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This work

Q: What is this work about? 

Q: What do you mean by “hypothesis”? 

Q: Why should I care about hypothesis assessment? 

Different hypothesis assessment algorithms and their comparison  

Like any empirical field, in NLP we need to follow scientific principles
for drawing conclusions. 

it’s a prediction, based on certain assumptions & observations
e.g., classifier-1 is inherently better than classifier-2
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p-value Bayes Factor
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Statistical tools: big picture

• Suppose I want to assess a hypothesis 𝑯.

• Idea: use the Bayes formula to compute a 
probability for the hypothesis being true. 

𝑃 𝑯|observations
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Statistical tools: big picture

• Suppose I want to assess a hypothesis 𝑯.

• Idea: use the Bayes formula to compute a 
probability for the hypothesis being true. 

𝑃 𝑯|observations

Frequentist Bayesian

p-value Bayes Factor

Confidence 
Interval

Posterior 
Intervals
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Trends and Patterns in the field

Study NLP conference papers: ACL’18 papers (439 papers)

73

6

0

0

How many papers did use significance testing? 

Why?

- Many papers (~360) did not include any 
hypothesis assessment. 

- p-value based tests are the dominant choice 
among NLP practitioners. 

49



Lack of exposure to alternative algorithms

50



Lack of exposure to alternative algorithms

• The imbalance in usage: 
• Is it intentional? 

• Many people did not know the definition 
of “Bayes Factor.” 🤔

51



Do you know the definition of 
"Bayes Factor"?

Lack of exposure to alternative algorithms

• The imbalance in usage: 
• Is it intentional? 

• Many people did not know the definition 
of “Bayes Factor.” 🤔

52



Do you know the definition of 
"Bayes Factor"?

Lack of exposure to alternative algorithms

• The imbalance in usage: 
• Is it intentional? 

• Many people did not know the definition 
of “Bayes Factor.” 🤔

53



Do you know the definition of 
"Bayes Factor"?

Lack of exposure to alternative algorithms

• The imbalance in usage: 
• Is it intentional? 

• Many people did not know the definition 
of “Bayes Factor.” 🤔

We don’t teach the alternatives in our AI curriculum. 
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Usage Patterns

Ease of 
Interpretation

- NLP community is over-
using certain techniques. 

- One reason could be 
researchers’ lack of 
exposure to the 
alternatives. 
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Are we good at interpreting the p-values?

• Pretty complex notion! 

“The probability of obtaining test results at least 
as extreme as the results actually observed during 
the test, assuming that the null-hypothesis is 
correct.”   --your favorite statistics textbook 

𝑃 extreme obs. | 1𝑯 ≪ 𝛼

p-value
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A Survey Question: Interpreting P-value (1)

• Question 1: do you know p-values and its interpretation? 

86% expressed fair-to-complete confidence in their ability to interpret p-values. 
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Only a small percentage correctly answered a basic p-value interpretation question.
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Usage Patterns

Ease of 
Interpretation

• While p-valued based tests are the 
most popular choice among NLP 
practitioners, they’re difficult to 
understand and highly prone to 
misunderstanding. 

• Bayesian Intervals provide results 
that are more natural to interpret.
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• Details in the paper
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• Whether their easy to interpret / misinterpret 
• … 

•We compare usage patterns: 
• Surveying the field 
• Manual annotation of papers 

• HyBayes:  https://github.com/allenai/HyBayes
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