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Age of Big Data



§ Big data: 

oOver 56 billion pages 

oOver 500 million tweets are sent every day.

oOver 4 million blog posts are published on the Internet every day.

§ Deep learning: 

o 1.5 billion parameters [Radford et al. 2019]

o Super-human performance [Devlin et al. 2018]
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Age of Big Data



4

Troubling Observations



§ Brittleness with respect to small changes
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Troubling Observations

[K at al. 2016; Jia et al. 2017; 
Ribeiro et al. 2018; others]

Context: In the United States especially, several high-profile cases such 
as Debra LaFave, Pamela Rogers, and Mary Kay Letourneau have caused 
increased scrutiny on teacher misconduct. 

Question: What has been the result of this publicity?
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Troubling Observations
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Troubling Observations

[K at al. 2016; Jia et al. 2017; 
Ribeiro et al. 2018; others]

Context: In the United States especially, several high-profile cases such 
as Debra LaFave, Pamela Rogers, and Mary Kay Letourneau have caused 
increased scrutiny on teacher misconduct. 

Question: What has been the result of this publicity?

What’s

“increased scrutiny on teacher misconduct”

“teacher misconduct”
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Scenarios with Little (no?) Supervision



§ Majority of our success has been on tasks w/ abundant annotations.

o And tasks with little annotated data get the least attention. 

§ There will be settings where there is not “enough” direct 

supervision. 

o Unseen/unexpected scenarios. 

o Change of style, context, domain, etc.

o These all result in vast space of possibilities for meanings. 11
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Talk Statement

§ It’s unlikely that we will have directly “annotated” data that cover all

aspects of natural language understanding. 

§ Data provides “hints” that exist independently of the task at hand. 

§ Weak signals can be amplified to produce higher quality signals.

o Requires effective use of representation, knowledge and putting them together.
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Data
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This talk
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“Supervision” vs “Data”
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“Supervision” vs “Data”

{(x,y)}

Supervision
(direct annotations)
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(     ,”spam”)

... 
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“Supervision” vs “Data”

{(x,y)}

Supervision
(direct annotations) data

(     ,”spam”)
(      , ”ham”)
(     ,”spam”)

... 

Minimal Abundant
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with minimal supervision
§ Representations
§ Wikipedia
§ Structure of the problem
§ Compositionality 
§ Other learned models
§ …



This talk

▣ Introduction

▢ Answering Questions

▢ Semantic Typing of Entities

▢ Future Work
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with minimal supervision
§ Representations
§ Wikipedia
§ Structure of the problem
§ Compositionality 
§ Other learned models
§ …



ANSWERING QUESTIONS with minimal supervision

K et al. Question Answering as Global Reasoning over Semantic Abstractions. AAAI 18.

K et al. Question Answering via Integer Programming over Semi-Structured Knowledge. IJCAI 16.

Clark, EKSTTK. Combining Retrieval, Statistics, and Inference to Answer Elementary Science Questions. AAAI 16.



Why Answering Questions? 
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§ The grand goal: Natural Language Understanding (NLU). 

§ Measuring progress by answering questions.
o A system that is better at understanding language should 

have a higher chance of answering questions.

o This has been used in the field for many years. 
[Winograd, 1972; Lehnert, 1977b; others] 

o Question Answering (QA), Reading Comprehension (RC), Textual Entailment (TE), etc. 
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Answering Questions: The Setting
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Answering Questions: The Setting

Question: A bear survives winters with what structure?
(A) big ears 
(B) black nose 
(C) thick fur 
(D) brown eyes

+
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Answering Questions: The Setting

Question: A bear survives winters with what structure?
(A) big ears 
(B) black nose 
(C) thick fur 
(D) brown eyes

+
Attached to each question is an 
evidence paragraph, potentially 
with the answer to the question. 

+



§ Standardized science exams. [Clark et al. 2015]

§ Simple language; machines require the ability to use the knowledge and 

abstract over it. 
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Question: A bear survives winters with what structure?
(A) big ears 
(B) black nose 
(C) thick fur 
(D) brown eyes

Linguistic Variability
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… and a bear survives winters using its thick fur …   

Evidence 
paragraph

Question: A bear survives winters with what structure?
(A) big ears 
(B) black nose 
(C) thick fur 
(D) brown eyes

Linguistic Variability
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Linguistic Variability
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(A) big ears 
(B) black nose 
(C) thick fur 
(D) brown eyes

+Question: A bear survives winters with what structure?



