exploded. This is the sixth accident since the war started.

Model (finetuned):

- Sentence pair classification

Results (F1, higher the better)
Evaluation: Extrinsic

- Use as a general language model with finetuning
- Task: Identify event-event hierarchical relations
 - HiEVE [Glavas et al. 2014]
 - Child-Parent / Parent-Child / Coreference
 - A bomb exploded. This is the sixth accident since the war started.
- Model (finetuned):
 - Sentence pair classification
- Results (F1, higher the better)
Evaluation: Extrinsic

- Use as a general language model with finetuning
- Task: Identify event-event hierarchical relations
 - HiEVE [Glavas et al. 2014]
 - Child-Parent / Parent-Child / Coreference
 - A bomb exploded. This is the sixth accident since the war started.
- Model (finetuned):
 - Sentence pair classification
- Results (F1, higher the better)
Evaluation: Extrinsic

- Use as a general language model with finetuning
- Task: Identify event-event hierarchical relations
 - HiEVE [Glavas et al. 2014]
 - Child-Parent / Parent-Child / Coreference
 - A bomb exploded. This is the sixth accident since the war started.
- Model (finetuned):
 - Sentence pair classification
- Results (F1, higher the better)
Evaluation: Extrinsic

- Use as a general language model with finetuning
- Task: Identify event-event hierarchical relations
 - HiEVE [Glavas et al. 2014]
 - Child-Parent / Parent-Child / Coreference
 - A bomb exploded. This is the sixth accident since the war started.
- Model (finetuned):
 - Sentence pair classification
- Results (F1, higher the better)
Evaluation: Extrinsic

- Use as a general language model with finetuning
- Task: Identify event-event hierarchical relations
 - HiEVE [Glavas et al. 2014]
 - Child-Parent / Parent-Child / Coreference
 - A bomb exploded. This is the sixth accident since the war started.
- Model (finetuned):
 - Sentence pair classification
- Results (F1, higher the better)
Evaluation: Extrinsic

- Use as a general language model with finetuning
- Task: Identify event-event hierarchical relations
 - HiEVE [Glavas et al. 2014]
 - Child-Parent / Parent-Child / Coreference
 - A bomb exploded. This is the sixth accident since the war started.
- Model (finetuned):
 - Sentence pair classification
- Results (F1, higher the better)

<table>
<thead>
<tr>
<th></th>
<th>BERT</th>
<th>TacoLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coreference</td>
<td>47.9</td>
<td>51.5</td>
</tr>
<tr>
<td>Child-Parent</td>
<td>40.7</td>
<td>49.4</td>
</tr>
<tr>
<td>Parent-Child</td>
<td>40.6</td>
<td>48.5</td>
</tr>
</tbody>
</table>
Evaluation: Extrinsic

- Use as a general language model with finetuning
- Task: Identify event-event hierarchical relations
 - HiEVE [Glavas et al. 2014]
 - Child-Parent / Parent-Child / Coreference
 - A bomb exploded. This is the sixth accident since the war started.
- Model (finetuned):
 - Sentence pair classification
- Results (F1, higher the better)

<table>
<thead>
<tr>
<th></th>
<th>BERT</th>
<th>TacoLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coreference</td>
<td>47.9</td>
<td>51.5</td>
</tr>
<tr>
<td>Child-Parent</td>
<td>40.7</td>
<td>49.4</td>
</tr>
<tr>
<td>Parent-Child</td>
<td>40.6</td>
<td>48.5</td>
</tr>
</tbody>
</table>

More Intrinsic/Extrinsic experiments in the paper!
Evaluation: Extrinsic (MC-TACO)

- **Task**: QA on temporal related questions. (how long, how often, etc.)
- **Model** (finetuned)
 - Standard BERT QA model
- **Results**

<table>
<thead>
<tr>
<th></th>
<th>Duration</th>
<th>Frequency</th>
<th>Typical Time</th>
<th>Stationarity</th>
<th>Ordering</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERT</td>
<td>33.4</td>
<td>43.3</td>
<td>39.5</td>
<td>57.6</td>
<td>36.5</td>
</tr>
<tr>
<td>TacoLM</td>
<td>34.6</td>
<td>45.1</td>
<td>40.9</td>
<td>57.9</td>
<td>35.1</td>
</tr>
</tbody>
</table>
Conclusion - TacoLM
Conclusion - TacoLM

- Time-aware with minimal supervision

- Joint pre-training over multiple temporal dimensions

- Able to directly predict events’ duration, frequency or typical time
 - 19% better on direct prediction tasks
 - Bell-shaped predictive distributions
 - Differentiates fine grained event contexts

