
Better call Saul:
Flexible Programming for Learning and Inference in NLP

Parisa Kordjamshidi, Tulane University, pkordjam@tulane.edu
Daniel Khashabi, University of Illinois at Urbana-Champaign
Christos Christodoulopoulos, University of Illinois at Urbana-Champaign
Bhargav Mangipudi, University of Illinois at Urbana-Champaign
Sameer Singh, University of California, Irvine
Dan Roth, University of Illinois at Urbana-Champaign

1
COLING-2016

December 2016, Osaka, Japan

Better Call Saul:… 2

WHAT

Better Call Saul:… 2

WHAT
• Introducing Saul which is a declarative Learning based

programming language. [Kordjamshidi et. al. IJCAI-2015]

Better Call Saul:… 2

WHAT

•Particularly, the way we have augmented it with the
abstraction levels and facilities for designing various NLP
tasks with arbitrary output structure with various
linguistic granularities.

• Introducing Saul which is a declarative Learning based
programming language. [Kordjamshidi et. al. IJCAI-2015]

Better Call Saul:… 2

WHAT

•Particularly, the way we have augmented it with the
abstraction levels and facilities for designing various NLP
tasks with arbitrary output structure with various
linguistic granularities.

■ Word level
■ Phrase level
■ Sentence level …

• Introducing Saul which is a declarative Learning based
programming language. [Kordjamshidi et. al. IJCAI-2015]

Better Call Saul:… 3

WHY

Better Call Saul:… 3

WHY
Most of the NLP learning tasks seek for a mapping from input
structures to output structures.

Better Call Saul:… 3

WHY

■ Syntactic => Part of speech tagging
■ Information Extraction => Entity mention / Relation extraction
■ Semantic => Semantic role labeling

Most of the NLP learning tasks seek for a mapping from input
structures to output structures.

Better Call Saul:… 3

WHY

■ Syntactic => Part of speech tagging
■ Information Extraction => Entity mention / Relation extraction
■ Semantic => Semantic role labeling

Most of the NLP learning tasks seek for a mapping from input
structures to output structures.

We often need to make a lot of programming effort and hard code to:

Better Call Saul:… 3

WHY

■ Syntactic => Part of speech tagging
■ Information Extraction => Entity mention / Relation extraction
■ Semantic => Semantic role labeling

Most of the NLP learning tasks seek for a mapping from input
structures to output structures.

We often need to make a lot of programming effort and hard code to:

■ Benefit from a specific structure
■ (Relational) Feature extraction (Even when using representation

learning techniques)

INTRODUCTION CMPS-3240/6240 Fall ’16 4

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

Washington*
covers*Seattle*

covers*
Seattle*

Seattle* for*the*Associated*Press*

cover5Washington* cover5Seattle* cover5for*the*Associated*Press*

predicate* argument*

relation*

!
label*

*
!

label*

*

!
label*

*

!
head
word*

*
!

parse*
path*

*

chunk*
length*!

parse*
path*!

Node!

Property!

Edge!

*

!
*

!
Label*

AM/PNC*
*!

Label*
A1!
*

*

!
Label*
A0!
*

*

!
Parse*Path*

VBZ^VPvNP…!
!
*

!
POS*window*
ctx/2:VBZ…!

!
*

!
Parse*Path*

VBZ^VPvNP…!
!
*

!
POS*window*
ctx/2:!NNP…!

!
*

!
Parse*Path*
VBZ^VP^S…!

!
*

!
POS*window*
ctx/2:VBZ…!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

Washington*
covers*Seattle*

covers*
Seattle*

Seattle* for*the*Associated*Press*

cover5Washington* cover5Seattle* cover5for*the*Associated*Press*

predicate* argument*

relation*

!
label*

*
!

label*

*

!
label*

*

!
head
word*

*
!

parse*
path*

*

chunk*
length*!

parse*
path*!

Node!

Property!

Edge!

*

!
*

!
Label*

AM/PNC*
*!

Label*
A1!
*

*

!
Label*
A0!
*

*

!
Parse*Path*

VBZ^VPvNP…!
!
*

!
POS*window*
ctx/2:VBZ…!

!
*

!
Parse*Path*

VBZ^VPvNP…!
!
*

!
POS*window*
ctx/2:!NNP…!

!
*

!
Parse*Path*
VBZ^VP^S…!

!
*

!
POS*window*
ctx/2:VBZ…!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

Washington*
covers*Seattle*

covers*
Seattle*

Seattle* for*the*Associated*Press*

cover5Washington* cover5Seattle* cover5for*the*Associated*Press*

predicate* argument*

relation*

!
label*

*
!

label*

*

!
label*

*

!
head
word*

*
!

parse*
path*

*

chunk*
length*!

parse*
path*!

Node!

Property!

Edge!

*

!
*

!
Label*

AM/PNC*
*!

Label*
A1!
*

*

!
Label*
A0!
*

*

!
Parse*Path*

VBZ^VPvNP…!
!
*

!
POS*window*
ctx/2:VBZ…!

!
*

!
Parse*Path*

VBZ^VPvNP…!
!
*

!
POS*window*
ctx/2:!NNP…!

!
*

!
Parse*Path*
VBZ^VP^S…!

!
*

!
POS*window*
ctx/2:VBZ…!

Semantics: Semantic role labeling

Example Tasks (1)

Better Call Saul:… 5

Information extraction: Entity mention relation extraction

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

predicate) argument)

relation)

!
label)

)
!

label)

)

!
label)

)

!
head
word)

)
!

parse)
path)

)

chunk)
length)!

parse)
path)!

Washington)
covers)Seattle)

covers)
Seattle)

Seattle) for)the)Associated)Press)

cover;Washington) cover;Seattle) cover;for)the)Associated)Press)

Node!

Property!

Edge!

)

!
)

!
Label)

AM/PNC)
)!

Label)
A1!
)

)
!
Label)
A0!
)

)

!
Parse)Path)

VBZ^VPvNP…!
!
)

!
POS)window)
ctx/2:VBZ…!

!
)

!
Parse)Path)

VBZ^VPvNP…!
!
)

!
POS)window)
ctx/2:!NNP…!

!
)

!
Parse)Path)
VBZ^VP^S…!

!
)

!
POS)window)
ctx/2:VBZ…!

token)

!
label)

)

word)
form)!

label)
before)!

Node!
Property!
Edge!

)

!
)

document) sentence) mention) relation)

!
label)

)

POS)
!

)

!!
label)

)

POS)!
)

!

Washington)
covers)Seattle)

Seattle) the)Associated)Press)
Node!

Property!

Edge!

)

!
)

Washington;Seattle) Seattle;the)Associated)Press)

!
Label)

Located/at)
)!

Label)
Located/at!

)
)

!
)

!
)!

!
)!

)

!
)

Washington)covers)Seattle)for)the)Associated)
Press.)

!
Label)

Organiziation)
)!

)
!
)!

Label)
GPE!

)!
)

!
)

!
Label)
GPE)

)!
)

!
)

SENTENCE!

ENTITIES!

RELATION!

Example Tasks (2)

Better Call Saul:… 6

Example Tasks (3)

Figure 1: An instantiation of the data-model for the NLP domain. The colored ovals are some observed
properties, while the white ones show the unknown labels. For the POS and Entity Recognition tasks, the
boxes represent candidates for single labels; for the SRL and Relation Extraction tasks, they represent
candidates for linked labels.

labels that are applicable on the node with the same type of x
c

. These constraints are added as a part
of Saul’s objective, so we have the following objective form, which is in fact a constrained conditional
model (Chang et al., 2012), g = hw, f(x,y)i � h⇢, c(x,y)i , where c is the constraint function and ⇢ is
the vector of penalties for violating each constraint. This representation corresponds to an integer linear
program, and thus can be used to encode any MAP problem. Specifically, the g function is written as the
sum of local joint feature functions which are the counterparts of the probabilistic factors:

g(x,y;w) =
X

lp2l

X

xk2{⌧}

hw
p

, f

p

(x
k

, l

pk

)i+
|C|X

m=1

⇢

m

c

m

(x,y), (2)

where C is a set of global constraints that can hold among various types of nodes. g can represent a general
scoring function rather than the one corresponding to the likelihood of an assignment. The constraints are
used during training for loss-augmented inference as well as during prediction.

4 Calling Saul: Case Studies

For programming global models in Saul the programmer needs to declare a) the data-model which is a
global structure of the data and b) the templates for learning an inference decompositions. The templates
are declared intuitively in two forms of classifiers using Learnable construct and first order constraints
using ConstrainedClassifier construct. With these components have been specified, the programmer
can easily choose which templates to use for learning (training) and inference (prediction). In this way the
global objective is generated automatically for different training and testing paradigms in the spectrum of
local to global models.

One advantage of programming in Saul is that one can define a generic data-model for various
tasks in each application domain. In this paper, we enrich Saul with an NLP data-model based on
EDISON, a recently-introduced NLP library which contains raw data readers, data structures and feature
extractors (Sammons et al., 2016) and use it as a collection of Sensors to easily generate the data-model
from the raw data. In Saul, a Sensor is a ‘black-box’ function that can generate nodes, edges and properties
in the graph. An example of a sensor for generating nodes and edges is a sentence tokenizer which receives
a sentence and generates its tokens. Here, we will provide some examples of data-model declaration
language but more details are available on-line2.

In the rest of the paper, we walk through the tasks of Semantic Role Labeling (SRL), Part-of-Speech
(POS) tagging and Entity-Relation (ER) extraction and show how we can design a variety of local to
global models by presenting the related code3.

2https://github.com/IllinoisCogComp/saul/blob/master/saul-core/doc/DATAMODELING.md
3https://github.com/IllinoisCogComp/saul/tree/master/saul-examples/src/main/scala/edu/illinois/cs/cogcomp/saulexamples/nlp

All annotations: Syntax, Semantics, Mentions, Relations …

Better Call Saul:… 7

Structured Output Models: Common Practice

For extraction and representation of features as well as for exploiting
global output structure we do

Better Call Saul:… 7

Structured Output Models: Common Practice

■ Task Specific Programming for Data Structures
■ Model Specific Programming for Inference and Learning
■ It will be hard to generalize
■ It will be hard to Reuse and Reproduce results

For extraction and representation of features as well as for exploiting
global output structure we do

Better Call Saul:… 8

Structured Output Models:
 Learning and Inference Paradigms

Better Call Saul:… 8

■ Local Models: Local classifiers trained/output

components predicted independently (LO)

Structured Output Models:
 Learning and Inference Paradigms

Better Call Saul:… 8

■ Local Models: Local classifiers trained/output

components predicted independently (LO)

■ Pipelines

Structured Output Models:
 Learning and Inference Paradigms

Better Call Saul:… 8

■ Local Models: Local classifiers trained/output

components predicted independently (LO)

■ Pipelines

■ Global Models

■ L+I: Training LO, global prediction

■ IBT: Global training and global prediction

Structured Output Models:
 Learning and Inference Paradigms

Better Call Saul:… 9

Saul and NLP

Better Call Saul:… 9

Saul and NLP

Idea: High level abstraction for programming various
configurations from local to global learning as well as building
pipelines over NLP data structures.

