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§ Interpret a given text similar to humans.

§ Measuring the progress by answering questions.

o A system that is better in understanding language, should have a higher chance of 
answering these questions.

o This has been used in the field for many years 
[Winograd, 1972; Lehnert, 1977b; others] 

• Question Answering (QA), 

• Reading Comprehension (RC), 

• Textual Entailment (TE), etc. 
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§ Making sense of strings. 
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“A 61-year old furniture salesman was pushed 

down the shaft of a freight elevator yesterday.”

The sentence from

shaft of a freight elevator part-whole

height of a freight elevator attribute

Oxford English Dictionary lists 
10 primary meanings for “of”. 

A 61-year old furniture salesman

An antique furniture salesman
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“The buffer springs at the bottom of the shaft prevented the car from 

crushing the salesman, John J. Hug, after he was pushed from the first 

floor to the basement. The car stopped about 12 inches above him as he 

flattened himself at the bottom of the pit. Mr. Hug was pinned in the shaft 

for about half an hour until his cries attracted the attention of a porter.”
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§ A single meaning mentioned in many different ways. 

• Even more variability in bigger units (phrases, sentences, paragraphs, etc.) 
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Common-sense understanding

[Aristotle; Avicenna; Descartes; others]
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Variability Ambiguity Common-sense
understandingReasoning

❶ System design

❷ Evaluation

❸ Formalism 

Grounding 
language

Semantic similarity

Semantic abstraction

Abductive 
reasoning

Reasoning with 
multiple pieces of text

Reasoning with 
common-sense 
understanding

A framework to study reasoning, 
in presence of variability and ambiguity. 

Approach 

Challenge



Thesis Statement

§ Progress in automated question answering could be facilitated by

incorporating the ability to reason over natural language abstractions

and world knowledge.

§ More challenging, yet realistic QA datasets pose problems to current

technologies; hence, more opportunities for improvement.
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Road map

§ Introduction and motivation 

§ Part 1: Reasoning-Driven System Design

o QA as Subgraph Optimization on Tabular Knowledge [IJCAI’16]

o QA with Semantic Abstractions of Raw Text [AAAI’18]

o Learning to Pay Attention to Essential Terms in Questions [CoNLL’17] 

§ Part 2: Moving the Peaks Higher: More Challenging Datasets

o A QA Benchmark for Reasoning on Multiple Sentences [NAACL’18] 

o A QA Benchmark for Temporal Common-sense [Submitted]

§ Part 3: Formal Study of Reasoning in Natural Language 

o Capabilities and Limitations of Reasoning in Natural Language [In submission]

§ Conclusion 
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Road Map

§ Part 1: Reasoning-Driven System Design

oQA as Subgraph Optimization on Tabular Knowledge [IJCAI’16]

• Motivation 

• Knowledge as Tables 

• Reasoning on Knowledge 

• Experimental results 
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In New York State, the longest period of daylight
occurs during which month?

(A) June
(B) March
(C) December
(D) September

New Zealand shortest night

Premise: a system that “understands” this phenomenon 
can correctly answer many variations!
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Semi-Structured Inference

§ Structured, Multi-Step Reasoning

o Science knowledge in small, manageable, swappable pieces:
regions, hemispheres, solstice, ….

o Reasoning: putting together pieces of knowledge in a principled way.

o Goal: overcome brittleness

ü principled approach, explainable answers

ü robust to variations
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Question Answering

Question Answering 

Knowledge Representation 
Structured, 
yet flexible 

Reasoning
Effective, scalable 

as Global Reasoning 
over Semi-Structured Knowledge
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The Necessary Knowledge

The Knowledge Atlas: 12 key sections

Celestial Phenomena
sun
moon
stars
day/night,
rotation
revolution

The Earth
air
water
land
weather
precipitation
erosion

Matter
solid/liquid/gas
properties
conductivity
texture
temperature
measuring tools

Energy
forms
energy transfer
heat
electricity
chemical energy
energy conversion

Forces
gravity
magnetism
force
friction
pull/pushing
attraction

Living things
living
nonliving
characteristics
animals
plants
fish

Inheritance
inherited traits
resemblance
acquired traits
learned traits
body features
skills