Linguistic Variability
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... Polar bears, saved from the bitter cold by their thick fur coats, are among the 
animals in danger of extinction because of global warming and human activities. …

Evidence 
paragraph

(A) big ears 
(B) black nose 
(C) thick fur 
(D) brown eyes

+Question: A bear survives winters with what structure?



Linguistic Variability
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... Polar bears, saved from the bitter cold by their thick fur coats, are among the 
animals in danger of extinction because of global warming and human activities. …

Evidence 
paragraph

(A) big ears 
(B) black nose 
(C) thick fur 
(D) brown eyes

+Question: A bear survives winters with what structure?

A given “meaning” can be phrased in many surface forms! 



Linguistic Variability

54

(A) big ears 
(B) black nose 
(C) thick fur 
(D) brown eyes

+Question: A bear survives winters with what structure?

Polar bears have white fur so that they can camouflage into their environment. Their coat is so well 
camouflaged in Arctic environments that it can sometimes pass as a snow drift. They have a thick layer of 
body fat, which keeps them warm while swimming, and a double-layered coat that insulates them from the 
cold Arctic air. 

Polar bears, saved from the bitter cold by their thick fur coats, are among the animals in danger of 
extinction because of global warming and human activities. Polar bears’ lives depend wholly on the sea, 
their main source of food, and the place they spend most of their lives. But as the climate warms, that ice is 
melting, threatening polar bears. A common method of hunting by polar bears involves the bear keeping 
perfectly still by a seal's breathing hole, waiting for hours—or even days—for a seal to pop up for air.

Evidence 
paragraph
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A Common Approach: Supervised Learning



56

A Common Approach: Supervised Learning



57

A Common Approach: Supervised Learning

Question: A bear survives … ?

Evidence 
paragraph
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A Common Approach: Supervised Learning

Question: A bear survives … ?

Evidence 
paragraph

“thick fur coats”



§ Input: question, an evidence paragraph. 

§ Output: predicted answer. 

§ Much success: Mostly with abundantly annotated data. 

§ Things can break down! 
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A Common Approach: Supervised Learning

Question: A bear survives … ?

Evidence 
paragraph

“thick fur coats”



Polar bears have white fur so that they can camouflage into their environment. Their coat 
is so well camouflaged in Arctic environments that it can sometimes pass as a snow drift. 
They have a thick layer of body fat, which keeps them warm while swimming, and a 
double-layered coat that insulates them from the cold Arctic air. 

Polar bears, saved from the bitter cold by their thick fur coats, are among the animals in 
danger of extinction because of global warming and human activities. Polar bears’ lives 
depend wholly on the sea, their main source of food, and the place they spend most of their 
lives. But as the climate warms, that ice is melting, threatening polar bears. A common 
method of hunting by polar bears involves the bear keeping perfectly still by a seal's 
breathing hole, waiting for hours—or even days—for a seal to pop up for air.

Question: A bear survives winters with what structure?

https://demo.allennlp.org
[Seo et al, 17, Gardner et al, 18]

[Fetched on March 26, 2019]
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Predicted 
Answer§ Can we “explain” the decision? 

§ Can we “fix” such behaviors? 
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Question Answering

Question Answering 

as Global Reasoning 

over Semi-Structured Knowledge
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Question Answering 

Knowledge Representation 
Structured, 
yet flexible 

as Global Reasoning 

over Semi-Structured Knowledge
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Question Answering

Question Answering 

Knowledge Representation 
Structured, 
yet flexible 

Reasoning
Effective, scalable 

as Global Reasoning 

over Semi-Structured Knowledge



Language Understanding Phenomena
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Question: A bear survives winters with what structure?
(A) big ears 
(B) black nose 
(C) thick fur 
(D) brown eyes

+

Polar bears, saved from the bitter cold by their thick fur coats, are among 
the animals in danger of extinction because of global warming and 
human activities. 