Better Call Saul:… 9

Saul and NLP

■ Data Model
■ Graph (typed nodes, edges and properties)
■ Sensors (black box functions that operate on graph’s base

types)

Idea: High level abstraction for programming various
configurations from local to global learning as well as building
pipelines over NLP data structures.

Better Call Saul:… 9

Saul and NLP

■ Data Model
■ Graph (typed nodes, edges and properties)
■ Sensors (black box functions that operate on graph’s base

types)
■ Templates for learning and inference decomposition

■ Classifiers
■ Constraints

Idea: High level abstraction for programming various
configurations from local to global learning as well as building
pipelines over NLP data structures.

Better Call Saul:… 10

Underlying Computational Model

Better Call Saul:… 10

Underlying Computational Model

Learning:

Better Call Saul:… 10

Underlying Computational Model

Learning:

Structured output learning:

Better Call Saul:… 10

Underlying Computational Model

Learning:

Structured output learning:

Better Call Saul:… 10

Underlying Computational Model

Learning:

Structured output learning:
Inference

Better Call Saul:… 10

Underlying Computational Model

Learning:

Structured output learning:
Inference

Decoding/ Prediction
time inference

Better Call Saul:… 10

Underlying Computational Model

Learning:

Structured output learning:
Inference

Decoding/ Prediction
time inference

Better Call Saul:… 10

Underlying Computational Model

Weight vector

Learning:

Structured output learning:
Inference

Decoding/ Prediction
time inference

Better Call Saul:… 10

Underlying Computational Model

Joint feature functionWeight vector

Learning:

Structured output learning:
Inference

Decoding/ Prediction
time inference

Better Call Saul:… 10

Underlying Computational Model

Joint feature functionWeight vector

Learning:

Structured output learning:
Inference

Decoding/ Prediction
time inference

Better Call Saul:… 11

Underlying Computational Model : Input/Output

Weight vector

Joint feature function

Better Call Saul:… 11

Underlying Computational Model : Input/Output

in addition to the constraints between labels!

Weight vector

Joint feature function

Better Call Saul:… 12

Constrained Conditional Models (CCM)

 [Roth & Yih ‘04, 07; Chang, et.al.,’08,’12]

Underlying Computational Model :
Global Constraints

Better Call Saul:… 12

Constrained Conditional Models (CCM)
■ Prediction function: assign values that maximize objective

 [Roth & Yih ‘04, 07; Chang, et.al.,’08,’12]

Underlying Computational Model :
Global Constraints

Better Call Saul:… 12

Constrained Conditional Models (CCM)

h(x) = argmax

y2Y (x)
g(x, y;W)

■ Prediction function: assign values that maximize objective

 [Roth & Yih ‘04, 07; Chang, et.al.,’08,’12]

Underlying Computational Model :
Global Constraints

Better Call Saul:… 12

Constrained Conditional Models (CCM)

h(x) = argmax

y2Y (x)
g(x, y;W)

■ Prediction function: assign values that maximize objective

 [Roth & Yih ‘04, 07; Chang, et.al.,’08,’12]

Underlying Computational Model :
Global Constraints

Better Call Saul:… 12

Constrained Conditional Models (CCM)

h(x) = argmax

y2Y (x)
g(x, y;W)

■ Prediction function: assign values that maximize objective

 [Roth & Yih ‘04, 07; Chang, et.al.,’08,’12]

Underlying Computational Model :
Global Constraints

Better Call Saul:… 12

Constrained Conditional Models (CCM)

h(x) = argmax

y2Y (x)
g(x, y;W)

■ Prediction function: assign values that maximize objective

■ Objective is linear in features and constraints

 [Roth & Yih ‘04, 07; Chang, et.al.,’08,’12]

Underlying Computational Model :
Global Constraints

Better Call Saul:… 12

Constrained Conditional Models (CCM)

h(x) = argmax

y2Y (x)
g(x, y;W)

■ Prediction function: assign values that maximize objective

■ Objective is linear in features and constraints

 [Roth & Yih ‘04, 07; Chang, et.al.,’08,’12]

Underlying Computational Model :
Global Constraints

Better Call Saul:… 12

Constrained Conditional Models (CCM)

h(x) = argmax

y2Y (x)
g(x, y;W)

■ Prediction function: assign values that maximize objective

■ Objective is linear in features and constraints

 [Roth & Yih ‘04, 07; Chang, et.al.,’08,’12]

Underlying Computational Model :
Global Constraints

Better Call Saul:… 12

Constrained Conditional Models (CCM)

h(x) = argmax

y2Y (x)
g(x, y;W)

g = hW, f(x, y)i � h⇢, c(x, y)i

■ Prediction function: assign values that maximize objective

■ Objective is linear in features and constraints

 [Roth & Yih ‘04, 07; Chang, et.al.,’08,’12]

Underlying Computational Model :
Global Constraints

Better Call Saul:… 12

Constrained Conditional Models (CCM)

Compile everything in an Integer Linear Program: expressive enough to
support decision making in the context of any probabilistic modeling.

h(x) = argmax

y2Y (x)
g(x, y;W)

g = hW, f(x, y)i � h⇢, c(x, y)i

■ Prediction function: assign values that maximize objective

■ Objective is linear in features and constraints

 [Roth & Yih ‘04, 07; Chang, et.al.,’08,’12]

Underlying Computational Model :
Global Constraints

Better Call Saul:… 13

Semantic Role Labeling : Data Model

val sentences = node[TextAnnotation]
val predicates = node[Constituent]
val arguments = node[Constituent]
val pairs = node[Relations]
val pos-tag = property(arguments)
val word-form = property(arguments)
val relationsToArguments = edge(relations, arguments)
relationsToArguments.addSensor(relToArgument _)

Figure 2: An Example of data-model declarations for nodes, edges, properties and using sensors. The
sentences nodes are of type TextAnnotation class, which is a part of Saul’s underlying NLP library;
many predefined sensors can be applied on it to generate various nodes of type Constituent and
Relations, properties of those nodes and establish edges between them.

4.1 Semantic Role Labeling
SRL (Carreras and Màrquez, 2004) is a shallow semantic analysis framework, whereby a sentence is
analysed into multiple propositions; each one consisting of a predicate and one or more core arguments,
labeled with protosemantic roles (agents [Arg0], patient/theme [Arg1], beneficiary [Arg2], etc.), and zero
or more optional arguments, labeled according to their semantic function (temporal, locative, manner,
etc.). See Figure 1 for an example annotation.

4.1.1 Input-Output Spaces
Each sentence is a node in the data-model, comprised of constituents (derived from a tokenizer Sensor).
These constituents are atomic components of x (see Figure 1) and are identified as x = {x1, . . . , x4},
where x

i

is the identifier of the ith constituent in the sentence. Each constituent is described by a number
of properties (word-form, pos-tag, . . .) and the corresponding feature vector representation of these
properties is denoted by �

constituent

(x

i

). There are also composed components – pairs of constituents;
their descriptive vectors are referred to as �

pair

(x

i

, x

j

). The feature vector of a composed component
such as a pair, �

pair

(x1, x2) is usually described by the local features of x1, x2 and the relational features
between them, such as the order of their position, etc.

The main labels set for the SRL model is l = {l

isPred

, l

isArg

, l

argType

} which indicate whether a
constituent is a predicate, whether it is an argument and the argument role respectively. l

isArg

and
l

argType

are linked labels, meaning that they are defined with respect to another constituent (the predicate).
Depending on the type of correlations we aim to capture, we can introduce new linked labels in the model.
These labels are not necessarily the target of the predictions but they help to capture the dependencies
among labels. For example, to capture the long distance dependencies between two different arguments
of same predicate we can introduce a linked label linking the label of two pairs and impose consistency
constraints between this new linked label and the label of each pair. Figure 2 shows some declarations
of the data-model’s graph representing input and output components of the learning models. The graph
can be queried using our invented graph traversal language and the queries are directly used as structured
machine learning features later.

4.1.2 Classifiers and Constraints
As mentioned in Section 3, the structure of a learning model is specified by templates which are defined
as classifiers (feature templates) and global constraints (constraint templates) in Saul. SRL has four
main feature templates: 1) Predicate template: connects an input constituent to a single label l

isPred

.
The input features of this template are generated based on the properties of the constituents �

constituent

.
The candidate generator of this template is a filter that takes all constituents whose pos-tag is VP; 2)
Argument template: connects a pair of constituents to a linked label l

isArg

. The candidate generator of
this template is a set of rules that are suggested by Xue and Palmer (2004); 3) ArgumentType template:
connects a pair of constituents to the linked label l

argType

. Same Xue-Palmer heuristics are used; 4)
ArgumentTypeCorrelations template: connects two pairs of pairs of constituent (i.e. relations between
relations) to their join linked label. The candidates are the pairs of Xue-Palmer candidates.

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

Washington*
covers*Seattle*

covers*
Seattle*

Seattle* for*the*Associated*Press*

cover5Washington* cover5Seattle* cover5for*the*Associated*Press*

predicate* argument*

relation*

!
label*

*
!

label*

*

!
label*

*

!
head
word*

*
!

parse*
path*

*

chunk*
length*!

parse*
path*!

Node!

Property!

Edge!

*

!
*

!
Label*

AM/PNC*
*!

Label*
A1!
*

*

!
Label*
A0!
*

*

!
Parse*Path*

VBZ^VPvNP…!
!
*

!
POS*window*
ctx/2:VBZ…!

!
*

!
Parse*Path*

VBZ^VPvNP…!
!
*

!
POS*window*
ctx/2:!NNP…!

!
*

!
Parse*Path*
VBZ^VP^S…!

!
*

!
POS*window*
ctx/2:VBZ…!

A graph in terms of typed nodes, edges and Properties

Better Call Saul:… 14

Semantic Role Labeling : Classifiers

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

those (?). The constraints can hold between the in-
stantiations of one template which implies the re-
lations between the nodes of one type also referred
to as autocorrelations as defined in a relational
dependency networks (?). The constraints are ex-
ploited during training in the loss-augmented in-
ference and are imposed on the output structure
during prediction. For graphical representation of
our models in terms of templates, accordingly we
use constraint templates that are beyond feature
templates and express the relationships between
labels cross templates. That being said, the com-
putational model in Saul is presented by a rela-
tional constrained factor graph. We exemplify
this representation when discussing the real prob-
lems in the later sections.

4 Call Saul: Case Studies

Focusing on aforementioned NLP tasks of part of
speech tagging, semantic role labeling and entity
mention relation extraction, in the rest of the paper
we walk through these problems and show how
we can design a variety of local to global mod-
els and show the related code. The Saul code is
declarative in nature and contains a set of spec-
ifications including a) The input nodes and out-
put labels which are related to declaring the data-
model graph; b) Constraints over the output struc-
ture; c) The joint feature templates, candidate gen-
eration for the templates. When this components
have been specified then the train and test can be
performed only by indicating which templates we
tend to use. The way we gather the specified parts
easily forms different training and test paradigms
in the spectrum of local to global models.

