

Me

Not All Claims are Created Equal: Choosing the Right Statistical Approach to Assess Hypotheses

A17

N N

N N

× ×

- Erfan Sadeqi-Azer
- Indiana University (now at Google)

Daniel Khashabi Allen Institute for Al

Ashish Sabharwal Allen Institute for Al

Dan Roth Univ. of Pennsylvania

- and the second second
- the second of the second se
- and the second second
- and the second second

Q: What is this work about?

Q: What do you mean by "hypothesis"?

Q: Why should I care about hypothesis assessment?

 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x

Q: What is this work about?

Different hypothesis assessment algorithms and their comparison

Q: What do you mean by "hypothesis"?

 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x

Q: What is this work about?

Different hypothesis assessment algorithms and their comparison

Q: What do you mean by "hypothesis"?

 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x

Q: What is this work about?

Different hypothesis assessment algorithms and their comparison

Q: What do you mean by "hypothesis"?

it's a **prediction**, based on certain assumptions & observations e.g., **classifier-1** is inherently better than **classifier-2**

Q: What is this work about?

Different hypothesis assessment algorithms and their comparison

Q: What do you mean by "hypothesis"?

it's a **prediction**, based on certain assumptions & observations e.g., **classifier-1** is inherently better than **classifier-2**

Q: What is this work about?

Different hypothesis assessment algorithms and their comparison

Q: What do you mean by "hypothesis"?

it's a **prediction**, based on certain assumptions & observations e.g., **classifier-1** is inherently better than **classifier-2**

Q: Why should I care about hypothesis assessment?

Like any empirical field, in NLP we need to follow scientific principles for drawing conclusions.

Statistical tools considered in this work

and the second second

and the second second second second second

and the second second

. . 1 1

a second a second second second 1

- Quantify **usage trends** in NLP community:
 - Annotated ACL'18 papers (~440 papers)
 - Surveyed ~50 random NLP practitioners
- Findings:
 - Lack of awareness about various algorithms.
 - Poor interpretation of statistical tools especially the popular ones.
 - **Misleading reporting**, resulting in unintended conclusions.
- A Python **package** for *Bayesian statistical hypothesis assessment*

and the second second

a second a second s

- Quantify **usage trends** in NLP community:
 - Annotated ACL'18 papers (~440 papers)
 - Surveyed ~50 random NLP practitioners
- Findings:
 - Lack of awareness about various algorithms.
 - Poor interpretation of statistical tools especially the popular ones.
 - **Misleading reporting**, resulting in unintended conclusions.
- A Python **package** for *Bayesian statistical hypothesis assessment*

and the second second

a second a second s

- Quantify **usage trends** in NLP community:
 - Annotated ACL'18 papers (~440 papers)
 - Surveyed ~50 random NLP practitioners
- Findings:
 - Lack of awareness about various algorithms.
 - Poor interpretation of statistical tools especially the popular ones.
 - **Misleading reporting**, resulting in unintended conclusions.
- A Python **package** for *Bayesian statistical hypothesis assessment*

 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N

- Quantify **usage trends** in NLP community:
 - Annotated ACL'18 papers (~440 papers)
 - Surveyed ~50 random NLP practitioners
- Findings:
 - Lack of awareness about various algorithms.
 - Poor interpretation of statistical tools especially the popular ones.
 - **Misleading reporting**, resulting in unintended conclusions.
- A Python **package** for *Bayesian statistical hypothesis assessment*

and the second second

a second a second s

- Quantify **usage trends** in NLP community:
 - Annotated ACL'18 papers (~440 papers)
 - Surveyed ~50 random NLP practitioners
- Findings:
 - Lack of awareness about various algorithms.
 - Poor interpretation of statistical tools especially the popular ones.
 - **Misleading reporting**, resulting in unintended conclusions.
- A Python **package** for *Bayesian statistical hypothesis assessment*

- Quantify **usage trends** in NLP community:
 - Annotated ACL'18 papers (~440 papers)
 - Surveyed ~50 random NLP practitioners
- Findings:
 - Lack of awareness about various algorithms.
 - Poor interpretation of statistical tools especially the popular ones.
 - **Misleading reporting**, resulting in unintended conclusions.
- A Python **package** for *Bayesian statistical hypothesis assessment*

- Quantify **usage trends** in NLP community:
 - Annotated ACL'18 papers (~440 papers)
 - Surveyed ~50 random NLP practitioners
- Findings:
 - Lack of awareness about various algorithms.
 - Poor interpretation of statistical tools especially the popular ones.
 - **Misleading reporting**, resulting in unintended conclusions.
- A Python **package** for *Bayesian statistical hypothesis assessment*

- Quantify **usage trends** in NLP community:
 - Annotated ACL'18 papers (~440 papers)
 - Surveyed ~50 random NLP practitioners
- Findings:
 - Lack of awareness about various algorithms.
 - Poor interpretation of statistical tools especially the popular ones.
 - Misleading reporting, resulting in unintended conclusions.
- A Python **package** for *Bayesian statistical hypothesis assessment* https://github.com/**allenai/HyBayes**

and the second second

System	$\widehat{ heta}$	θ
Α	72.4	?
В	68.9	?