The Environment 
and Adaptation

senses
habitats
behavior
camouflage
survival

Continuity of Life
life cycle
life span
offspring
reproduction
coloration
mating

Life Functions
breathing
growing
eating
food
air
water

Interdependence
food web
producers
consumers
decomposers
predators
prey

Human Impact
human activities
environment
ecosystem
pollution
conservation
deforestation



Knowledge as Frames

86

Frame Semantics 
[Minsky, 1974; Fillmore, 1977]



Knowledge as Frames

87

Orbital events

Hemisphere: ?
Orbital events: ?

Month: ?

Frame Semantics 
[Minsky, 1974; Fillmore, 1977]



Knowledge as Frames

88

Orbital events

Hemisphere: ?
Orbital events: ?

Month: ?

Frame Semantics 
[Minsky, 1974; Fillmore, 1977]



Knowledge as Frames

89

Energy, Forces,
Adaptation,
Phase Transition,
Organ Function,
Tools, Units,
Evolution, …

Simple structure, flexible content
▪ Can acquire knowledge in automated and semi-automated ways [Dalvi et al, 2016]

collections of recurring,
related, science concepts

Orbital events

Hemisphere: ?
Orbital events: ?

Month: ?

Frame Semantics 
[Minsky, 1974; Fillmore, 1977]



Knowledge as Frames
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Unstructured

e.g., free form text
from books, web

easy to acquire,
difficult to reason with

Structured

e.g., probabilistic first-order
logic rules, ontologies

“easy” to reason with,
difficult to acquire

Frames with free form text

Energy, Forces,
Adaptation,
Phase Transition,
Organ Function,
Tools, Units,
Evolution, …

Simple structure, flexible content
▪ Can acquire knowledge in automated and semi-automated ways [Dalvi et al, 2016]

collections of recurring,
related, science concepts

Orbital events

Hemisphere: ?
Orbital events: ?

Month: ?

Frame Semantics 
[Minsky, 1974; Fillmore, 1977]



Road Map

§ Part 1: Reasoning-Driven System Design

oQA as Subgraph Optimization on Tabular Knowledge [IJCAI’16]

• Motivation 

• Knowledge as Frames

• Reasoning on Knowledge 

• Experimental results 
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§ A discrete optimization approach to QA for multiple-choice questions
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TableILP Solver: An Overview

ILP model 
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answer options A

Knowledge
Tables T
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engine

ai ∈ A with
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+ score
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Phrasal 
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Potential Link:

Regions and
Hemispheres

How is relevant information expressed in my KB?

Cities,
States,

Countries
Orbital Events:

Geographical properties
& Timing

Search for the best Support Graph connecting 
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Search for the best Support Graph connecting 

the Question to an Answer through Tables.

Abductive reasoning

[Peirce, 1883]



TableILP: Main Idea

105
Search for the best Support Graph connecting 

the Question to an Answer through Tables.

Link this information

to identify the best

supported answer!

An ideal
Support Graph



Goal: Design ILP constraints C and objective function F, s.t.
maximizing F subject to C yields a “desirable” support graph

o Many possible “proof structures”

• single/multi-table, single/multi-row, answer in table header,

answer spanning multiple cells

o Must balance reward for connections with penalty for spurious links

o Imperfect lexical “similarity” blackbox

o Partial or missing knowledge in tables

o Question logic (negation, conjunction, comparison)

o Scalability of ILP solvers

106

Approach: ILP model
Not so straightforward!



Operates on lexical units of alignment

o cells + headers of tables T

o question chunks Q

o answer options A

~50 high level constraints + preferences

Variables define the space of “support graphs” connecting Q, A, T

o Which nodes + edges between lexical units are active?