4.1 Semantic Role Labeling
The task is to annotate the sentences with a num-
ber of linguistically motivated semantics and re-
lationships (?). Figure ?? shows how the sentence
”Washington covers Seattle for Associated Press.”,
will be annotated with semantic role labels.

4.2 Input-Output Spaces
The first step of designing the structured output
models is to make the input graph from the raw
data. Saul has enriched with a number of li-
braries including format readers and commonly-
used NLP data-structures. The programmer can
exploit these libraries to easily generate the nodes
and edges in a datamodel graph. We use the term

Sensor to refer to functions that act as black boxes
and can generate nodes, edges and properties in
the graph. An example of a sensor for generat-
ing nodes and edges is the a sentence tokenizer
which receives a sentence and generates tokens.
Each token will be a node in the graph. A lem-
matizer can be another sensor, in this case a prop-
erty sensor, which generates the lemma of a token
which is a property of the token nodes. Depend-
ing on the granularity of the task in hand different
sensors can be used. For SRL each sentence is a
node in the graph and using Sensors each sentence
will be connected to it components which are Con-
stituents derived from a constituent parser. These
constituents are atomic/single components of x

(see Fig ??) and are identified as x = {x1, ..., x4},
where x

i

is the identifier of the ith constituent in
the sentence. Each constituent in the sentence is
described by a number of properties (lex-form,
pos-tag, ...) describing the word form, the part
of speech, etc and the corresponding feature vec-
tor representation of these properties is denoted by
�

constituent

(x

i

). There are also components com-
posed of pairs of constituents and their descriptive
vectors are referred to as �

pair

(x

i

, x

j

). We define
a number of relational properties describing the re-
lationships between constituents (e.g. path). The
feature vector of a composed component such as a
pair, �

pair

(x1, x2) is usually described by the lo-
cal features of x1, x2 and the relational features
between them, such as the order of their position ,
etc.

On the other hand the main label set for
SRL is l = {l

ispredicate

, l

isargument

, l

argmenttype

}.
The l

ispredicate

is a single label which indicates
whether a single constituent is a predicate or not
and the other two labels in fact are linked-labels
that indicate whether a constituent is an argu-
ment of a predicate and what is the role of a con-
stituent (which is an argument candidate) with re-
spect to another constituent (which is a predicate
candidate). Depending on the type of correlations
that we aim to consider we might introduce new
linked-labels in the model. These linked labels are
not directly the target of the predictions but help
for capturing the correlations among labels. For
example, to capture the correlations between two
different arguments of one predicate we can in-
troduce a linked-label linking the label of the two
pairs.

WargType

largType

�pairCandidate(xi)

Cl..

object ArgTypeLearner extends Learnable(pairs){
def label = argumentLabelGold
def feature = using(containsMOD, containsNEG,
clauseFeatures, chunkPathPattern, chunkEmbedding,
chunkLength, constituentLength, argPOSWindow,
argWordWindow, headwordRelation, syntacticFrameRelation
, pathRelation, phraseTypeRelation, predPosTag,
predLemmaR, linearPosition)

}

Figure 3: Left: shows the components of the ArgumentType feature template. l

argType

is one linked label
as a part of the objective in Equation 1, along with the corresponding block of weights and the pair

candidates (diamonds show dot products). Right: shows the code for the template. label and feature

are respectively one property and a list of properties of pair nodes declared in the data-model, these serve
as the output and input parts of this template. This template can be used as a local classifier or as a part of
the objective of a global model, depending on the indicated learning paradigm by the programmer.

val legalArgumentsConstraint = constraint(sentences) { x =>
val constraints = for {

predicate <- sentences(x) ⇠> sentenceToPredicates
candidateRelations = (predicates(y) ⇠> -relationsToPredicates)
argLegalList = legalArguments(y)
relation <- candidateRelations

} yield classiferLabelIsLegal(argumentTypeLearner, relation, argLegalList)
or (argumentTypeLearner on relation is "none")

}

def classiferLabelIsLegal(classifier, relation, legalLabels) = {
legalLabels._exists { l => (classifier on relation is l) }

}

Figure 4: Given a predicate, some argument types are illegal according to PropBank Frames (e.g. the
verb ‘cover‘ with sense 03 can take only Arg0 or Arg1), which means that they should be excluded from
the inference. The legalArguments(y) returns the predefined list of legal arguments for a predicate
y. In line 3, graph traversal queries (using the ⇠> operator) are applied to use an edge and go from a
sentence node to all contained predicate nodes in the sentence and then apply the constraint to all of
those predicates. Each constraint imposes the argumentTypeLearner to assign a legal argument type
to each candidate argument or does not count it as an argument at all, i.e., to assign none value to the
argument type.

The feature templates are instances of Learnable in Saul and in fact they are treated as local classifiers.
The script of Figure 3 shows the ArgumentType template. The Constraints are specified by means of
first-order logical expressions. We use the constraints specified in Punyakanok et al. (2008) in our models.
The script in Figure 4, shows an example expressing the legal argument constraints for a sentence.

4.1.3 Model Configurations
Programming for learning and inference configurations in Saul is simply composing the basic building
blocks of the language, that is, feature and constraint templates in different ways.
Local models. Training local models is as easy as calling the train function over each specified feature
template separately (e.g. ArgTypeLearner.train()). The test on these models also is simply done by
calling test for each template (e.g. ArgTypeLearner.test()). In addition, TestClassifeirs(/*a list

of classifiers*/) and TrainClassifiers(/*a list of classifiers*/) can be used to train/test
a number of classifiers independently by passing a list of classifier’s names to these functions. The training
algorithm can be specified when declaring the Learnable; here we have used averaged perceptrons in the
experiments which is the default model.

val sentences = node[TextAnnotation]
val predicates = node[Constituent]
val arguments = node[Constituent]
val pairs = node[Relations]
val pos-tag = property(arguments)
val word-form = property(arguments)
val relationsToArguments = edge(relations, arguments)
relationsToArguments.addSensor(relToArgument _)

Figure 2: An Example of data-model declarations for nodes, edges, properties and using sensors. The
sentences nodes are of type TextAnnotation class, which is a part of Saul’s underlying NLP library;
many predefined sensors can be applied on it to generate various nodes of type Constituent and
Relations, properties of those nodes and establish edges between them.

4.1 Semantic Role Labeling
SRL (Carreras and Màrquez, 2004) is a shallow semantic analysis framework, whereby a sentence is
analysed into multiple propositions; each one consisting of a predicate and one or more core arguments,
labeled with protosemantic roles (agents [Arg0], patient/theme [Arg1], beneficiary [Arg2], etc.), and zero
or more optional arguments, labeled according to their semantic function (temporal, locative, manner,
etc.). See Figure 1 for an example annotation.

4.1.1 Input-Output Spaces
Each sentence is a node in the data-model, comprised of constituents (derived from a tokenizer Sensor).
These constituents are atomic components of x (see Figure 1) and are identified as x = {x1, . . . , x4},
where x

i

is the identifier of the ith constituent in the sentence. Each constituent is described by a number
of properties (word-form, pos-tag, . . .) and the corresponding feature vector representation of these
properties is denoted by �

constituent

(x

i

). There are also composed components – pairs of constituents;
their descriptive vectors are referred to as �

pair

(x

i

, x

j

). The feature vector of a composed component
such as a pair, �

pair

(x1, x2) is usually described by the local features of x1, x2 and the relational features
between them, such as the order of their position, etc.

The main labels set for the SRL model is l = {l

isPred

, l

isArg

, l

argType

} which indicate whether a
constituent is a predicate, whether it is an argument and the argument role respectively. l

isArg

and
l

argType

are linked labels, meaning that they are defined with respect to another constituent (the predicate).
Depending on the type of correlations we aim to capture, we can introduce new linked labels in the model.
These labels are not necessarily the target of the predictions but they help to capture the dependencies
among labels. For example, to capture the long distance dependencies between two different arguments
of same predicate we can introduce a linked label linking the label of two pairs and impose consistency
constraints between this new linked label and the label of each pair. Figure 2 shows some declarations
of the data-model’s graph representing input and output components of the learning models. The graph
can be queried using our invented graph traversal language and the queries are directly used as structured
machine learning features later.

4.1.2 Classifiers and Constraints
As mentioned in Section 3, the structure of a learning model is specified by templates which are defined
as classifiers (feature templates) and global constraints (constraint templates) in Saul. SRL has four
main feature templates: 1) Predicate template: connects an input constituent to a single label l

isPred

.
The input features of this template are generated based on the properties of the constituents �

constituent

.
The candidate generator of this template is a filter that takes all constituents whose pos-tag is VP; 2)
Argument template: connects a pair of constituents to a linked label l

isArg

. The candidate generator of
this template is a set of rules that are suggested by Xue and Palmer (2004); 3) ArgumentType template:
connects a pair of constituents to the linked label l

argType

. Same Xue-Palmer heuristics are used; 4)
ArgumentTypeCorrelations template: connects two pairs of pairs of constituent (i.e. relations between
relations) to their join linked label. The candidates are the pairs of Xue-Palmer candidates.

val sentences = node[TextAnnotation]
val predicates = node[Constituent]
val arguments = node[Constituent]
val pairs = node[Relations]
val pos-tag = property(arguments)
val word-form = property(arguments)
val relationsToArguments = edge(relations, arguments)
relationsToArguments.addSensor(relToArgument _)

Figure 2: An Example of data-model declarations for nodes, edges, properties and using sensors. The
sentences nodes are of type TextAnnotation class, which is a part of Saul’s underlying NLP library;
many predefined sensors can be applied on it to generate various nodes of type Constituent and
Relations, properties of those nodes and establish edges between them.

4.1 Semantic Role Labeling
SRL (Carreras and Màrquez, 2004) is a shallow semantic analysis framework, whereby a sentence is
analysed into multiple propositions; each one consisting of a predicate and one or more core arguments,
labeled with protosemantic roles (agents [Arg0], patient/theme [Arg1], beneficiary [Arg2], etc.), and zero
or more optional arguments, labeled according to their semantic function (temporal, locative, manner,
etc.). See Figure 1 for an example annotation.

4.1.1 Input-Output Spaces
Each sentence is a node in the data-model, comprised of constituents (derived from a tokenizer Sensor).
These constituents are atomic components of x (see Figure 1) and are identified as x = {x1, . . . , x4},
where x

i

is the identifier of the ith constituent in the sentence. Each constituent is described by a number
of properties (word-form, pos-tag, . . .) and the corresponding feature vector representation of these
properties is denoted by �

constituent

(x

i

). There are also composed components – pairs of constituents;
their descriptive vectors are referred to as �

pair

(x

i

, x

j

). The feature vector of a composed component
such as a pair, �

pair

(x1, x2) is usually described by the local features of x1, x2 and the relational features
between them, such as the order of their position, etc.