Evidence 
paragraph
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Question: A bear survives winters with what structure?
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Evidence 
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verb
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Question: A bear survives winters with what structure?
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Question: A bear survives winters with what structure?
(A) big ears 
(B) black nose 
(C) thick fur 
(D) brown eyes

+

Polar bears, saved from the bitter cold by their thick fur coats, are among 
the animals in danger of extinction because of global warming and 
human activities. 

Evidence 
paragraph

preposition

verb
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Question: A bear survives winters with what structure?
(A) big ears 
(B) black nose 
(C) thick fur 
(D) brown eyes

+

Polar bears, saved from the bitter cold by their thick fur coats, are among 
the animals in danger of extinction because of global warming and 
human activities. 

Evidence 
paragraph

prepositioncomma

verb
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Question: A bear survives winters with what structure?
(A) big ears 
(B) black nose 
(C) thick fur 
(D) brown eyes

+

Polar bears, saved from the bitter cold by their thick fur coats, are among 
the animals in danger of extinction because of global warming and 
human activities. 

Evidence 
paragraph

QA is fundamentally a NLU problem

prepositioncomma

verb
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“Lifting” Meaning as Semantic Graphs

... Polar bears, saved from the bitter cold by their thick fur coats, are 
among the animals in danger of extinction because of global warming 
and human activities. 

Evidence 
paragraph
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“Lifting” Meaning as Semantic Graphs

... Polar bears, saved from the bitter cold by their thick fur coats, are 
among the animals in danger of extinction because of global warming 
and human activities. 

Evidence 
paragraph

saved from the bitter cold by their thick fur coats

action agent

Preposition Semantic Roles [Srikumar & Roth, 2013]
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“Lifting” Meaning as Semantic Graphs

... Polar bears, saved from the bitter cold by their thick fur coats, are 
among the animals in danger of extinction because of global warming 
and human activities. 

Evidence 
paragraph

saved from the bitter cold by their thick fur coats

Agent of action
action agent

saved from the bitter cold by the river

action location

Preposition Semantic Roles [Srikumar & Roth, 2013]
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“Lifting” Meaning as Semantic Graphs

... Polar bears, saved from the bitter cold by their thick fur coats, are 
among the animals in danger of extinction because of global warming 
and human activities. 

Evidence 
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“Lifting” Meaning as Semantic Graphs

... Polar bears, saved from the bitter cold by their thick fur coats, are 
among the animals in danger of extinction because of global warming 
and human activities. 

Evidence 
paragraph

saved from the bitter cold by their thick fur coats

Agent of action
action agent

Oxford English 
Dictionary lists 8
primary meanings 

for “by”. 

Location of action

saved from the bitter cold by the river

action location

Preposition Semantic Roles [Srikumar & Roth, 2013]
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“Lifting” Meaning as Semantic Graphs

... Polar bears, saved from the bitter cold by their thick fur coats, are 
among the animals in danger of extinction because of global warming 
and human activities. 

Evidence 
paragraph

saved from the bitter cold by their thick fur coats

Agent of action
action agent

Oxford English 
Dictionary lists 8
primary meanings 

for “by”. 

Location of action

saved from the bitter cold by the river

action location

Preposition Semantic Roles [Srikumar & Roth, 2013]

Disambiguation!
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“Lifting” Meaning as Semantic Graphs

... Polar bears ,  saved from the bitter cold by their thick fur coats, are among 
the animals in danger of extinction because of global warming and human 
activities. 
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paragraph
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“Lifting” Meaning as Semantic Graphs

... Polar bears ,  saved from the bitter cold by their thick fur coats, are among 
the animals in danger of extinction because of global warming and human 
activities. 

Evidence 
paragraph

Polar bears , saved from the bitter cold

mention description

Comma Semantic Roles [Arivazhagan et al. 2016]
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“Lifting” Meaning as Semantic Graphs

... Polar bears ,  saved from the bitter cold by their thick fur coats, are among 
the animals in danger of extinction because of global warming and human 
activities. 