Objective Function: “better” support graphs = higher objective value

o Reward active units, high lexical match links, column header match, …

o WH-term boost (“which form of energy…”), science-term boost (“evaporation”)

o Penalize spurious overuse of frequently occurring terms

107

ILP model



Dual goal: scalability, consider only meaningful support graphs

§ Structural Constraints

o Meaningful proof structures

• connectedness, question coverage, appropriate table use

• single/multi-table, single/multi-row, etc

o Simplicity appropriate for 4th / 8th grade

§ Semantic Constraints

o Chaining => table joins between semantically similar column pairs

o Relation matching (ruler measures length, change from water to liquid)

108

ILP Model: Constraints
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Experimental Results [KKSR’16]

TableILP scores 54% on 

“IR-hard” questions 
(random guessing = 25%)

Ensemble performs 

8-10% higher than 

IR baselines

[CEKSTTK’16]
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Experimental Results [KKSR’16]

116
TableILP

TableILP is substantially 

better than IR & MLN, 

when given knowledge 

derived from the same, 

domain-targeted sources. 
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Assessing Brittleness: Question Perturbation

119

How robust are approaches to simple question 
perturbations that would typically make the 
question easier for a human?

▪ E.g., Replace incorrect answers with arbitrary 
co-occurring terms

In New York State, the longest period of 
daylight occurs during which month?
(A) eastern (B) June  (C) history (D) years

TableILP drops 
the least. 



Motivating Example: Circling Back!

§ Towards “real understanding” of the phenomenon tested in a question.
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Motivating Example: Circling Back!

§ Towards “real understanding” of the phenomenon tested in a question.
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IR PMI TableILP

In New York State, the longest period of 
daylight occurs during which month?

June June June

In New Zealand, the longest period of 
daylight occurs during which month?

March Dec Dec

In New Zealand, the shortest period of 
daylight occurs during which month?

March Dec June

In New Zealand, the shortest period of 
night occurs during which month? Dec Dec Dec



§ Elementary school science tests as a challenge for NLU. 

§ Knowledge as semi-automatically extracted knowledge. 

§ Abductive reasoning, to provide the best explanations. 

§ Showed effective and complementary performances. 

§ Impacts, since publications: 

o Strong performance on new datasets [Clark et al, Arxiv’2018]

o Inspired other works [Khot et al, ACL’2017]
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Summary, So Far



Road Map

§ Part 1: Reasoning-Driven System Design

oQA as Subgraph Optimization on Tabular Knowledge [IJCAI’16]

oQA with Semantic Abstractions of Raw Text [AAAI’18]

o Learning to Pay Attention to Essential Terms in Questions [CoNLL’17]
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Reasoning With Semantic Abstractions [KKSR’18]vig
net

tes

Knowledge  
provided as 

raw text. 

Representing text, as 

layers of semantic 

abstractions. 

§ Verb-Semantic Roles 

§ Preposition-Semantic Roles

§ Comma-semantic Roles

§ Coreference 

[Punyakanok et al, 2008]

[Srikumar & Roth, 2013]

[Arivazhagan et al, 2016]

Easier domain 
transfer! 

Improvements in 
multiple domains. 

[Chang et al, 2012]



Learning Essential Terms in Questions [KKSR’17]

131
131

vignette
s

Some animals grows thicker hair as a season changes. This adaptation helps to _______.  
(A)  find food (B) keep warmer (C) grow stronger (D) escape from predators

Challenge for QA systems:  Is a word in a question important, redundant, or distracting?



Learning Essential Terms in Questions [KKSR’17]

132
132

Essentiality
in Questions

vignette
s

Some animals grows thicker hair as a season changes. This adaptation helps to _______.  
(A)  find food (B) keep warmer (C) grow stronger (D) escape from predators

Challenge for QA systems:  Is a word in a question important, redundant, or distracting?



Learning Essential Terms in Questions [KKSR’17]

133
133

Essentiality
in Questions

2K annotated questions
19K annotated terms

vignette
s

Some animals grows thicker hair as a season changes. This adaptation helps to _______.  
(A)  find food (B) keep warmer (C) grow stronger (D) escape from predators

Challenge for QA systems:  Is a word in a question important, redundant, or distracting?