 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x

• The apparent difference in empirical performances be explained simply by **random chance**.

$$H: \theta_A = \theta_B$$

• We have sufficient evidence to conclude that **A** is in fact **inherently** stronger than **B**.

• The apparent difference in empirical performances be explained simply by **random chance**.

$$H: \theta_A = \theta_B$$

• We have sufficient evidence to conclude that **A** is in fact **inherently** stronger than **B**.

H: $\theta_A > \theta_B + \alpha$

•		1	1	1	1	1	1	1
							1	1

• The apparent difference in empirical performances be explained simply by **random chance**.

$$\boldsymbol{H}: \boldsymbol{\theta}_A = \boldsymbol{\theta}_B$$

We have sufficient evidence to conclude that
 A is in fact inherently stronger than B.

$$H: \theta_A > \theta_B + \alpha$$

a second a second second second ***** Empirical Inherent performance performance $\widehat{ heta}$ System θ Α 72.4 B 68.9 2

p-value	Bayes Factor
Confidence	Posterior
Interval	Intervals

p-value	Bayes Factor
Confidence	Posterior
Interval	Intervals

• Suppose I want to assess a hypothesis **H**.

 $H: \theta_{A} > \theta_{R}$

 Idea: assuming that an opposite hypothesis is true, compute the likelihood of an observation as "extreme" as what's observed.

• Suppose I want to assess a hypothesis **H**.

 $H: \theta_{A} > \theta_{R}$

 Idea: assuming that an opposite hypothesis is true, compute the likelihood of an observation as "extreme" as what's observed.

• Suppose I want to assess a hypothesis **H**.

 $\overline{H}: \theta_A = \theta_B \quad \longleftarrow$

 Idea: assuming that an opposite hypothesis is true, compute the likelihood of an observation as "extreme" as what's observed.

 $H: \theta_{A} > \theta_{R}$

p-value	Bayes Factor
Confidence	Posterior
Interval	Intervals

• Suppose I want to assess a hypothesis **H**.

 $\overline{\pmb{H}}: \ \theta_A = \theta_B \quad \longleftarrow$

 Idea: assuming that an opposite hypothesis is true, compute the likelihood of an observation as "extreme" as what's observed.

the accuracy gap between the two systems $H: \theta_{A} > \theta_{R}$

p-value	Bayes Factor
Confidence	Posterior
Interval	Intervals

• Suppose I want to assess a hypothesis **H**.

 $\overline{H}: \theta_A = \theta_B \quad \longleftarrow$

 Idea: assuming that an opposite hypothesis is true, compute the likelihood of an observation as "extreme" as what's observed.

the accuracy gap between the two systems

$$P(\text{obs.} > \hat{\theta}_A - \hat{\theta}_B | \overline{H})$$

•	•	•			1	1	1	1	1	
i.	i	,	,	1	1	1	1	1	1	

p-value	Bayes Factor
Confidence	Posterior
Interval	Intervals

• Suppose I want to assess a hypothesis **H**.

 $\overline{\pmb{H}}: \ \theta_A = \theta_B \quad \longleftarrow$

 Idea: assuming that an opposite hypothesis is true, compute the likelihood of an observation as "extreme" as what's observed.

the accuracy gap between the two systems

			1	1	1	1	1	1	1
							1	1	1
$H: \theta_A$	·θ	R							

p-value	Bayes Factor
Confidence	Posterior
Interval	Intervals

 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x

.

 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x

and the second second

. .

• Suppose I want to assess a hypothesis **H**.

• Idea: use the Bayes formula to compute a probability for the hypothesis being true.

 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x

• Suppose I want to assess a hypothesis **H**.

• Idea: use the Bayes formula to compute a probability for the hypothesis being true.

Statistical tools: big picture

 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x

.

• Suppose I want to assess a hypothesis **H**.

• Idea: use the Bayes formula to compute a probability for the hypothesis being true.

H: $\theta_A > \theta_B + \alpha$

P(*H*|observations)

Statistical tools: big picture

.

- Suppose I want to assess a hypothesis **H**.
- Idea: use the Bayes formula to compute a probability for the hypothesis being true.

 $H: \theta_A > \theta_B + \alpha$

P(*H*|observations)

Statistical tools: big picture

 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N

- Suppose I want to assess a hypothesis **H**.
- Idea: use the Bayes formula to compute a probability for the hypothesis being true.