The main labels set for the SRL model is l = {l

isPred

, l

isArg

, l

argType

} which indicate whether a
constituent is a predicate, whether it is an argument and the argument role respectively. l

isArg

and
l

argType

are linked labels, meaning that they are defined with respect to another constituent (the predicate).
Depending on the type of correlations we aim to capture, we can introduce new linked labels in the model.
These labels are not necessarily the target of the predictions but they help to capture the dependencies
among labels. For example, to capture the long distance dependencies between two different arguments
of same predicate we can introduce a linked label linking the label of two pairs and impose consistency
constraints between this new linked label and the label of each pair. Figure 2 shows some declarations
of the data-model’s graph representing input and output components of the learning models. The graph
can be queried using our invented graph traversal language and the queries are directly used as structured
machine learning features later.

4.1.2 Classifiers and Constraints
As mentioned in Section 3, the structure of a learning model is specified by templates which are defined
as classifiers (feature templates) and global constraints (constraint templates) in Saul. SRL has four
main feature templates: 1) Predicate template: connects an input constituent to a single label l

isPred

.
The input features of this template are generated based on the properties of the constituents �

constituent

.
The candidate generator of this template is a filter that takes all constituents whose pos-tag is VP; 2)
Argument template: connects a pair of constituents to a linked label l

isArg

. The candidate generator of
this template is a set of rules that are suggested by Xue and Palmer (2004); 3) ArgumentType template:
connects a pair of constituents to the linked label l

argType

. Same Xue-Palmer heuristics are used; 4)
ArgumentTypeCorrelations template: connects two pairs of pairs of constituent (i.e. relations between
relations) to their join linked label. The candidates are the pairs of Xue-Palmer candidates.

val sentences = node[TextAnnotation]
val predicates = node[Constituent]
val arguments = node[Constituent]
val pairs = node[Relations]
val pos-tag = property(arguments)
val word-form = property(arguments)
val relationsToArguments = edge(relations, arguments)
relationsToArguments.addSensor(relToArgument _)

Figure 2: An Example of data-model declarations for nodes, edges, properties and using sensors. The
sentences nodes are of type TextAnnotation class, which is a part of Saul’s underlying NLP library;
many predefined sensors can be applied on it to generate various nodes of type Constituent and
Relations, properties of those nodes and establish edges between them.

4.1 Semantic Role Labeling
SRL (Carreras and Màrquez, 2004) is a shallow semantic analysis framework, whereby a sentence is
analysed into multiple propositions; each one consisting of a predicate and one or more core arguments,
labeled with protosemantic roles (agents [Arg0], patient/theme [Arg1], beneficiary [Arg2], etc.), and zero
or more optional arguments, labeled according to their semantic function (temporal, locative, manner,
etc.). See Figure 1 for an example annotation.

4.1.1 Input-Output Spaces
Each sentence is a node in the data-model, comprised of constituents (derived from a tokenizer Sensor).
These constituents are atomic components of x (see Figure 1) and are identified as x = {x1, . . . , x4},
where x

i

is the identifier of the ith constituent in the sentence. Each constituent is described by a number
of properties (word-form, pos-tag, . . .) and the corresponding feature vector representation of these
properties is denoted by �

constituent

(x

i

). There are also composed components – pairs of constituents;
their descriptive vectors are referred to as �

pair

(x

i

, x

j

). The feature vector of a composed component
such as a pair, �

pair

(x1, x2) is usually described by the local features of x1, x2 and the relational features
between them, such as the order of their position, etc.

The main labels set for the SRL model is l = {l

isPred

, l

isArg

, l

argType

} which indicate whether a
constituent is a predicate, whether it is an argument and the argument role respectively. l

isArg

and
l

argType

are linked labels, meaning that they are defined with respect to another constituent (the predicate).
Depending on the type of correlations we aim to capture, we can introduce new linked labels in the model.
These labels are not necessarily the target of the predictions but they help to capture the dependencies
among labels. For example, to capture the long distance dependencies between two different arguments
of same predicate we can introduce a linked label linking the label of two pairs and impose consistency
constraints between this new linked label and the label of each pair. Figure 2 shows some declarations
of the data-model’s graph representing input and output components of the learning models. The graph
can be queried using our invented graph traversal language and the queries are directly used as structured
machine learning features later.

4.1.2 Classifiers and Constraints
As mentioned in Section 3, the structure of a learning model is specified by templates which are defined
as classifiers (feature templates) and global constraints (constraint templates) in Saul. SRL has four
main feature templates: 1) Predicate template: connects an input constituent to a single label l

isPred

.
The input features of this template are generated based on the properties of the constituents �

constituent

.
The candidate generator of this template is a filter that takes all constituents whose pos-tag is VP; 2)
Argument template: connects a pair of constituents to a linked label l

isArg

. The candidate generator of
this template is a set of rules that are suggested by Xue and Palmer (2004); 3) ArgumentType template:
connects a pair of constituents to the linked label l

argType

. Same Xue-Palmer heuristics are used; 4)
ArgumentTypeCorrelations template: connects two pairs of pairs of constituent (i.e. relations between
relations) to their join linked label. The candidates are the pairs of Xue-Palmer candidates.

val sentences = node[TextAnnotation]
val predicates = node[Constituent]
val arguments = node[Constituent]
val pairs = node[Relations]
val pos-tag = property(arguments)
val word-form = property(arguments)
val relationsToArguments = edge(relations, arguments)
relationsToArguments.addSensor(relToArgument _)

Figure 2: An Example of data-model declarations for nodes, edges, properties and using sensors. The
sentences nodes are of type TextAnnotation class, which is a part of Saul’s underlying NLP library;
many predefined sensors can be applied on it to generate various nodes of type Constituent and
Relations, properties of those nodes and establish edges between them.

4.1 Semantic Role Labeling
SRL (Carreras and Màrquez, 2004) is a shallow semantic analysis framework, whereby a sentence is
analysed into multiple propositions; each one consisting of a predicate and one or more core arguments,
labeled with protosemantic roles (agents [Arg0], patient/theme [Arg1], beneficiary [Arg2], etc.), and zero
or more optional arguments, labeled according to their semantic function (temporal, locative, manner,
etc.). See Figure 1 for an example annotation.

4.1.1 Input-Output Spaces
Each sentence is a node in the data-model, comprised of constituents (derived from a tokenizer Sensor).
These constituents are atomic components of x (see Figure 1) and are identified as x = {x1, . . . , x4},
where x

i

is the identifier of the ith constituent in the sentence. Each constituent is described by a number
of properties (word-form, pos-tag, . . .) and the corresponding feature vector representation of these
properties is denoted by �

constituent

(x

i

). There are also composed components – pairs of constituents;
their descriptive vectors are referred to as �

pair

(x

i

, x

j

). The feature vector of a composed component
such as a pair, �

pair

(x1, x2) is usually described by the local features of x1, x2 and the relational features
between them, such as the order of their position, etc.

The main labels set for the SRL model is l = {l

isPred

, l

isArg

, l

argType

} which indicate whether a
constituent is a predicate, whether it is an argument and the argument role respectively. l

isArg

and
l

argType

are linked labels, meaning that they are defined with respect to another constituent (the predicate).
Depending on the type of correlations we aim to capture, we can introduce new linked labels in the model.
These labels are not necessarily the target of the predictions but they help to capture the dependencies
among labels. For example, to capture the long distance dependencies between two different arguments
of same predicate we can introduce a linked label linking the label of two pairs and impose consistency
constraints between this new linked label and the label of each pair. Figure 2 shows some declarations
of the data-model’s graph representing input and output components of the learning models. The graph
can be queried using our invented graph traversal language and the queries are directly used as structured
machine learning features later.

4.1.2 Classifiers and Constraints
As mentioned in Section 3, the structure of a learning model is specified by templates which are defined
as classifiers (feature templates) and global constraints (constraint templates) in Saul. SRL has four
main feature templates: 1) Predicate template: connects an input constituent to a single label l

isPred

.
The input features of this template are generated based on the properties of the constituents �

constituent

.
The candidate generator of this template is a filter that takes all constituents whose pos-tag is VP; 2)
Argument template: connects a pair of constituents to a linked label l

isArg

. The candidate generator of
this template is a set of rules that are suggested by Xue and Palmer (2004); 3) ArgumentType template:
connects a pair of constituents to the linked label l

argType

. Same Xue-Palmer heuristics are used; 4)
ArgumentTypeCorrelations template: connects two pairs of pairs of constituent (i.e. relations between
relations) to their join linked label. The candidates are the pairs of Xue-Palmer candidates.

link-label

single-label

a Learning Template for argument types

Better Call Saul:… 15

■ Single or composed components of the input are
represented with typed nodes in the graph

■ All features are defined as the properties of the nodes
■ Labels also applied to single components or composed

components of the input (called link labels in the latter
case)

■ Edges are established between nodes
■ The edges and properties are defined and computed

based on a set of given NLP sensors

Semantic Role Labeling : Combined Feature Functions

Better Call Saul:… 16

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

those (?). The constraints can hold between the in-
stantiations of one template which implies the re-
lations between the nodes of one type also referred
to as autocorrelations as defined in a relational
dependency networks (?). The constraints are ex-
ploited during training in the loss-augmented in-
ference and are imposed on the output structure
during prediction. For graphical representation of
our models in terms of templates, accordingly we
use constraint templates that are beyond feature
templates and express the relationships between
labels cross templates. That being said, the com-
putational model in Saul is presented by a rela-
tional constrained factor graph. We exemplify
this representation when discussing the real prob-
lems in the later sections.

4 Call Saul: Case Studies

Focusing on aforementioned NLP tasks of part of
speech tagging, semantic role labeling and entity
mention relation extraction, in the rest of the paper
we walk through these problems and show how
we can design a variety of local to global mod-
els and show the related code. The Saul code is
declarative in nature and contains a set of spec-
ifications including a) The input nodes and out-
put labels which are related to declaring the data-
model graph; b) Constraints over the output struc-
ture; c) The joint feature templates, candidate gen-
eration for the templates. When this components
have been specified then the train and test can be
performed only by indicating which templates we
tend to use. The way we gather the specified parts
easily forms different training and test paradigms
in the spectrum of local to global models.

4.1 Semantic Role Labeling
The task is to annotate the sentences with a num-
ber of linguistically motivated semantics and re-
lationships (?). Figure ?? shows how the sentence
”Washington covers Seattle for Associated Press.”,
will be annotated with semantic role labels.

4.2 Input-Output Spaces
The first step of designing the structured output
models is to make the input graph from the raw
data. Saul has enriched with a number of li-
braries including format readers and commonly-
used NLP data-structures. The programmer can
exploit these libraries to easily generate the nodes
and edges in a datamodel graph. We use the term

Sensor to refer to functions that act as black boxes
and can generate nodes, edges and properties in
the graph. An example of a sensor for generat-
ing nodes and edges is the a sentence tokenizer
which receives a sentence and generates tokens.
Each token will be a node in the graph. A lem-
matizer can be another sensor, in this case a prop-
erty sensor, which generates the lemma of a token
which is a property of the token nodes. Depend-
ing on the granularity of the task in hand different
sensors can be used. For SRL each sentence is a
node in the graph and using Sensors each sentence
will be connected to it components which are Con-
stituents derived from a constituent parser. These
constituents are atomic/single components of x

(see Fig ??) and are identified as x = {x1, ..., x4},
where x

i

is the identifier of the ith constituent in
the sentence. Each constituent in the sentence is
described by a number of properties (lex-form,
pos-tag, ...) describing the word form, the part
of speech, etc and the corresponding feature vec-
tor representation of these properties is denoted by
�

constituent

(x

i

). There are also components com-
posed of pairs of constituents and their descriptive
vectors are referred to as �

pair

(x

i

, x

j

). We define
a number of relational properties describing the re-
lationships between constituents (e.g. path). The
feature vector of a composed component such as a
pair, �

pair

(x1, x2) is usually described by the lo-
cal features of x1, x2 and the relational features
between them, such as the order of their position ,
etc.