Learning Essential Terms in Questions [KKSR’17]

134
134

Essentiality
in Questions

2K annotated questions
19K annotated terms

Important for
humans!

vignette
s

Some animals grows thicker hair as a season changes. This adaptation helps to _______.  
(A)  find food (B) keep warmer (C) grow stronger (D) escape from predators

Challenge for QA systems:  Is a word in a question important, redundant, or distracting?



Learning Essential Terms in Questions [KKSR’17]

135
135

Essentiality
in Questions

2K annotated questions
19K annotated terms

State-of-the-art
Essentiality classifier:
F1 = 0.8, MAP = 0.9

Important for
humans!

vignette
s

Some animals grows thicker hair as a season changes. This adaptation helps to _______.  
(A)  find food (B) keep warmer (C) grow stronger (D) escape from predators

Challenge for QA systems:  Is a word in a question important, redundant, or distracting?



Learning Essential Terms in Questions [KKSR’17]
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Essentiality
in Questions

Up to 5% increase
in end-to-end QA

performance

2K annotated questions
19K annotated terms

State-of-the-art
Essentiality classifier:
F1 = 0.8, MAP = 0.9

Important for
humans!

vignette
s

Some animals grows thicker hair as a season changes. This adaptation helps to _______.  
(A)  find food (B) keep warmer (C) grow stronger (D) escape from predators

Challenge for QA systems:  Is a word in a question important, redundant, or distracting?

Dataset Baseline With ET    

Regents 59.11 60.85

AI2Public 57.90 59.10

RegtsPertd 61.84 66.84



Road Map

§ Part 2: Moving the Peaks Higher: More Challenging Datasets

o A QA Benchmark for Temporal Common Sense [Submitted]

o A QA Benchmark for Reasoning on Multiple Sentences [NAACL’18] 
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§ Many large QA datasets 

§ Successes, with neural nets 

o Faster computers (e.g., GPUs) 

o New computational modules (e.g., Attentions)

o More data 
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[Rajpurkar at al, 2016; others]
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The Recent State of the Field: Bad News



§ The systems easily break-down.

§ Many problems with no significant success: Math word problems; dialogue; 

many others. 

o Some are not even defined yet. 

§ Discoveries are more about tasks (datasets). 

§ The urge to scale up datasets has biased in certain angles and limited 

their diversity. 
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150

Moving the Peaks Higher



151

Moving the Peaks Higher

Goal here:  

Define and create challenges not addressed by the community. 

Challenges that require external knowledge, common-sense, 

complex reasoning, etc. 



152

Moving the Peaks Higher

Goal here:  

Define and create challenges not addressed by the community. 

Challenges that require external knowledge, common-sense, 

complex reasoning, etc. 

Including 
our systems



153

Moving the Peaks Higher

Goal here:  

Define and create challenges not addressed by the community. 
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Road Map

§ Part 2: Moving the Peaks Higher: More Challenging Datasets

o A QA Benchmark for Temporal Common Sense [Submitted]

o A QA Benchmark for Reasoning on Multiple Sentences [NAACL’18] 
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Did Aristotle have a laptop?
[Valiant, ?]
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Types of “Knowledge”

• The capital city of Venezuela is Caracas. 

• Obama was born in Honolulu, HI. 

• If you lived thousands of years ago, you’re 

unlikely to be alive now. 

• Laptops didn’t exist, before they were invented. Focus of 
this work



161

Common Sense: A Short History



§ Many early works 

o Since the early days of AI

o Ambitious projects 

§ Recent years: 

oWinograd Schema Challenge 

162

Common Sense: A Short History



§ Many early works 

o Since the early days of AI

o Ambitious projects 

§ Recent years: 

oWinograd Schema Challenge 

163

Common Sense: A Short History

[McCarthy, 68; Charniak, 77; others]



§ Many early works 

o Since the early days of AI

o Ambitious projects 

§ Recent years: 

oWinograd Schema Challenge 

164

Common Sense: A Short History

[McCarthy, 68; Charniak, 77; others]

[Lenat, 85; others]