Evidence 
paragraph

apposition structure

Polar bears , saved from the bitter cold

mention description

Comma Semantic Roles [Arivazhagan et al. 2016]
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Question: A bear survives winters with what structure?
(A) big ears 
(B) black nose 
(C) thick fur 
(D) brown eyes

+

“Lifting” Meaning as Semantic Graphs
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Question: A bear survives winters with what structure?
(A) big ears 
(B) black nose 
(C) thick fur 
(D) brown eyes

+

“Lifting” Meaning as Semantic Graphs
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live despite 
circumstance 

Verb Semantic Roles [Punyakanok et al. 2008]

a bear survive a winter

survivor adverse circumstance

what structure



Semantic Representations Altogether

Question 
Instance

Question

Paragraph

Candidates
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Semantic Representations Altogether

Question 
Instance

Question

Paragraph

Candidates

saved from the bitter cold by their thick fur coats

action agent

Polar bears , saved from the bitter cold

mention description

a bear survive a winter

survivor adverse circumstance

what structure

(A) big ears (B) black nose (C) thick fur (D) brown eyes



§ Create a unified representation of families of graphs
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Collections of Semantic Graphs 

§ Verb Semantic Roles 

§ Preposition Semantic Roles

§ Comma Semantic Roles

§ Coreference

§ … 

[Punyakanok et al. 2008]

[Srikumar & Roth 2013]

[Arivazhagan et al. 2016]

[Chang et al. 2012]
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Collections of Semantic Graphs 

- Surface word 
- Semantic labels
- Other representation
- …

§ Verb Semantic Roles 

§ Preposition Semantic Roles

§ Comma Semantic Roles

§ Coreference

§ … 

[Punyakanok et al. 2008]

[Srikumar & Roth 2013]

[Arivazhagan et al. 2016]

[Chang et al. 2012]
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Collections of Semantic Graphs 

- Surface word 
- Semantic labels
- Other representation
- …

§ Verb Semantic Roles 

§ Preposition Semantic Roles

§ Comma Semantic Roles

§ Coreference

§ … 

[Punyakanok et al. 2008]

[Srikumar & Roth 2013]

[Arivazhagan et al. 2016]

[Chang et al. 2012]

available in our 
software pipeline. 

K et al. LREC’18 
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Collections of Semantic Graphs 

Our representation is not QA-specific. 
It reflects our understanding of the language

Consequently, we expect these representations to 
be useful for a range of tasks

- Surface word 
- Semantic labels
- Other representation
- …

§ Verb Semantic Roles 

§ Preposition Semantic Roles

§ Comma Semantic Roles

§ Coreference

§ … 

[Punyakanok et al. 2008]

[Srikumar & Roth 2013]

[Arivazhagan et al. 2016]

[Chang et al. 2012]

available in our 
software pipeline. 

K et al. LREC’18 
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Support Graph

saved from the bitter cold by their thick fur coats

action agent

Polar bears , saved from the bitter cold

mention description

a bear survive a winter

survivor adverse circumstance

what structure

(A) big ears (B) black nose (C) thick fur (D) brown eyes

Question 
Instance

Question

Paragraph

Candidates
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Support Graph

saved from the bitter cold by their thick fur coats

action agent

Polar bears , saved from the bitter cold

mention description

a bear survive a winter

survivor adverse circumstance

what structure

(A) big ears (B) black nose (C) thick fur (D) brown eyes

Search for the best Support Graph connecting the 
Question to an Answer through the knowledge graph.

Question 
Instance

Question

Paragraph

Candidates
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§ Support Graph creates potential alignments between various semantic abstractions. 
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Reasoning With a Meaning Representation

QA Reasoning formulated as finding “best” explanation – subgraph 
connecting the Question to the Answers via the Knowledge 

Edges reflect 
similarity / entailment 

Abductive reasoning

[Peirce, 1883]



§ A discrete optimization approach to QA for multiple-choice questions
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Goal: Design ILP objective function, s.t. maximizing it subject to the constraints 

yields a “desirable” support graph

118

ILP Model: Design Challenges

Not so straightforward! § Many possible “proof structures”

§ Imperfect lexical “similarity” blackbox

§ Partial or missing knowledge

§ Question logic (negation, conjunction, comparison)

§ Scalability of ILP solvers

§ …
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Variables define the space of “support graphs”:

o Each variable corresponds to to a node or edge.  

o x=1 iff nodes / edges are part of the semantic graph. 
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ILP Model: Some Details

Support Graph
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Objective Function: “better” support graphs = higher objective value

o Reward good behavior: 

• High lexical match links, nearby alignments, using the subject if using a predicate-

argument structure, WH-terms (“which of energy …”), etc. 

o Penalize spurious overuse of frequently occurring terms
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ILP Model: Some Details

Dual goal: scalability, consider only meaningful support graphs

Incorporate global and local structure. 