On the other hand the main label set for
SRL is l = {l

ispredicate

, l

isargument

, l

argmenttype

}.
The l

ispredicate

is a single label which indicates
whether a single constituent is a predicate or not
and the other two labels in fact are linked-labels
that indicate whether a constituent is an argu-
ment of a predicate and what is the role of a con-
stituent (which is an argument candidate) with re-
spect to another constituent (which is a predicate
candidate). Depending on the type of correlations
that we aim to consider we might introduce new
linked-labels in the model. These linked labels are
not directly the target of the predictions but help
for capturing the correlations among labels. For
example, to capture the correlations between two
different arguments of one predicate we can in-
troduce a linked-label linking the label of the two
pairs.

WargType

largType

�pairCandidate(xi)

Cl..

object ArgTypeLearner extends Learnable(pairs){
def label = argumentLabelGold
def feature = using(containsMOD, containsNEG,
clauseFeatures, chunkPathPattern, chunkEmbedding,
chunkLength, constituentLength, argPOSWindow,
argWordWindow, headwordRelation, syntacticFrameRelation
, pathRelation, phraseTypeRelation, predPosTag,
predLemmaR, linearPosition)

}

Figure 3: Left: shows the components of the ArgumentType feature template. l

argType

is one linked label
as a part of the objective in Equation 1, along with the corresponding block of weights and the pair

candidates (diamonds show dot products). Right: shows the code for the template. label and feature

are respectively one property and a list of properties of pair nodes declared in the data-model, these serve
as the output and input parts of this template. This template can be used as a local classifier or as a part of
the objective of a global model, depending on the indicated learning paradigm by the programmer.

val legalArgumentsConstraint = constraint(sentences) { x =>
val constraints = for {

predicate <- sentences(x) ⇠> sentenceToPredicates
candidateRelations = (predicates(y) ⇠> -relationsToPredicates)
argLegalList = legalArguments(y)
relation <- candidateRelations

} yield classiferLabelIsLegal(argumentTypeLearner, relation, argLegalList)
or (argumentTypeLearner on relation is "none")

}

def classiferLabelIsLegal(classifier, relation, legalLabels) = {
legalLabels._exists { l => (classifier on relation is l) }

}

Figure 4: Given a predicate, some argument types are illegal according to PropBank Frames (e.g. the
verb ‘cover‘ with sense 03 can take only Arg0 or Arg1), which means that they should be excluded from
the inference. The legalArguments(y) returns the predefined list of legal arguments for a predicate
y. In line 3, graph traversal queries (using the ⇠> operator) are applied to use an edge and go from a
sentence node to all contained predicate nodes in the sentence and then apply the constraint to all of
those predicates. Each constraint imposes the argumentTypeLearner to assign a legal argument type
to each candidate argument or does not count it as an argument at all, i.e., to assign none value to the
argument type.

The feature templates are instances of Learnable in Saul and in fact they are treated as local classifiers.
The script of Figure 3 shows the ArgumentType template. The Constraints are specified by means of
first-order logical expressions. We use the constraints specified in Punyakanok et al. (2008) in our models.
The script in Figure 4, shows an example expressing the legal argument constraints for a sentence.

4.1.3 Model Configurations
Programming for learning and inference configurations in Saul is simply composing the basic building
blocks of the language, that is, feature and constraint templates in different ways.
Local models. Training local models is as easy as calling the train function over each specified feature
template separately (e.g. ArgTypeLearner.train()). The test on these models also is simply done by
calling test for each template (e.g. ArgTypeLearner.test()). In addition, TestClassifeirs(/*a list

of classifiers*/) and TrainClassifiers(/*a list of classifiers*/) can be used to train/test
a number of classifiers independently by passing a list of classifier’s names to these functions. The training
algorithm can be specified when declaring the Learnable; here we have used averaged perceptrons in the
experiments which is the default model.

Semantic Role Labeling : Constraints

Only legal arguments of a predicate could be assigned as a type to the candidate
arguments. The legality is checked according to the Propbank frames.

Better Call Saul:… 17

Semantic Role Labeling : Constrained Classifiers

This Constrained Classifier now applies on a given pair candidate,
BUT it uses the global constraints at the sentence level.

The sentence is accessed via the edges defined in the data model
that connect the relation to its original sentence.

Model Precision Recall F1
ArgTypeLearnerG(GOLDPREDS) 85.35 85.35 85.35
ArgTypeLearnerG(GOLDPREDS) + C 85.35 85.36 85.35
ArgTypeLearnerXue(GOLDPREDS) 82.32 80.97 81.64
ArgTypeLearnerXue(GOLDPREDS) + C 82.90 80.70 81.79
ArgTypeLearnerXue(PREDPREDS) 82.47 80.79 81.62
ArgTypeLearnerXue(PREDPREDS) + C 83.62 80.54 82.05
ArgIdentifierXue | ArgTypeLearnerXue(PREDPREDS) 82.55 81.59 82.07
ArgIdentifierG(PREDPREDS) 95.51 94.19 94.85

Table 1: Evaluation of SRL various labels and configurations. The superscripts over the different Learners
refer to the whether gold argument boundaries (G) or the Xue-Palmer heuristics (Xue) were used to
generate argument candidates as input. GOLD/PREDPREDS refers to whether the Learner used gold
or predicted predicates. ‘C’ refers to the use of constraints during prediction and |denotes the pipeline
architecture.

Pipeline. Previous research on SRL (Punyakanok et al., 2008) shows that a good working model is the
one that first decides on argument identification and then takes those arguments and decides about their
roles. This configuration is made with a very minor change in the templates of the local models. Instead
of using Xue-Palmer candidates, we can use the identified arguments by a isArgument classifier as input
candidates for the ArgTypeLearner model. The rest of the model is the same.
L+I model. This is simply a locally trained classifier that uses a number of constraints on prediction time.
We define a constrained argument predictor based on a previously trained local Learnable as follows:

object ArgTypeConstraintClassifier extends ConstrainedClassifier(ArgTypeLearner)
{

def subjectTo = srlConstraints
}

where the srlConstraints is a constraint template. Having this definition we only
need to call the ArgTypeConstraintClassifier constraint predictor during the test time as
ArgTypeConstraintClassifier(x) which decides for the label of x in a global context.
IBT model. The linguistic background knowledge about SRL that is described in Section 4.1.2 provides
the possibility of designing a variety of global models. The constraints that limit the argument arrangement
around a specific predicate help to make sentence level decisions for each predicate during training phase
and/or prediction phase. To train the global models we simply call the joint train function and provide the
list of all declared constraint classifiers as parameters.

The results of some versions of these models are shown in Table 1. The experimental settings, the data
and the train/test splits are according to (Punyakanok et al., 2008) and the results are comparable. As the
results show the models that use constraints are the best performing ones. For SRL the global background
knowledge on the arguments in IBT setting did not improve the results.

4.2 Part-Of-Speech Tagging

This is perhaps the most often used application in ML for NLP. We use the setting proposed by Roth and
Zelenko (1998) as the basis for our experiments. The graph of an example sentence is shown in Figure 1.
We model the problem as a single-node graph representing constituents in sentences. We make use of
context window features and hence our graph has edges between each token and its context window. This
enables us to define contextual features by traversing the relevant edges to access tokens in the context.
The following code uses the gold POS-tag label (POSLabel) of the two tokens before the current token
during training and POS-tag classifier’s prediction (POSTaggerKnown) of the two tokens before the
current token during the test.

Better Call Saul:… 18

Program Structure

val srlDataModelObject = PopulateSRLDataModel(…)

val AllMyConstrainedClassifiers= List(argTypeConstraintClassifier,…)

JointTrain(sentences, AllMyConstrainedClassifiers)

ClassifierUtils.TestClassifiers(AllMyConstrainedClassifiers)

Better Call Saul:… 18

Program Structure

val srlDataModelObject = PopulateSRLDataModel(…)

val AllMyConstrainedClassifiers= List(argTypeConstraintClassifier,…)

JointTrain(sentences, AllMyConstrainedClassifiers)

ClassifierUtils.TestClassifiers(AllMyConstrainedClassifiers)

Same amount of code for other paradigms!

Better Call Saul:… 19

Other tasks

Better Call Saul:… 19

val labelTwoBefore = property(tokens) { x: Constituent =>
// Use edges to jump to the previous constituent
val cons = (tokens(x) ⇠> constituentBefore ⇠> constituentBefore).head
if (POSTaggerKnown.isTraining)
POSLabel(cons)

else POSTaggerKnown(cons)
}

4.2.1 Model configurations
Here, we point to a few interesting settings for this problem and report the results we obtained by Saul in
Table 2.

Count-based baseline. The simplest scenario is to create a simple count-based baseline: for each
constituent choose the most popular label. This is trivial to program in Saul.

Independent classifiers. We train independent classifiers for known and unknown words. Though both
classifiers use similar sets of features, the unknown classifier is trained only on tokens that were seen
fewer than 5 times in the training data. Here the ‘Learnable‘ is defined as exampled in Section 4.1.2.

Classifier combination. Given the known and unknown classifiers, one easy extension is to combine
them, depending whether the input instance is seen during the training phase or not. To code this, the
defined Learnables for the two classifiers are simply reused in an ‘if‘ construct.

Sequence tagging. One can extend the previous configurations by training higher-order classifiers,
i.e. classifiers trained on pair/tuple of neighboring constituents (similar to HMM or chain-CRF). At the
prediction time one needs to choose the best structure by doing constrained inference on the predictions
of the local classifiers. The following snippet shows how one can simply write a consistency constraint,
given a pairwise classifier POSTaggerPairwise which scores two consecutive constituents.

def sentenceLabelsMatch = constraint(sentences) {
t: TextAnnotation =>
val constituents = t.getView(ViewNames.TOKENS).getConstituents
// Go through a sliding window of tokens
constituents.sliding(3)._forall { cons: List[Constituent] =>

POSTaggerPairwise on (cons(0), cons(1)).second === POSTaggerPairwise on (
cons(1), cons(2)).first }

}

4.3 Entity-Relation extraction
This task is for labeling entities and recognizing semantic relations among them. It requires making
several local decisions (identifying named entities in the sentence) to support the relation identification.
The models we represent here are inspired some well-known previous work (Zhou et al., 2005; Chan and
Roth, 2010). The nodes in our models consists of Sentences, Mentions and Relations.