§ Many early works 

o Since the early days of AI

o Ambitious projects 

§ Recent years: 

oWinograd Schema Challenge 

165

Common Sense: A Short History

[Levesque, 2014; Peng, K, Roth, 2015]

[McCarthy, 68; Charniak, 77; others]

[Lenat, 85; others]



§ Many early works 

o Since the early days of AI

o Ambitious projects 

§ Recent years: 

oWinograd Schema Challenge 

166

Common Sense: A Short History

[Levesque, 2014; Peng, K, Roth, 2015]

[McCarthy, 68; Charniak, 77; others]

“Jack pulled up a picture of Aristotle on his laptop”

“Jack pulled up a picture of Aristotle from his biography”

[Lenat, 85; others]



§ Many early works 

o Since the early days of AI

o Ambitious projects 

§ Recent years: 

oWinograd Schema Challenge 

167

Common Sense: A Short History

[Levesque, 2014; Peng, K, Roth, 2015]

[McCarthy, 68; Charniak, 77; others]

“Jack pulled up a picture of Aristotle on his laptop”

“Jack pulled up a picture of Aristotle from his biography”

[Lenat, 85; others]

Incentivizing 
commonsense 
understanding 

as a high-level and 
well-defined task. 



Temporal Common Sense 

§ Understanding “time” is a key ability in many NLU tasks. 
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Temporal Common Sense 

§ Understanding “time” is a key ability in many NLU tasks. 
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“Going to barbershop” takes a couple of hours

“Going to college” takes a couple of years

“Take a trip to Africa” happens once in a few years 

“Take a trip to parent’s” happens every few weeks or months 

“Going to work” usually happens around morning time

“Going to a bar” usually happens around evening/night time

Event duration

Event frequency

Typical time

Goal of this section: 

QA dataset that requires temporal commonsense. 



Temporal Common Sense as QA

§ A dataset of natural language questions 

oQuestions about a “temporal” understanding 

• About 1k questions and 8k candidate answers 

• 5 temporal phenomena: 

§ Event duration, event frequency, absolute time point, event ordering, stationary vs transient 
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Scenario: I clapped her shoulder to show I was not laughing at her. 
Question: How long did they laugh?
Candidates:

(A) for a few days     (B) 20 minutes     (C) for a few minutes
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Scenario: With the amount of money Diggler was making he was able to 
support both his and Rothchild's addictions. 
Question: What time did Diggler go to work? 
Candidates:

(A) at eight in the late night    (B) he leaves around 3 am   (C) he leaves around 8 am
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Scenario: She checked the kitchen, but didn't find anything missing 
there except for a clock. 
Question: Why was she checking for missing items?
Candidates:
(A) her window had been broken (B) someone tied her hands 
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Scenario: They then took a boat to Africa and Asia, where they 
went on a trip through the mountains. 
Question: How often do they go on trips? 
Candidates:

(A) every night (B) once a year 
(C) twice a year (D) once a week



TacoQA: Construction Overview

177

177

Define the task 
and the desired 

questions 

Find the qualified 
annotators



TacoQA: Construction Overview

178

178

Define the task 
and the desired 

questions 

Find the qualified 
annotators

Generate questions, 
given scenarios, for each 

temporal phenomena



TacoQA: Construction Overview

179

179

Define the task 
and the desired 

questions 

Find the qualified 
annotators

Q: How often do they go on trips? 
A: Once a year

Generate questions, 
given scenarios, for each 

temporal phenomena



TacoQA: Construction Overview

180

180

Define the task 
and the desired 

questions 

Find the qualified 
annotators

Verify the question 
quality and their 
temporal category

Q: How often do they go on trips? 
A: Once a year

Generate questions, 
given scenarios, for each 

temporal phenomena



TacoQA: Construction Overview

181

181

Define the task 
and the desired 

questions 

Find the qualified 
annotators

Verify the question 
quality and their 
temporal category

Q: How often do they go on trips? 
A: Once a year

Candidate answer 
expansion

Once a month
Once a decade
Twice a year

Never
Rarely

Generate questions, 
given scenarios, for each 

temporal phenomena



TacoQA: Construction Overview

182

182

Define the task 
and the desired 

questions 

Find the qualified 
annotators

Verify the question 
quality and their 
temporal category

Q: How often do they go on trips? 
A: Once a year

Candidate answer 
expansion

Once a month
Once a decade
Twice a year

Never
Rarely

Generate questions, 
given scenarios, for each 

temporal phenomena

Answer 
verification



Experimental Results [ZKNR, under review]