- Works as a general language model
 - 8% improvement on child-parent event relation extraction
Conclusion - TacoLM

- Time-aware with minimal supervision

- Joint pre-training over multiple temporal dimensions

- Able to directly predict events’ duration, frequency or typical time
 - 19% better on direct prediction tasks
 - Bell-shaped predictive distributions
 - Differentiates fine grained event contexts

- Works as a general language model
 - 8% improvement on child-parent event relation extraction
Conclusion - TacoLM

- Time-aware with minimal supervision
 - I played basketball for 2 hours

- Joint pre-training over multiple temporal dimensions

- Able to directly predict events’ duration, frequency or typical time
 - 19% better on direct prediction tasks
 - Bell-shaped predictive distributions
 - Differentiates fine grained event contexts

- Works as a general language model
 - 8% improvement on child-parent event relation extraction
Conclusion - TacoLM

- Time-aware with minimal supervision

 I played basketball for 2 hours

- Joint pre-training over multiple temporal dimensions

 Frequency of “brushing teeth” = every morning
 Duration of “brushing teeth” < morning

- Able to directly predict events’ duration, frequency or typical time
 - 19% better on direct prediction tasks
 - Bell-shaped predictive distributions
 - Differentiates fine grained event contexts

- Works as a general language model
 - 8% improvement on child-parent event relation extraction
Conclusion - TacoLM

- **Time-aware with minimal supervision**
 - I played basketball **for 2 hours**

- **Joint pre-training over multiple temporal dimensions**
 - Frequency of “brushing teeth” = every morning
 - Duration of “brushing teeth” < morning

- **Able to directly predict events’ duration, frequency or typical time**
 - 19% better on direct prediction tasks
 - Bell-shaped predictive distributions
 - Differentiates fine grained event contexts

- **Works as a general language model**
 - 8% improvement on child-parent event relation extraction
Time-aware with minimal supervision

Joint pre-training over multiple temporal dimensions

Able to directly predict events’ duration, frequency or typical time

- 19% better on direct prediction tasks
- Bell-shaped predictive distributions
- Differentiates fine grained event contexts

Works as a general language model

- 8% improvement on child-parent event relation extraction
Conclusion - TacoLM

- Time-aware with minimal supervision

 I played basketball for 2 hours

- Joint pre-training over multiple temporal dimensions

 Frequency of “brushing teeth” = every morning
 Duration of “brushing teeth” < morning

- Able to directly predict events’ duration, frequency or typical time

 - 19% better on direct prediction tasks
 - Bell-shaped predictive distributions
 - Differentiates fine grained event contexts

- Works as a general language model

 - 8% improvement on child-parent event relation extraction
Conclusion - TacoLM

- **Time-aware with minimal supervision**

 I played basketball **for 2 hours**

- **Joint pre-training over multiple temporal dimensions**

 Frequency of “brushing teeth” = every morning

 Duration of “brushing teeth” < morning

- **Able to directly predict events’ duration, frequency or typical time**

 - 19% better on direct prediction tasks
 - Bell-shaped predictive distributions
 - Differentiates fine grained event contexts

- **Works as a general language model**

 - 8% improvement on child-parent event relation extraction
Conclusion - TacoLM

- Time-aware with minimal supervision

- Joint pre-training over multiple temporal dimensions

- Able to directly predict events’ duration, frequency or typical time
 - 19% better on direct prediction tasks
 - Bell-shaped predictive distributions
 - Differentiates fine grained event contexts

- Works as a general language model
 - 8% improvement on child-parent event relation extraction
Conclusions - TacoLM

- **Time-aware with minimal supervision**

 I played basketball **for 2 hours**

- **Joint pre-training over multiple temporal dimensions**

 Frequency of “brushing teeth” = every morning

 Duration of “brushing teeth” < morning

- **Able to directly predict events’ duration, frequency or typical time**

 - 19% better on direct prediction tasks
 - Bell-shaped predictive distributions
 - Differentiates fine grained event contexts

- **Works as a general language model**

 - 8% improvement on child-parent event relation extraction
Conclusion - TacoLM

- **Time-aware with minimal supervision**

 - I played basketball *for 2 hours*

- **Joint pre-training over multiple temporal dimensions**

 - Frequency of “brushing teeth” = every morning

 - Duration of “brushing teeth” < morning

- **Able to directly predict events’ duration, frequency or typical time**

 - 19% better on direct prediction tasks

 - Bell-shaped predictive distributions

 - Differentiates fine grained event contexts

- **Works as a general language model**

 - 8% improvement on child-parent event relation extraction

Thank you!
Code & Data:
https://github.com/CogComp/TacoLM