§ Structural Constraints

o Meaningful proof structures

• connectedness, question coverage, etc. 

• single/multi-graph, etc.
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ILP Model: Some Details
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§ Structural Constraints

o Meaningful proof structures

• connectedness, question coverage, etc. 

• single/multi-graph, etc.
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ILP Model: Some Details

§ Semantic Constraints 

o If using a predicate-argument graphs, 

• use at least predicate and argument

Dual goal: scalability, consider only meaningful support graphs

Incorporate global and local structure. 
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Information 
Retrieval (IR)

Information retrieval 
baseline (Lucene)

Using 280 GB of plain text 

Inference over 
structure (TupleInf)

Inference over 
auto-generated short triples 

And type-constrained rules 

Neural 
Network (BiDAF)

Attention & LSTM 

Extractive, i.e select a 
contiguous phrase in a given 
paragraph 

Type constrained rules:
(X, helps in, Y), (Z, has, Y) => (X, helps in, Z)

Thick fur helps in cold winter

Tundra biome has cold winter

helps in

[Khot et al. ACL’17][Clark et al. AAAI’15] [Seo et al. ICLR’16]
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Answering Questions: Biology Exams

§ Biology exams

● Technical terms and answer not easy to find. 

● Requires understanding complex relations. 

143

[Berant at al, 2014]



Answering Questions: Biology Exams

§ Biology exams

● Technical terms and answer not easy to find. 

● Requires understanding complex relations. 

144

[Berant at al, 2014]

(A) Gametes  
(B) Haploid cells+Question: What does meiosis directly produce? 



Answering Questions: Biology Exams

§ Biology exams

● Technical terms and answer not easy to find. 

● Requires understanding complex relations. 

145

[Berant at al, 2014]

… Meiosis produces not gametes but haploid cells that then divide by mitosis and give 
rise to either unicellular descendants or a haploid multicellular adult organism. 
Subsequently, the haploid organism carries out further mitoses, producing the cells that 
develop into gametes….
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paragraph

(A) Gametes  
(B) Haploid cells+Question: What does meiosis directly produce? 



Answering Questions: Biology Exams

§ Biology exams

● Technical terms and answer not easy to find. 

● Requires understanding complex relations. 
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[Berant at al, 2014] We use the same 
version of our 
systems across 
our datasets. 

… Meiosis produces not gametes but haploid cells that then divide by mitosis and give 
rise to either unicellular descendants or a haploid multicellular adult organism. 
Subsequently, the haploid organism carries out further mitoses, producing the cells that 
develop into gametes….

Evidence 
paragraph

(A) Gametes  
(B) Haploid cells+Question: What does meiosis directly produce? 
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70

65

60

55

6868

SemanticILPProRead

[Seo et al. 17]

61

BiDAF

64

IR

[Clark et al. 15] this work[Berant et al. 14]

Domain-specific 
solverSemanticILP generalizes to a 

different domain and achieves 

on-par score with the best 

domain-specific system. 
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§ Reasoning over language requires dealing with a 
diverse set of semantic phenomena. 

§ Collection of semantic representations of language, 
independent of the task (indirect supervision). 

§ Better generalization across two different domains. 
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ENTITY TYPING with minimal supervision

Zhou, K et al. Zero-Shot Open Entity Typing as Type-Compatible Grounding. EMNLP 18.

Fei, K et al. Illinois-Profiler: Knowledge Schemas at Scale. IJCAI (Cognitum) 15.



SEMANTIC TYPING OF ENTITIES
Label mentions with their semantic types. 

A handful of professors in the 
CMU Department of Chemistry
are being recognized for their 
efforts and contributions to the 
scientific community.

CMU: 
/organization
/organization/education_institution

Department of Chemistry: 
/organization
/education
/education/department
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§ Dealing with ambiguity 
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Semantic Entity Typing: The Necessity (1)

Our break in Pariswas 
quite memorable.

I met a girl named 
Paris.

Paris issued a statement 
condemning the 
proposal.

Meaning

Symbol

city person government



§ Linguistic generalization requires “abstractions”. 

o Ex: Question answering [Yavuz,16]; Information Extraction [Ling,12]. 