4.3.1 Features and Constraints
For the entity extraction classifier, we define various lexical features for each mention – head word,
POStags, words and POStags in a context window. Also, we incorporate some features based on gazetteers
for organization, vehicle, weapons, geographic locations, proper names and collective nouns. The
relation extraction classifier uses lexical, collocation and dependency-based features from the baseline
implementation in Chan and Roth (2010). We also use features from the brown word clusters (Brown et al.,
1992). The features for each word are based on a path from the root in its Brown clustering representation.
These features are easily available in our NLP data-model. We also use a decayed down-sampling of
negative examples between training iterations.

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

Washington*
covers*Seattle*

covers*
Seattle*

Seattle* for*the*Associated*Press*

cover5Washington* cover5Seattle* cover5for*the*Associated*Press*

predicate* argument*

relation*

!
label*

*
!

label*

*

!
label*

*

!
head
word*

*
!

parse*
path*

*

chunk*
length*!

parse*
path*!

Node!

Property!

Edge!

*

!
*

!
Label*

AM/PNC*
*!

Label*
A1!
*

*

!
Label*
A0!
*

*

!
Parse*Path*

VBZ^VPvNP…!
!
*

!
POS*window*
ctx/2:VBZ…!

!
*

!
Parse*Path*

VBZ^VPvNP…!
!
*

!
POS*window*
ctx/2:!NNP…!

!
*

!
Parse*Path*
VBZ^VP^S…!

!
*

!
POS*window*
ctx/2:VBZ…!

token*

!
label*

*

word*
form*!

label*
before*!

Other tasks

Better Call Saul:… 19

val labelTwoBefore = property(tokens) { x: Constituent =>
// Use edges to jump to the previous constituent
val cons = (tokens(x) ⇠> constituentBefore ⇠> constituentBefore).head
if (POSTaggerKnown.isTraining)
POSLabel(cons)

else POSTaggerKnown(cons)
}

4.2.1 Model configurations
Here, we point to a few interesting settings for this problem and report the results we obtained by Saul in
Table 2.

Count-based baseline. The simplest scenario is to create a simple count-based baseline: for each
constituent choose the most popular label. This is trivial to program in Saul.

Independent classifiers. We train independent classifiers for known and unknown words. Though both
classifiers use similar sets of features, the unknown classifier is trained only on tokens that were seen
fewer than 5 times in the training data. Here the ‘Learnable‘ is defined as exampled in Section 4.1.2.

Classifier combination. Given the known and unknown classifiers, one easy extension is to combine
them, depending whether the input instance is seen during the training phase or not. To code this, the
defined Learnables for the two classifiers are simply reused in an ‘if‘ construct.

Sequence tagging. One can extend the previous configurations by training higher-order classifiers,
i.e. classifiers trained on pair/tuple of neighboring constituents (similar to HMM or chain-CRF). At the
prediction time one needs to choose the best structure by doing constrained inference on the predictions
of the local classifiers. The following snippet shows how one can simply write a consistency constraint,
given a pairwise classifier POSTaggerPairwise which scores two consecutive constituents.

def sentenceLabelsMatch = constraint(sentences) {
t: TextAnnotation =>
val constituents = t.getView(ViewNames.TOKENS).getConstituents
// Go through a sliding window of tokens
constituents.sliding(3)._forall { cons: List[Constituent] =>

POSTaggerPairwise on (cons(0), cons(1)).second === POSTaggerPairwise on (
cons(1), cons(2)).first }

}

4.3 Entity-Relation extraction
This task is for labeling entities and recognizing semantic relations among them. It requires making
several local decisions (identifying named entities in the sentence) to support the relation identification.
The models we represent here are inspired some well-known previous work (Zhou et al., 2005; Chan and
Roth, 2010). The nodes in our models consists of Sentences, Mentions and Relations.

4.3.1 Features and Constraints
For the entity extraction classifier, we define various lexical features for each mention – head word,
POStags, words and POStags in a context window. Also, we incorporate some features based on gazetteers
for organization, vehicle, weapons, geographic locations, proper names and collective nouns. The
relation extraction classifier uses lexical, collocation and dependency-based features from the baseline
implementation in Chan and Roth (2010). We also use features from the brown word clusters (Brown et al.,
1992). The features for each word are based on a path from the root in its Brown clustering representation.
These features are easily available in our NLP data-model. We also use a decayed down-sampling of
negative examples between training iterations.

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

Washington*
covers*Seattle*

covers*
Seattle*

Seattle* for*the*Associated*Press*

cover5Washington* cover5Seattle* cover5for*the*Associated*Press*

predicate* argument*

relation*

!
label*

*
!

label*

*

!
label*

*

!
head
word*

*
!

parse*
path*

*

chunk*
length*!

parse*
path*!

Node!

Property!

Edge!

*

!
*

!
Label*

AM/PNC*
*!

Label*
A1!
*

*

!
Label*
A0!
*

*

!
Parse*Path*

VBZ^VPvNP…!
!
*

!
POS*window*
ctx/2:VBZ…!

!
*

!
Parse*Path*

VBZ^VPvNP…!
!
*

!
POS*window*
ctx/2:!NNP…!

!
*

!
Parse*Path*
VBZ^VP^S…!

!
*

!
POS*window*
ctx/2:VBZ…!

token*

!
label*

*

word*
form*!

label*
before*!

Other tasks

Pos-Tag Contextual Feature

Better Call Saul:… 19

val labelTwoBefore = property(tokens) { x: Constituent =>
// Use edges to jump to the previous constituent
val cons = (tokens(x) ⇠> constituentBefore ⇠> constituentBefore).head
if (POSTaggerKnown.isTraining)
POSLabel(cons)

else POSTaggerKnown(cons)
}

4.2.1 Model configurations
Here, we point to a few interesting settings for this problem and report the results we obtained by Saul in
Table 2.

Count-based baseline. The simplest scenario is to create a simple count-based baseline: for each
constituent choose the most popular label. This is trivial to program in Saul.

Independent classifiers. We train independent classifiers for known and unknown words. Though both
classifiers use similar sets of features, the unknown classifier is trained only on tokens that were seen
fewer than 5 times in the training data. Here the ‘Learnable‘ is defined as exampled in Section 4.1.2.

Classifier combination. Given the known and unknown classifiers, one easy extension is to combine
them, depending whether the input instance is seen during the training phase or not. To code this, the
defined Learnables for the two classifiers are simply reused in an ‘if‘ construct.

Sequence tagging. One can extend the previous configurations by training higher-order classifiers,
i.e. classifiers trained on pair/tuple of neighboring constituents (similar to HMM or chain-CRF). At the
prediction time one needs to choose the best structure by doing constrained inference on the predictions
of the local classifiers. The following snippet shows how one can simply write a consistency constraint,
given a pairwise classifier POSTaggerPairwise which scores two consecutive constituents.

def sentenceLabelsMatch = constraint(sentences) {
t: TextAnnotation =>
val constituents = t.getView(ViewNames.TOKENS).getConstituents
// Go through a sliding window of tokens
constituents.sliding(3)._forall { cons: List[Constituent] =>

POSTaggerPairwise on (cons(0), cons(1)).second === POSTaggerPairwise on (
cons(1), cons(2)).first }

}

4.3 Entity-Relation extraction
This task is for labeling entities and recognizing semantic relations among them. It requires making
several local decisions (identifying named entities in the sentence) to support the relation identification.
The models we represent here are inspired some well-known previous work (Zhou et al., 2005; Chan and
Roth, 2010). The nodes in our models consists of Sentences, Mentions and Relations.

4.3.1 Features and Constraints
For the entity extraction classifier, we define various lexical features for each mention – head word,
POStags, words and POStags in a context window. Also, we incorporate some features based on gazetteers
for organization, vehicle, weapons, geographic locations, proper names and collective nouns. The
relation extraction classifier uses lexical, collocation and dependency-based features from the baseline
implementation in Chan and Roth (2010). We also use features from the brown word clusters (Brown et al.,
1992). The features for each word are based on a path from the root in its Brown clustering representation.
These features are easily available in our NLP data-model. We also use a decayed down-sampling of
negative examples between training iterations.

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

Washington*
covers*Seattle*

covers*
Seattle*

Seattle* for*the*Associated*Press*

cover5Washington* cover5Seattle* cover5for*the*Associated*Press*

predicate* argument*

relation*

!
label*

*
!

label*

*

!
label*

*

!
head
word*

*
!

parse*
path*

*

chunk*
length*!

parse*
path*!

Node!

Property!

Edge!

*

!
*

!
Label*

AM/PNC*
*!

Label*
A1!
*

*

!
Label*
A0!
*

*

!
Parse*Path*

VBZ^VPvNP…!
!
*

!
POS*window*
ctx/2:VBZ…!

!
*

!
Parse*Path*

VBZ^VPvNP…!
!
*

!
POS*window*
ctx/2:!NNP…!

!
*

!
Parse*Path*
VBZ^VP^S…!

!
*

!
POS*window*
ctx/2:VBZ…!

token*

!
label*

*

word*
form*!

label*
before*!

Other tasks

(WorkFor(x) is true then PER(x.firstArg) is true and ORG(x.secondArg) is true

Pos-Tag Contextual Feature

Better Call Saul:… 19

val labelTwoBefore = property(tokens) { x: Constituent =>
// Use edges to jump to the previous constituent
val cons = (tokens(x) ⇠> constituentBefore ⇠> constituentBefore).head
if (POSTaggerKnown.isTraining)
POSLabel(cons)

else POSTaggerKnown(cons)
}

4.2.1 Model configurations
Here, we point to a few interesting settings for this problem and report the results we obtained by Saul in
Table 2.

Count-based baseline. The simplest scenario is to create a simple count-based baseline: for each
constituent choose the most popular label. This is trivial to program in Saul.

Independent classifiers. We train independent classifiers for known and unknown words. Though both
classifiers use similar sets of features, the unknown classifier is trained only on tokens that were seen
fewer than 5 times in the training data. Here the ‘Learnable‘ is defined as exampled in Section 4.1.2.

Classifier combination. Given the known and unknown classifiers, one easy extension is to combine
them, depending whether the input instance is seen during the training phase or not. To code this, the
defined Learnables for the two classifiers are simply reused in an ‘if‘ construct.

Sequence tagging. One can extend the previous configurations by training higher-order classifiers,
i.e. classifiers trained on pair/tuple of neighboring constituents (similar to HMM or chain-CRF). At the
prediction time one needs to choose the best structure by doing constrained inference on the predictions
of the local classifiers. The following snippet shows how one can simply write a consistency constraint,
given a pairwise classifier POSTaggerPairwise which scores two consecutive constituents.

def sentenceLabelsMatch = constraint(sentences) {
t: TextAnnotation =>
val constituents = t.getView(ViewNames.TOKENS).getConstituents
// Go through a sliding window of tokens
constituents.sliding(3)._forall { cons: List[Constituent] =>

POSTaggerPairwise on (cons(0), cons(1)).second === POSTaggerPairwise on (
cons(1), cons(2)).first }

}

4.3 Entity-Relation extraction
This task is for labeling entities and recognizing semantic relations among them. It requires making
several local decisions (identifying named entities in the sentence) to support the relation identification.
The models we represent here are inspired some well-known previous work (Zhou et al., 2005; Chan and
Roth, 2010). The nodes in our models consists of Sentences, Mentions and Relations.