H: $\theta_A > \theta_B + \alpha$

P(*H*|observations)

 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x

Study NLP conference papers: ACL'18 papers (439 papers)

 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x

Study NLP conference papers: ACL'18 papers (439 papers)

 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x

Study NLP conference papers: ACL'18 papers (439 papers)

 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x

Study NLP conference papers: ACL'18 papers (439 papers)

 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x

Study NLP conference papers: ACL'18 papers (439 papers)

Study NLP conference papers: ACL'18 papers (439 papers)

How many papers did use significance testing?

- Many papers (~360) did **not** include any hypothesis assessment.
- p-value based tests are the **dominant** choice among NLP practitioners.

.

1 1 1 1 1 1 1

Study NLP conference papers: ACL'18 papers (439 papers)

How many papers did use significance testing?

- Many papers (~360) did **not** include any hypothesis assessment.
- p-value based tests are the **dominant** choice among NLP practitioners.

.

1 1 1 1 1 1 1

Study NLP conference papers: ACL'18 papers (439 papers)

How many papers did use significance testing?

- Many papers (~360) did **not** include any hypothesis assessment.
- p-value based tests are the **dominant** choice among NLP practitioners.

1 1 1 1

and the second second

and the second second

and the second second second second second

and the second second

and the second second

- and the second second
- and the second second

- The imbalance in usage:
 - Is it intentional?

 Many people did not know the definition of "Bayes Factor." ^(G)

- The imbalance in usage:
 - Is it intentional?

 Many people did not know the definition of "Bayes Factor." ^(G) 78.2% Yes No

Do you know the definition of "Bayes Factor"?

- The imbalance in usage:
 - Is it intentional?

 Many people did not know the definition of "Bayes Factor." ^(G) 78.2% • Yes • No

Do you know the definition of "Bayes Factor"?

- The imbalance in usage:
 - Is it intentional?

 Many people did not know the definition of "Bayes Factor." ^(G)

Do you know the definition of "Bayes Factor"?

We don't teach the alternatives in our AI curriculum.

Usage Patterns

- NLP community is overusing certain techniques.

- One reason could be researchers' lack of exposure to the alternatives.

Are we good at interpreting the p-values?

and the second second

and the second second

and the second second

 $P(\text{extreme obs.} | \overline{H}) \ll \alpha$ *p*-value

Are we good at interpreting the p-values?

and the second second

and the second second second second second

and the second second

 $P(\text{extreme obs.} | \mathbf{H}) \ll \boldsymbol{\alpha}$ *p*-value

• Pretty complex notion!

Are we good at interpreting the p-values?

and the second second

and the second second

and the second second

$P(\text{extreme obs.} | \overline{H}) \ll \alpha$

p-value

"The probability of obtaining test results at least as extreme as the results actually observed during the test, assuming that the null-hypothesis is correct." --your favorite statistics textbook

• Pretty complex notion!

and the second second

and the second second

and the second second

and the second second

and the second second

and the second second

• **Question 1:** *do you know p-values and its interpretation?*

and the second second

• **Question 1:** *do you know p-values and its interpretation?*

and the second second

and the second second

• **Question 1:** *do you know p-values and its interpretation?*

86% expressed fair-to-complete confidence in their ability to interpret p-values.

1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		1 1 1
systém	· · ∂ · ·	΄ θ ΄ ΄
classifier-A	38%	?
classifier-B	45%	?

- The authors claim that the improvement of **B** over **A** is "statistically significant" with a significance level of 0.01. Which of the followings is correct?
 - a) The probability of observing a margin 7% is at most 0.01, assuming that the two classifiers inherently have the same performance.
 - b) With a probability 99% classifier-2 will have a higher performance than classifier-1.

. . .

systém		· θ · · ·
classifier-A	38%	?
classifier-B	45%	?

1 1

- The authors claim that the improvement of **B** over **A** is "statistically significant" with a significance level of 0.01. Which of the followings is correct?
 - a) The probability of observing a margin 7% is at most 0.01, assuming that the two classifiers inherently have the same performance.
 - b) With a probability 99% classifier-2 will have a higher performance than classifier-1.

. . .

system	· · ∂ · ·	θ ΄
classifier-A	38%	?
classifier-B	45%	?

1 1

- A Survey Question: Interpreting P-value (2)
- The authors claim that the improvement of **B** over **A** is "statistically significant" with a significance level of 0.01. Which of the followings is correct?
- a) The probability of observing a margin 7% is at most 0.01, assuming that the two classifiers inherently have the same performance.

. . .

S b) With a probability 99% classifier-2 will have a higher $P[\theta_B > \theta_A] > 0.99$ performance than classifier-1.

classifier-B 45% ?

systém

classifier-A

θ

38%

θ

?