159

Semantic Entity Typing: The Necessity (2)



§ Linguistic generalization requires “abstractions”. 

o Ex: Question answering [Yavuz,16]; Information Extraction [Ling,12]. 

160

Semantic Entity Typing: The Necessity (2)

Which month receives 
the most hours of 
daylight in Paris? “June”



§ Linguistic generalization requires “abstractions”. 

o Ex: Question answering [Yavuz,16]; Information Extraction [Ling,12]. 

161

Semantic Entity Typing: The Necessity (2)

Which month receives 
the most hours of 
daylight in Paris? “June”

Pittsburgh



§ Linguistic generalization requires “abstractions”. 

o Ex: Question answering [Yavuz,16]; Information Extraction [Ling,12]. 

162

Semantic Entity Typing: The Necessity (2)

Which month receives 
the most hours of 
daylight in Paris? “June”

Pittsburgh ParisPittsburgh

northern
hemisphere

city



§ Linguistic generalization requires “abstractions”. 

o Ex: Question answering [Yavuz,16]; Information Extraction [Ling,12]. 

163

Semantic Entity Typing: The Necessity (2)

Which month receives 
the most hours of 
daylight in Paris? “June”

Pittsburgh ParisPittsburgh“June”

northern
hemisphere

city



§ Linguistic generalization requires “abstractions”. 
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o Ex: Question answering [Yavuz,16]; Information Extraction [Ling,12]. 
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§ Linguistic generalization requires “abstractions”. 

o Ex: Question answering [Yavuz,16]; Information Extraction [Ling,12]. 
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Semantic Entity Typing: The Necessity (2)

Which month receives 
the most hours of 
daylight in Paris? “June”

Pittsburgh ParisPittsburgh

Melbourne
“June”

“December”

northern
hemisphere

city

southern
hemisphere

city

Melbourne
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Entity Typing: Existing Work

granularity
Coarse Typing Fine Typing

CoNLL
4 types 

[Sang&Meulder,03]

OntoNotes
18 types

[Hovy,06]

FIGER
112 types

[Ling&Weld,12]

BBN
57 types

[Weischedel&Brunstein,05]

domain

Many datasets for other domains. 

New
s

(typical te
xt)

Bio
log
y

Law

Many datasets, each with 
distinct semantic types. 
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“Cheap” Typing with Wikipedia 

A former Democrat, Bloomberg switched his party registration in 2001. 

Entity Linking

[Bollacker et al. 08]

[Ratinov et al. 11]



182

“Cheap” Typing with Wikipedia 

A former Democrat, Bloomberg switched his party registration in 2001. 

politician

businessman

philanthropist

Entity Linking

[Bollacker et al. 08]

[Ratinov et al. 11]
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“Cheap” Typing with Wikipedia 

A former Democrat, Bloomberg switched his party registration in 2001. 

Not consistent with the context 

politician

businessman

philanthropist

Entity Linking

[Bollacker et al. 08]

[Ratinov et al. 11]



§ Input: sentence, mention. 

§ Output: a set of types. 
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A Common Approach: Supervised Learning

A former Democrat, 
Bloomberg switched his 
party registration in 2001. 

person

politician

Taxonomy is [indirectly] defined 
during the training time. 
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§ Input: sentence, mention

§ Output: a set of types
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A former Democrat, 
Bloomberg switched his 
party registration in 2001. 

, target taxonomy. 

ZOE
(Zero-shot Open Entity Typing)

Target 
Taxonomy

(according to the target type taxonomy). 



§ Input: sentence, mention

§ Output: a set of types

193
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org

hospital hotel

Target 
Taxonomy

A former Democrat, 
Bloomberg switched his 
party registration in 2001. 

ZOE
(Zero-shot Open Entity Typing)
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Zero-Shot Open Typing: Big Picture
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A mention & 
its context

1. Map the mention to context-
consistent Wikipedia concepts

2. Rank candidate titles by 
context-consistency and infer 
the types according to the 
type taxonomy. 

High-level Algorithm: 
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supervised systems. 
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§ Reformulating the task and using weak 

signals helps us reduce our dependence on 

direct “supervision”.  