4.3.1 Features and Constraints
For the entity extraction classifier, we define various lexical features for each mention – head word,
POStags, words and POStags in a context window. Also, we incorporate some features based on gazetteers
for organization, vehicle, weapons, geographic locations, proper names and collective nouns. The
relation extraction classifier uses lexical, collocation and dependency-based features from the baseline
implementation in Chan and Roth (2010). We also use features from the brown word clusters (Brown et al.,
1992). The features for each word are based on a path from the root in its Brown clustering representation.
These features are easily available in our NLP data-model. We also use a decayed down-sampling of
negative examples between training iterations.

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

Washington*
covers*Seattle*

covers*
Seattle*

Seattle* for*the*Associated*Press*

cover5Washington* cover5Seattle* cover5for*the*Associated*Press*

predicate* argument*

relation*

!
label*

*
!

label*

*

!
label*

*

!
head
word*

*
!

parse*
path*

*

chunk*
length*!

parse*
path*!

Node!

Property!

Edge!

*

!
*

!
Label*

AM/PNC*
*!

Label*
A1!
*

*

!
Label*
A0!
*

*

!
Parse*Path*

VBZ^VPvNP…!
!
*

!
POS*window*
ctx/2:VBZ…!

!
*

!
Parse*Path*

VBZ^VPvNP…!
!
*

!
POS*window*
ctx/2:!NNP…!

!
*

!
Parse*Path*
VBZ^VP^S…!

!
*

!
POS*window*
ctx/2:VBZ…!

token*

!
label*

*

word*
form*!

label*
before*!

Other tasks

(WorkFor(x) is true then PER(x.firstArg) is true and ORG(x.secondArg) is true

Pos-Tag Contextual Feature

ER constraint imposed on mentioned and relations

Better Call Saul:… 19

val labelTwoBefore = property(tokens) { x: Constituent =>
// Use edges to jump to the previous constituent
val cons = (tokens(x) ⇠> constituentBefore ⇠> constituentBefore).head
if (POSTaggerKnown.isTraining)
POSLabel(cons)

else POSTaggerKnown(cons)
}

4.2.1 Model configurations
Here, we point to a few interesting settings for this problem and report the results we obtained by Saul in
Table 2.

Count-based baseline. The simplest scenario is to create a simple count-based baseline: for each
constituent choose the most popular label. This is trivial to program in Saul.

Independent classifiers. We train independent classifiers for known and unknown words. Though both
classifiers use similar sets of features, the unknown classifier is trained only on tokens that were seen
fewer than 5 times in the training data. Here the ‘Learnable‘ is defined as exampled in Section 4.1.2.

Classifier combination. Given the known and unknown classifiers, one easy extension is to combine
them, depending whether the input instance is seen during the training phase or not. To code this, the
defined Learnables for the two classifiers are simply reused in an ‘if‘ construct.

Sequence tagging. One can extend the previous configurations by training higher-order classifiers,
i.e. classifiers trained on pair/tuple of neighboring constituents (similar to HMM or chain-CRF). At the
prediction time one needs to choose the best structure by doing constrained inference on the predictions
of the local classifiers. The following snippet shows how one can simply write a consistency constraint,
given a pairwise classifier POSTaggerPairwise which scores two consecutive constituents.

def sentenceLabelsMatch = constraint(sentences) {
t: TextAnnotation =>
val constituents = t.getView(ViewNames.TOKENS).getConstituents
// Go through a sliding window of tokens
constituents.sliding(3)._forall { cons: List[Constituent] =>

POSTaggerPairwise on (cons(0), cons(1)).second === POSTaggerPairwise on (
cons(1), cons(2)).first }

}

4.3 Entity-Relation extraction
This task is for labeling entities and recognizing semantic relations among them. It requires making
several local decisions (identifying named entities in the sentence) to support the relation identification.
The models we represent here are inspired some well-known previous work (Zhou et al., 2005; Chan and
Roth, 2010). The nodes in our models consists of Sentences, Mentions and Relations.

4.3.1 Features and Constraints
For the entity extraction classifier, we define various lexical features for each mention – head word,
POStags, words and POStags in a context window. Also, we incorporate some features based on gazetteers
for organization, vehicle, weapons, geographic locations, proper names and collective nouns. The
relation extraction classifier uses lexical, collocation and dependency-based features from the baseline
implementation in Chan and Roth (2010). We also use features from the brown word clusters (Brown et al.,
1992). The features for each word are based on a path from the root in its Brown clustering representation.
These features are easily available in our NLP data-model. We also use a decayed down-sampling of
negative examples between training iterations.

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

Washington*
covers*Seattle*

covers*
Seattle*

Seattle* for*the*Associated*Press*

cover5Washington* cover5Seattle* cover5for*the*Associated*Press*

predicate* argument*

relation*

!
label*

*
!

label*

*

!
label*

*

!
head
word*

*
!

parse*
path*

*

chunk*
length*!

parse*
path*!

Node!

Property!

Edge!

*

!
*

!
Label*

AM/PNC*
*!

Label*
A1!
*

*

!
Label*
A0!
*

*

!
Parse*Path*

VBZ^VPvNP…!
!
*

!
POS*window*
ctx/2:VBZ…!

!
*

!
Parse*Path*

VBZ^VPvNP…!
!
*

!
POS*window*
ctx/2:!NNP…!

!
*

!
Parse*Path*
VBZ^VP^S…!

!
*

!
POS*window*
ctx/2:VBZ…!

token*

!
label*

*

word*
form*!

label*
before*!

Other tasks

(WorkFor(x) is true then PER(x.firstArg) is true and ORG(x.secondArg) is true

Pos-Tag Contextual Feature

ER constraint imposed on mentioned and relations

 4 5

ORG

WorksFor

Person

Better Call Saul:… 20

Results : Semantic Role Labeling

Model Precision Recall F1
ArgTypeLearnerG(GOLDPREDS) 85.35 85.35 85.35
ArgTypeLearnerG(GOLDPREDS) + C 85.35 85.36 85.35
ArgTypeLearnerXue(GOLDPREDS) 82.32 80.97 81.64
ArgTypeLearnerXue(GOLDPREDS) + C 82.90 80.70 81.79
ArgTypeLearnerXue(PREDPREDS) 82.47 80.79 81.62
ArgTypeLearnerXue(PREDPREDS) + C 83.62 80.54 82.05
ArgIdentifierXue | ArgTypeLearnerXue(PREDPREDS) 82.55 81.59 82.07
ArgIdentifierG(PREDPREDS) 95.51 94.19 94.85

Table 1: Evaluation of SRL various labels and configurations. The superscripts over the different Learners
refer to the whether gold argument boundaries (G) or the Xue-Palmer heuristics (Xue) were used to
generate argument candidates as input. GOLD/PREDPREDS refers to whether the Learner used gold
or predicted predicates. ‘C’ refers to the use of constraints during prediction and |denotes the pipeline
architecture.

Pipeline. Previous research on SRL (Punyakanok et al., 2008) shows that a good working model is the
one that first decides on argument identification and then takes those arguments and decides about their
roles. This configuration is made with a very minor change in the templates of the local models. Instead
of using Xue-Palmer candidates, we can use the identified arguments by a isArgument classifier as input
candidates for the ArgTypeLearner model. The rest of the model is the same.
L+I model. This is simply a locally trained classifier that uses a number of constraints on prediction time.
We define a constrained argument predictor based on a previously trained local Learnable as follows:

object ArgTypeConstraintClassifier extends ConstrainedClassifier(ArgTypeLearner)
{

def subjectTo = srlConstraints
}

where the srlConstraints is a constraint template. Having this definition we only
need to call the ArgTypeConstraintClassifier constraint predictor during the test time as
ArgTypeConstraintClassifier(x) which decides for the label of x in a global context.
IBT model. The linguistic background knowledge about SRL that is described in Section 4.1.2 provides
the possibility of designing a variety of global models. The constraints that limit the argument arrangement
around a specific predicate help to make sentence level decisions for each predicate during training phase
and/or prediction phase. To train the global models we simply call the joint train function and provide the
list of all declared constraint classifiers as parameters.

The results of some versions of these models are shown in Table 1. The experimental settings, the data
and the train/test splits are according to (Punyakanok et al., 2008) and the results are comparable. As the
results show the models that use constraints are the best performing ones. For SRL the global background
knowledge on the arguments in IBT setting did not improve the results.

4.2 Part-Of-Speech Tagging

This is perhaps the most often used application in ML for NLP. We use the setting proposed by Roth and
Zelenko (1998) as the basis for our experiments. The graph of an example sentence is shown in Figure 1.
We model the problem as a single-node graph representing constituents in sentences. We make use of
context window features and hence our graph has edges between each token and its context window. This
enables us to define contextual features by traversing the relevant edges to access tokens in the context.
The following code uses the gold POS-tag label (POSLabel) of the two tokens before the current token
during training and POS-tag classifier’s prediction (POSTaggerKnown) of the two tokens before the
current token during the test.

Model Precision Recall F1
ArgTypeLearnerG(GOLDPREDS) 85.35 85.35 85.35
ArgTypeLearnerG(GOLDPREDS) + C 85.35 85.36 85.35
ArgTypeLearnerXue(GOLDPREDS) 82.32 80.97 81.64
ArgTypeLearnerXue(GOLDPREDS) + C 82.90 80.70 81.79
ArgTypeLearnerXue(PREDPREDS) 82.47 80.79 81.62
ArgTypeLearnerXue(PREDPREDS) + C 83.62 80.54 82.05
ArgIdentifierXue | ArgTypeLearnerXue(PREDPREDS) 82.55 81.59 82.07
ArgIdentifierG(PREDPREDS) 95.51 94.19 94.85

Table 1: Evaluation of SRL various labels and configurations. The superscripts over the different Learners
refer to the whether gold argument boundaries (G) or the Xue-Palmer heuristics (Xue) were used to
generate argument candidates as input. GOLD/PREDPREDS refers to whether the Learner used gold
or predicted predicates. ‘C’ refers to the use of constraints during prediction and |denotes the pipeline
architecture.

Pipeline. Previous research on SRL (Punyakanok et al., 2008) shows that a good working model is the
one that first decides on argument identification and then takes those arguments and decides about their
roles. This configuration is made with a very minor change in the templates of the local models. Instead
of using Xue-Palmer candidates, we can use the identified arguments by a isArgument classifier as input
candidates for the ArgTypeLearner model. The rest of the model is the same.
L+I model. This is simply a locally trained classifier that uses a number of constraints on prediction time.
We define a constrained argument predictor based on a previously trained local Learnable as follows:

object ArgTypeConstraintClassifier extends ConstrainedClassifier(ArgTypeLearner)
{

def subjectTo = srlConstraints
}

where the srlConstraints is a constraint template. Having this definition we only
need to call the ArgTypeConstraintClassifier constraint predictor during the test time as
ArgTypeConstraintClassifier(x) which decides for the label of x in a global context.
IBT model. The linguistic background knowledge about SRL that is described in Section 4.1.2 provides
the possibility of designing a variety of global models. The constraints that limit the argument arrangement
around a specific predicate help to make sentence level decisions for each predicate during training phase
and/or prediction phase. To train the global models we simply call the joint train function and provide the
list of all declared constraint classifiers as parameters.