183

Random ESIM BERT



Experimental Results [ZKNR, under review]

184

Random ESIM BERT

Human (F1)

Human (EM)



Experimental Results [ZKNR, under review]

185

Random ESIM BERT

Human (F1)

Human (EM)

A systems gets credit 
only if, it gets all the 

candidates right. 



Experimental Results [ZKNR, under review]

186

Random ESIM BERT

Human (F1)

Human (EM)

A systems gets credit 
only if, it gets all the 

candidates right. 



Experimental Results [ZKNR, under review]

187

Random ESIM BERT

Human (F1)

Human (EM)

Supervised-learning (LSTM)
[Chen et al, 2017]

A systems gets credit 
only if, it gets all the 

candidates right. 



Experimental Results [ZKNR, under review]

188

Random ESIM BERT

Human (F1)

Human (EM)

Supervised-learning (LSTM)
[Chen et al, 2017]

A systems gets credit 
only if, it gets all the 

candidates right. 



Experimental Results [ZKNR, under review]

189

Random ESIM BERT

Human (F1)

Human (EM)

Pre-trained contextualized model 
[Devlin et al, 2018] 

Supervised-learning (LSTM)
[Chen et al, 2017]

A systems gets credit 
only if, it gets all the 

candidates right. 



Experimental Results [ZKNR, under review]

190

Random ESIM BERT

Human (F1)

Human (EM)

Pre-trained contextualized model 
[Devlin et al, 2018] 

Supervised-learning (LSTM)
[Chen et al, 2017]

A systems gets credit 
only if, it gets all the 

candidates right. 



Experimental results [ZKNR, under review]

191

Human (EM)

Human (F1)

Random ESIM BERT BERT BERT BERT
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[Devlin et al, 2018]
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§ Explicit knowledge bases; e.g. ConceptNet

o Okay precision but low recall (coverage)

o Suffer from brittleness 

§ Language models, soft representations 

o Can deal with certain associations 

o Suffer from precision issues 
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Scenario: He laid down on the chair and pawed 
at her as she ran in a circle under it. 
Question: How long did she run in a circle?

BERT 
selected as 

answer
Candidate answer

✘ weeks

✘ days
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Summary of This Section

§ Understanding time is crucial aspect of NLU. 

§ A QA dataset of temporal commonsense questions. 

§ Evaluated systems and showing few angles they are missing. 
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Road Map

§ Part 2: Moving the Peaks Higher: More Challenging Datasets

o A QA Benchmark for Temporal Common-sense [Submitted]

o A QA Benchmark for Reasoning on Multiple Sentences [NAACL’18] 
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A Benchmark for Reasoning over Multiple Sentences [KCRUR’18]vignette
s

“Multi-sentence” hypothesis: 
Questions that require multiple 

sentences tend to be “hard”. 



§ The need for creating “reasoning-forcing” challenges

§ 4-step crowdsourcing 

§ From 8 domains (fiction, news, science, etc) 

o +10k questions  

o 50k candidate answers 

o +700 paragraphs 
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A Benchmark for Reasoning over Multiple Sentences [KCRUR’18]vignette
s

“Multi-sentence” hypothesis: 
Questions that require multiple 

sentences tend to be “hard”. 

https://cogcomp.org/multirc

Human (EM)

Human (F1)

[Radford et al, 
2018]

[K et al, 
2018]



Road Map

§ Part 3: Formal Study of Reasoning in Natural Language 

o Capabilities and Limitations of Reasoning in Natural Language [In submission]
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A Formal Study of NL Reasoning: Overview

206



A Formal Study of NL Reasoning: Overview

§ We provide a formalized study of reasoning.