 $\mathbf{P}[\hat{\boldsymbol{\theta}}_{B} - \hat{\boldsymbol{\theta}}_{A} > 7 | \boldsymbol{\theta}_{A} = \boldsymbol{\theta}_{B}] < 0.01$

Only a small percentage correctly answered a basic p-value interpretation question.

- 30% (X b) With a probability 99% classifier-2 will have a higher $\mathbf{P}[\boldsymbol{\theta}_{B} > \boldsymbol{\theta}_{A}] > 0.99$ performance than classifier-1.
- The probability of observing a margin 7% is at most 0.01, assuming that the two classifiers inherently have the same performance.
- 23% a)

systém	· · ∂ · ·	́ Ө ́ (
classifier-A	38%	?
classifier-B	45%	?

 $\mathbf{P}[\hat{\theta}_B - \hat{\theta}_A > 7 | \theta_A = \theta_B] < 0.01$

A Survey Question: Interpreting P-value (2)

Ease of interpretation: Bayesians vs Freq.

and the second second

and the second second

and the second second

Ease of interpretation: Bayesians vs Freq.

and the second second

and the second second

and the second second

Our participants mistakenly interpret **frequentist** notions in a **Bayesian** way.

Ease of interpretation: Bayesians vs Freq.

and the second second

and the second second

Our participants mistakenly interpret **frequentist** notions in a **Bayesian** way.

Ease of interpretation: Bayesians vs Freq.

and the second second

Our participants mistakenly interpret **frequentist** notions in a **Bayesian** way.

- While p-valued based tests are the most popular choice among NLP practitioners, they're difficult to understand and highly prone to misunderstanding.
- Bayesian Intervals provide results that are **more natural** to interpret.

Summary

- and the second second
- and the second second
- and the second second
- the second of the second se
- and the second second

- The work surveys four different alternatives for hypothesis assessment.
 - Details in the paper
- We provide comparisons among these algorithms:
 - Whether their easy to interpret / misinterpret
 - ...
- We compare usage patterns:
 - Surveying the field
 - Manual annotation of papers
- HyBayes: https://github.com/allenai/HyBayes

- The work surveys four different alternatives for hypothesis assessment.
 - Details in the paper
- We provide comparisons among these algorithms:
 - Whether their easy to interpret / misinterpret
 - ...
- We compare usage patterns:
 - Surveying the field
 - Manual annotation of papers
- HyBayes: https://github.com/allenai/HyBayes

- The work surveys four different alternatives for hypothesis assessment.
 - Details in the paper
- We provide comparisons among these algorithms:
 - Whether their easy to interpret / misinterpret
 - ...
- We compare usage patterns:
 - Surveying the field
 - Manual annotation of papers
- HyBayes: https://github.com/allenai/HyBayes

- The work surveys four different alternatives for hypothesis assessment.
 - Details in the paper
- We provide comparisons among these algorithms:
 - Whether their easy to interpret / misinterpret
 - ...
- We compare usage patterns:
 - Surveying the field
 - Manual annotation of papers
- HyBayes: https://github.com/allenai/HyBayes

- The work surveys four different alternatives for hypothesis assessment.
 - Details in the paper
- We provide comparisons among these algorithms:
 - Whether their easy to interpret / misinterpret
 - ...
- We compare usage patterns:
 - Surveying the field
 - Manual annotation of papers
- HyBayes: https://github.com/allenai/HyBayes

- The work surveys four different alternatives for hypothesis assessment.
 - Details in the paper
- We provide comparisons among these algorithms:
 - Whether their easy to interpret / misinterpret
 - ...
- We compare usage patterns:
 - Surveying the field
 - Manual annotation of papers
- HyBayes: https://github.com/allenai/HyBayes

- The work surveys four different alternatives for hypothesis assessment.
 - Details in the paper
- We provide comparisons among these algorithms:
 - Whether their easy to interpret / misinterpret
 - ...
- We compare usage patterns:
 - Surveying the field
 - Manual annotation of papers
- HyBayes: https://github.com/allenai/HyBayes

- The work surveys four different alternatives for hypothesis assessment.
 - Details in the paper
- We provide comparisons among these algorithms:
 - Whether their easy to interpret / misinterpret
 - ...
- We compare usage patterns:
 - Surveying the field
 - Manual annotation of papers
- HyBayes: https://github.com/allenai/HyBayes

- The work surveys four different alternatives for hypothesis assessment.
 - Details in the paper
- We provide comparisons among these algorithms:
 - Whether their easy to interpret / misinterpret
 - ...
- We compare usage patterns:
 - Surveying the field
 - Manual annotation of papers
- HyBayes: https://github.com/allenai/HyBayes

