
CogCompNLP: Your Swiss Army Knife for NLP
Daniel	Khashabi,	Mark	Sammons,	Ben	Zhou,	Tom	Redman,	Christos	Christodoulopoulos,	Vivek Srikumar,	Nicholas	Rizzolo,	
Lev	Ratinov,	Guanheng Luo,	Quang Do,	Chen-Tse Tsai	Subhro Roy,	Stephen	Mayhew,	Zhili Feng,	John	Wieting,	Xiaodong Yu,	

Yangqiu Song,	Shashank	Gupta,	Shyam Upadhyay,	Naveen	Arivazhagan,	Qiang Ning,	Shaoshi Ling,	Dan	Roth

Motivation Components

Basic Data-Structures

• Supporting Natural Language Understanding
applications requires preprocessing text at multiple,
syntactic and semantic, levels.

• We call each preprocessing level –from Tokenization
to POS tagging, to Semantic Role Labeling, etc–a
Text Annotator.

• The process of managing and aggregating
annotations is labor-intensive and error prone,
requiring significant engineering.

• It is essential to building software frameworks for
easy access to a wide range of NLP annotators and
for straightforward use.

• A Text-Annotation contains the raw source text with
its tokenization and other annotation layers

• A View is a data structure which contains an
annotation structure of a text.

• An Annotator is a class which produces a View given
a text, and potentially some other Views.

Fundamental data-structures and operators;
hence many of the other modules depend on it:
•	SQL-like	operations	on	Text-Annotation
•	Experiment	utilities	&	statistical	significance
•	String	pattern-matching	algorithms	
•	Utilities	for	reading	and	writing	annotations.

Partly	based	on	research	sponsored	by	
• DARPA	under	agreement	number	FA8750-13-2- 0008.	
• Contract	HR0011-15-2-0025	with	the	US	Defense	Advanced	Research	

Projects	Agency	(DARPA).	
• Allen	Institute	for	Artificial	Intelligence	(allenai.org)	
• Google
• NSF	grant	BCS-1348522;	and	by	NIH	grant	R01-HD054448.	

Core-Utilities

Acknowledgements

CogComp-NLP

Core-Utilities

EdisonCorpus-Utilities …

Chunker

Similarity Utilities

PipelinePOS

Comma-SRL

Annotator Modules

The corpus reader module includes NLP corpus
readers that populate Text-Annotation objects. A few
important datasets supported:
• Treebank Shallow Parse
• PennTreebank Constituency Parse
• ACE 2004/2005
Ontonotes 5.0

Corpus-Readers

For calculating semantic similarity between words
(e.g. Word2Vec, ESA, etc), phrases, and entities.

Similarity	Utilities

A feature extraction framework that extract
features to be used by machine learning
algorithms. It enables users to define feature
extraction functions that take as input the Views
and Constituents created by Annotators.

Edison

Provides a simple interface to access Annotator
components either individually or as a group.

Pipeline

Quantitative Evaluation

Speed:	Wall	clock	time	(thousand	tokens	/	second);	higher	is	better.	

Memory	(GB);	lower	is	better.	

A qualitative assessment of the major components
show that they have state-of-the-art quality or very
close to the best existing results.

Speed and memory comparison between major NLP
pipelines:

Java					 Python
from ccg_nlpy import remote_pipeline
pipeline = remote_pipeline.RemotePipeline()
text = "Hello, how are you. I am doing fine"
ta = pipeline.doc(text)
print(ta.get_pos)
(UH Hello) (, ,) (WRB how) (VBP are) ...

// ’ta' is a partially annotated text
TextAnnotation ta = ...
AnnotatorService pipeline = PipelineFactory.buildPipeline(ViewNames.POS,

ViewNames.NER_CONLL);
TextAnnotation augTa = pipeline.annotateTextAnnotation(ta);
System.out.println(augTa.getView(ViewNames.POS).getConstituents());
// (NNP Pierre) (NNP Vinken) (, ,) (CD 61) (NNS years)...

Java	code: https://github.com/CogComp/cogcomp-nlp Python	code: https://github.com/CogComp/cogcomp-nlpy

Link	to	demos: http://nlp.cogcomp.org

