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This work

Q: What is this work about?

Different hypothesis assessment algorithms and their comparison

Q: What do you mean by “hypothesis”?

it’s a prediction, based on certain assumptions & observations
e.g., is inherently better than

Q: Why should | care about hypothesis assessment?

Like any empirical field, in NLP we need to follow scientific principles

for drawing conclusions.
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Statistical tools considered in this work

p-value Bayes Factor
Confidence Posterior
Interval Interval
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Contributions

* Quantify usage trends in NLP community:

* Annotated ACL'28 papers (~440 papers)
* Surveyed ~5o random NLP practitioners

* Findings:
* Lack of awareness about various algorithms.
* Poor interpretation of statistical tools — especially the popular ones.
* Misleading reporting, resulting in unintended conclusions.

* A Python package for Bayesian statistical hypothesis assessment
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* Quantify usage trends in NLP community:

* Annotated ACL'28 papers (~440 papers)
* Surveyed ~5o random NLP practitioners

* Findings:
* Lack of awareness about various algorithms.
* Poor interpretation of statistical tools — especially the popular ones.
* Misleading reporting, resulting in unintended conclusions.

* A Python package for Bayesian statistical hypothesis assessment
https://github.com/allenai/HyBayes
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A Typical Al Experiment

* The apparent difference in empirical
performances be explained simply by

random chance. =~ e :
_ e Empirical Inherent
H: QA — HB performance
System 6 0
 We have sufficient evidence to conclude that R
A isin fact inherently stronger than B. A 724 -
?

(Clark etal., 2018) |D|= 2376
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Study NLP conference papers: ACL'18 papers (439 papers)

How many papers did use significance testing?

- Many papers (~360) did not include any
hypothesis assessment.

- p-value based tests are the dominant choice
among NLP practitioners.
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Lack of exposure to alternative algorithms

* The imbalance in usage:
* Isitintentional?

* Many people did not know the definition

of "Bayes Factor. @ Do you know the definition of

"Bayes Factor"?

We don’t teach the alternatives in our Al curriculum.
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- NLP community is over-
using certain techniques.

Usage Patterns

- One reason could be
researchers’ lack of
exposure to the
alternatives.
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Are we good at interpreting the p-values?

P(extreme obs.|H) < «

'
p-value
"The probability of obtaining test results at least
as extreme as the results actually observed during
the test, assuming that the null-hypothesis is
correct.” --your favorite statistics textbook
* Pretty complex notion! /

« K12



A Survey Question: Interpreting P-value (1)

« K12



A Survey Question: Interpreting P-value (1)

* Question 1: do you know p-values and its interpretation?

» K12



A Survey Question: Interpreting P-value (1)

* Question 1: do you know p-values and its interpretation?

30

23 (41.8%) 22 (40%)

20

10

5 (9.1%)

= K12



A Survey Question: Interpreting P-value (1)

* Question 1: do you know p-values and its interpretation?

30

23 (41.8%) 22 (40%)

5 (9.1%)

86% expressed fair-to-complete confidence in their ability to interpret p-values.
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* The authors claim that the improvement of B over
A is "statistically significant” with a significance
level of 0.01. Which of the followings is correct?

a) The probability of observing a margin 7% is at most
0.01, assuming that the two classifiers inherently
have the same performance.

b) With a probability 99% classifier-2 will have a higher
performance than classifier-1.
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* The authors claim that the improvement of B over system' | @ | @
A is "statistically significant” with a significance PN R ;
level of 0.01. Which of the followings is correct? classifier- S

classifier-B 45% ?

23%‘/ a) The probability of observing a margin 7% isat most P[4, — 8, > 7|8, = 6] < 0.01
0.01, assuming that the two classifiers inherently
have the same performance.

30%€9 b) With a probability 9g9% classifier-2 will have a higher P[8;> 8,] > 0.99
performance than classifier-1.

.(‘—}NE _

Only a small percentage correctly answered a basic p-value interpretation question.
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Ease of interpretation: Bayesians vs Freq.

~ ~ — -value Bayes Factor .
P(obs.> 8, —6g|H) | ° Y P(H|observations)
N— __J/
-~
p-value Confidence Posterior
Interval Intervals

Our participants mistakenly interpret frequentist notions in a Bayesian way.
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Usage Patterns *  While p-valued based tests are the

most popular choice among NLP
practitioners, they're difficult to
understand and highly prone to

misunderstanding.

Ease Of Bayesian Intervals provide results
I nte rp I’Etatio N that are more natural to interpret.
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Summary

* The work surveys four different alternatives for hypothesis assessment.
* Details in the paper

* We provide comparisons among these algorithms:
* Whether their easy to interpret / misinterpret

* We compare usage patterns:
* Surveying the field
* Manual annotation of papers

* HyBayes: https://github.com/allenai/HyBayes
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