§ This type-aware approach leads to the 

ability to transfer across domains & 

taxonomies. 
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Lessons
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Domain BDomain A



§ We will never have enough annotated data to train all the models 

for all the tasks. 

o Annotation for complex tasks is difficult, costly and sometimes impossible. 

§ We don’t even know what are “all the tasks”. 
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Beyond Supervision-rich “tasks”



§ Two samples of research projects in an attempt to utilize hints in 

data to infer supervision signals: 

o Representation 

o Structure 

§ Not just two systems: 

o Initial steps towards a broader theory of using “incidental” signals. 
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Beyond Supervision-rich “tasks”

[Roth, AAAI’17]
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§ A major shift in the field: 

o Being able to make use of massive loads of unlabeled 

data in the form of language models. 

o Compatible with the philosophy I advocated for here.
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Beyond Supervision-rich “tasks”

ELMo
[Peters et al.18]

⬤ ⬤ ⬤⬤ ⬤ ⬤⬤ ⬤ ⬤

…    vacation in Paris … 

Other works: 
[Devlin et al.18; Radford et al.18]
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Language Models: Means to Access Knowledge

Pittsburgh is the ____ -largest populated city in Pennsylvania.

§ What is known: 
§ What is the nature the knowledge 

that they have internalized?

§ Know what you know: 
§ Is there a mechanism to decide 

whether something is [not]?

§ Inference with knowledge: 
§ Access what is known and be able 

to solve bigger problems. 
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Language Models: Biases

Bias Conspiracy Theories

___ is a babysitter.

___ is a lawyer.

Vaccines cause ___.

Obama’s birth certificate is ___.

§ What does this mean for 
the NLP systems built out 
of such systems? 

§ Discovery: 
§ How can we automate 

the discovery of issues? 

§ Mitigation: 
§ How can we resolve the 

such biases? 

[May et al.19; Zhao et al.19]
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§ Information Technology started with much optimism:

o Democratizing information and greater liberties. 

§ Few foresaw the huge radical impact of the information revolution. 

oMassive amount of Information pollution:

•
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Information Pollution

“The contamination of the information supply 
with irrelevant, redundant, unsolicited, incorrect, 

and otherwise low-value information.”

[Levent Orman'15]



§ Medical Domain, Education, Public Policy, etc. 

o “Best treatment for X;” “Side effects of X .” 
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Information Pollution: Not Just Politics

§ Are they consistent? 

§ Are they trustworthy?  

§ Are they written by someone with an agenda? 
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Information Pollution: Not Just Fact-Checking



§ Many issues don’t have a single “answer.” 

o “Should X be legalized?” 

• Possible answers are subject to situations, world views or background.  

• Moral, utilitarian, libertarian, philosophy, etc. 
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Information Pollution: Not Just Fact-Checking

Factual information (or lack of) is 
not really the core of the problem.
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Information Pollution, as NLU Problems

Not only applications for NLP, but also drive the research in important directions. 
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§ Understanding Sources

§ But what should we believe, and who 

should we trust?

§ Sources may 

o Have their own, often hidden, motivations

o Make different or even contradictory claims 

Not only applications for NLP, but also drive the research in important directions. 
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multiple “right” answers
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Discovering Diverse “Perspectives”

[Chen, K, et al. NAACL’19]



§ Our recent work: provide users with the 

understanding that each “story” has more 

than one “perspective.”

§ Goal: 

o Perspectives could give a fuller 

understanding of an issue. 

oMake us more open-minded, less afraid & 

more likely to consider other views. 
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Discovering Diverse “Perspectives”

[Chen, K, et al. NAACL’19]



§ Suffering from this pollution is not a forgone conclusion.

§ A computational model that will help us navigate the polluted world. 

o Natural Language Processing/Understanding + Algorithmic Components

o Collaborative efforts involving experts from the social sciences, policy, and others. 

§ Overreliance on fully annotated data, unlikely to solve the problem.

§ Interesting challenge, important, and will have societal impact.  
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Information Pollution: an NLU Challenge



Dan Roth 
(UPenn)

Tushar Khot
(AI2)

Ashish Sabharwal 
(AI2)

Peter Clark 
(AI2)

Chen-Tse Tsai
(Bloomberg)

Ben Zhou 
(UIUC à UPenn)



That’s it, folks! 