§ Requires assumptions about “knowledge” and “reasoning”.

o Information represented as graphs (nodes and semantic relations).

• Any other structure can be thought of an explicit or implicit graph. 

o Incorporate properties like variability, ambiguity, etc. 

o Reasoning:  the operation that combines chunks of information to make a conclusion. 

§ Distinguish successful and failed reasoning. 
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212

What We Do Not Say



§ Not making claims about: 

oHow “reasoning” should be defined.

oHow “knowledge” should be represented.

oHow systems should be designed.

§ Theoretical results based on assumptions (“no free lunch”).

owhich may or may not stand the test of time.
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p- : Probability of 
adding spurious 
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λ : variability factor

p+  : Probability of 
retaining relations

ε+ : Probability of 
inferring true 
equivalence  
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§ “Inferring” connectivity in the (hidden) meaning graph 

o Given observations (a symbol graph)
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The Inference Problem

Meaning graphs

one of the 
hypotheses require 
d-step connectivity
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…
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m

m'

Goal: Infer the connectivity of two given nodes (in the unseen meaning graph), 
given observations in the symbol graph. 
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o Pursuing “very long” multi-hop reasoning is unlikely to result in general 

results. 

o Corollary: one has to focus on richer representations (i.e., dealing with 

ambiguity and variability) such that it leads to few number of hops needed. 
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§ A framework for studying “reasoning”, in the context of language 

problems. 

§ Multi-hop reasoning: 

• + There are non-trivial problems where successful reasoning is reliable.

• - Reasoning with “large”-many hops likely to fail, even with small amount of noise.

§ Implications for practice 

o Hypothesis: invest in representations that lead to few hops reasonings. 
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§ NLU; potentials for significant impacts in the coming years. 

§ Answering questions: a natural evaluation protocol. 

oMany challenges along the way to this goal: ambiguity, variability, etc.

§ Approaches: 

o System design: systems that abstracting over text and reasoning with it. 

o Evaluation: effective benchmarks to measure and incentivize the community. 

o Formalism: to study a class of reasoning algorithms in the context of language.
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§ KSKSR. On the Capabilities and Limitations of Reasoning for Natural Language Understanding, in submission. 

§ ZKNR. A Question Answering Benchmark for Temporal Common-sense, under review. 

§ KCRUR. Looking Beyond the Surface: A Challenge Set for Reading Comprehension over Multiple Sentences, 

NAACL, 2018. 

§ KKSR. Question Answering as Global Reasoning over Semantic Abstractions, AAAI, 2018. 

§ KKSR. Learning What is Essential in Questions, CoNLL, 2017. 

§ KKSR. Question Answering via Integer Programming over Semi-Structured Knowledge, IJCAI, 2016. 
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§ NLP: 

o CKWCR. Seeing Things from a Different Angle: Discovering Diverse Perspectives about Claims, under review. 

o ZKCR. Zero-Shot Open Entity Typing as Type-Compatible Grounding, EMNLP, 2018. 

o CEKSTTK. Combining Retrieval, Statistics, and Inference to Answer Elementary Science Questions, AAAI, 2016. 

o FKPWR. Illinois-Profiler: Knowledge Schemas at Scale, Cognitum, 2015. 

o PKR. Solving Hard Co-reference Problems, NAACL, 2015. 

§ NLP software/tools: 

o K et al. CogCompNLP: Your Swiss Army Knife for NLP, LREC, 2018. 

o SCKKSVBWR. EDISON: Feature Extraction for NLP, Simplified, LREC, 2016. 

§ ML/Optimization/etc: 

o KSKCSSR. Relational Learning and Feature Extraction by Querying over Heterogeneous Information Networks, StartAI, 2018. 

o KKCMSR. Better call Saul: Flexible Programming for Learning and Inference in NLP, COLING, 2016.

o QK. Online Learning with Adversarial Delays, NourIPS, 2015. 

o KNJF. Joint Demosaicing and Denoising via Learned Non-parametric Random Fields, TIP, 2014. 
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Questions? 

§ That’s it folks