The results of some versions of these models are shown in Table 1. The experimental settings, the data
and the train/test splits are according to (Punyakanok et al., 2008) and the results are comparable. As the
results show the models that use constraints are the best performing ones. For SRL the global background
knowledge on the arguments in IBT setting did not improve the results.

4.2 Part-Of-Speech Tagging

This is perhaps the most often used application in ML for NLP. We use the setting proposed by Roth and
Zelenko (1998) as the basis for our experiments. The graph of an example sentence is shown in Figure 1.
We model the problem as a single-node graph representing constituents in sentences. We make use of
context window features and hence our graph has edges between each token and its context window. This
enables us to define contextual features by traversing the relevant edges to access tokens in the context.
The following code uses the gold POS-tag label (POSLabel) of the two tokens before the current token
during training and POS-tag classifier’s prediction (POSTaggerKnown) of the two tokens before the
current token during the test.

Better Call Saul:… 21

Setting Accuracy
Count-based baseline 91.80%
Unknown Classifier 77.09%
Known Classifier 94.92 %
Combined Known-Unknown 96.69%

Table 2: The performance of the
POStagger, tested on sections 22–
24 of the WSJ portion of the Penn
Treebank (Marcus et al., 1993).

Scenario Precision Recall F1

E
Mention Coarse-Label 77.14 70.62 73.73
Mention Fine-Label 73.49 65.46 69.24

R

Basic 54.09 43.89 50.48
+ Sampling 52.48 56.78 54.54
+ Sampling + Brown 54.43 54.23 54.33
+ Sampling + Brown + HCons 55.82 53.42 54.59

Table 3: 5-fold CV performance of the fine-grained entity
(E) and relation (R) extraction on Newswire and Broadcast
News section of ACE-2005.

Relation hierarchy constraint. Since the coarse and fine labels follow a strict hierarchy, we leverage
this information to boost the prediction of the fine-grained classifier by constraining its prediction upon
the (more reliable) coarse-grained relation classifier.

4.3.2 Model Configuration
Entity type classifier. For the entity type task, we train two independent classifiers - one for coarse-label
and the second for the fine-grained entity type. We generate the candidates for entities by taking all nouns
and possessive pronouns, base noun phrases, selective chunks from the shallow parse and named entities
annotated by the NE tagger of Ratinov and Roth (2009).

Relation type classifier. For the relation types, we train two independent classifiers - coarse-grained
relation type label and fine-grained relation type label. We use features from our unified data-model which
are properties defined on the relations node in the data-model graph. We also incorporate the
Relation Hierarchy constraint during inference so that the predictions of both classifiers are coherent. We
report some of our results in Table 3.

5 Related Work

This work has been done in the context of Saul, a recently developed declarative learning based program-
ming language. DeLBP is a new paradigm (Roth, 2005; Rizzolo, 2011; Kordjamshidi et al., 2015) which
is related to probabilistic programming languages (PPL) (Pfeffer, 2009; McCallum et al., 2009) (inter
alia), sharing the goal of facilitating the design of learning and inference models. However, compared
to PPL, it is aimed at non-expert users of machine learning, and it is a more generic framework that
is not limited to probabilistic models. It focuses on learning over complex structures where there are
global correlations between variables, and where first order background knowledge about the data and
domain could be easily considered during learning and inference. The desideratum of this framework is
the conceptual representation of the domain, data and knowledge, in a way that is suitable for non-experts
in machine learning and, it considers the aspect of relational feature extraction; this is different also
from the goals of Searn (Hal et al., 2009) and Wolf (Riedel et al., 2014). DeLBP focuses on data-driven
learning and reasoning for problem solving and handling collections of data from heterogeneous resources,
unlike Dyna (Eisner, 2008) which is a generic declarative problem solving paradigm based on dynamic
programming. This paper exhibits the capabilities and flexibility of Saul for solving problems in the NLP
domain. Specifically, it shows how a unified predefined NLP data-model can help performing various
tasks at various granularity levels.

6 Conclusion

We presented three examples of NLP applications as defined in the declarative learning-based programming
language Saul. The main advantage of our approach compared to traditional, task-specific, systems is
that Saul allows one to define all the components of the models declaratively, from feature extraction to
learning and inference with arbitrary structures. This allows designers and researchers a way to explore
different way to decompose, learn and do inference and easily gain insights into the impact of these on the

Results: PoS-Tagging and ER

Better Call Saul:… 22

Conclusion

ht
tp

s:
//g

ith
ub

.c
om

/Il
lin

oi
sC

og
C

om
p/

sa
ul

Better Call Saul:… 22

Conclusion

■ Saul language facilitates modeling NLP applications that need

■ Learning and reasoning over Structures
■ Relational Feature Extraction
■ Direct use of expert knowledge beyond data instances

ht
tp

s:
//g

ith
ub

.c
om

/Il
lin

oi
sC

og
C

om
p/

sa
ul

Better Call Saul:… 22

Conclusion

■ Saul language facilitates modeling NLP applications that need

■ Learning and reasoning over Structures
■ Relational Feature Extraction
■ Direct use of expert knowledge beyond data instances

■ Saul saves Programming time

in designing various configurations and experimentation
■ each configuration is expressed in a few lines of declarative code.

ht
tp

s:
//g

ith
ub

.c
om

/Il
lin

oi
sC

og
C

om
p/

sa
ul

Better Call Saul:… 22

Conclusion

■ Saul language facilitates modeling NLP applications that need

■ Learning and reasoning over Structures
■ Relational Feature Extraction
■ Direct use of expert knowledge beyond data instances

■ Saul saves Programming time

in designing various configurations and experimentation
■ each configuration is expressed in a few lines of declarative code.

■ Saul increases the reusability of codes
when data and knowledge about the problem increases

when we get to use new emerging algorithms

ht
tp

s:
//g

ith
ub

.c
om

/Il
lin

oi
sC

og
C

om
p/

sa
ul

Better Call Saul:… 22

Conclusion

■ Saul language facilitates modeling NLP applications that need

■ Learning and reasoning over Structures
■ Relational Feature Extraction
■ Direct use of expert knowledge beyond data instances

■ Saul saves Programming time

in designing various configurations and experimentation
■ each configuration is expressed in a few lines of declarative code.

■ Saul increases the reusability of codes
when data and knowledge about the problem increases

when we get to use new emerging algorithms
The Novel Ideas include:

ht
tp

s:
//g

ith
ub

.c
om

/Il
lin

oi
sC

og
C

om
p/

sa
ul

Better Call Saul:… 22

Conclusion

■ Saul language facilitates modeling NLP applications that need

■ Learning and reasoning over Structures
■ Relational Feature Extraction
■ Direct use of expert knowledge beyond data instances

■ Saul saves Programming time

in designing various configurations and experimentation
■ each configuration is expressed in a few lines of declarative code.

■ Saul increases the reusability of codes
when data and knowledge about the problem increases

when we get to use new emerging algorithms
The Novel Ideas include:
■ Programming for decompositions of a global optimizations that are used in training

and prediction

ht
tp

s:
//g

ith
ub

.c
om

/Il
lin

oi
sC

og
C

om
p/

sa
ul

Better Call Saul:… 22

Conclusion

■ Saul language facilitates modeling NLP applications that need

■ Learning and reasoning over Structures
■ Relational Feature Extraction
■ Direct use of expert knowledge beyond data instances

■ Saul saves Programming time

in designing various configurations and experimentation
■ each configuration is expressed in a few lines of declarative code.

■ Saul increases the reusability of codes
when data and knowledge about the problem increases

when we get to use new emerging algorithms
The Novel Ideas include:
■ Programming for decompositions of a global optimizations that are used in training

and prediction
■ An abstraction for unifying various formalisms for learning and reasoning which is

an ongoing work ht
tp

s:
//g

ith
ub

.c
om

/Il
lin

oi
sC

og
C

om
p/

sa
ul

Better Call Saul:… 22

Conclusion

■ Saul language facilitates modeling NLP applications that need

■ Learning and reasoning over Structures
■ Relational Feature Extraction
■ Direct use of expert knowledge beyond data instances

■ Saul saves Programming time

in designing various configurations and experimentation
■ each configuration is expressed in a few lines of declarative code.

■ Saul increases the reusability of codes
when data and knowledge about the problem increases

when we get to use new emerging algorithms
The Novel Ideas include:
■ Programming for decompositions of a global optimizations that are used in training

and prediction
■ An abstraction for unifying various formalisms for learning and reasoning which is

an ongoing work

■ A unified language for graph querying and structured learning

ht
tp

s:
//g

ith
ub

.c
om

/Il
lin

oi
sC

og
C

om
p/

sa
ul

Better Call Saul:… 22

Conclusion

■ Saul language facilitates modeling NLP applications that need

■ Learning and reasoning over Structures
■ Relational Feature Extraction
■ Direct use of expert knowledge beyond data instances

■ Saul saves Programming time

in designing various configurations and experimentation
■ each configuration is expressed in a few lines of declarative code.

■ Saul increases the reusability of codes
when data and knowledge about the problem increases

when we get to use new emerging algorithms
The Novel Ideas include:
■ Programming for decompositions of a global optimizations that are used in training

and prediction
■ An abstraction for unifying various formalisms for learning and reasoning which is

an ongoing work

■ A unified language for graph querying and structured learning

Thank you!

ht
tp

s:
//g

ith
ub

.c
om

/Il
lin

oi
sC

og
C

om
p/

sa
ul

Better Call Saul:… 22

Conclusion

■ Saul language facilitates modeling NLP applications that need

■ Learning and reasoning over Structures
■ Relational Feature Extraction
■ Direct use of expert knowledge beyond data instances

■ Saul saves Programming time

in designing various configurations and experimentation
■ each configuration is expressed in a few lines of declarative code.

■ Saul increases the reusability of codes
when data and knowledge about the problem increases

when we get to use new emerging algorithms
The Novel Ideas include:
■ Programming for decompositions of a global optimizations that are used in training

and prediction
■ An abstraction for unifying various formalisms for learning and reasoning which is

an ongoing work

■ A unified language for graph querying and structured learning

I have two open PhD positions and one postdoc position, please contact
me at pkordjam@tulane.edu, if you are interested!

Thank you!

ht
tp

s:
//g

ith
ub

.c
om

/Il
lin

oi
sC

og
C

om
p/

sa
ul

mailto:pkordjam@tulane.edu

Better Call Saul:… 23

NLP Sensors

def textAnnotationToTree(ta: TextAnnotation): Tree[Constituent]
 
def textAnnotationToStringTree(ta: TextAnnotation): Tree[String]

def getPOS(x: Constituent): String

def getLemma(x: Constituent): String

def getSubtreeArguments(currentSubTrees: List[Tree[Constituent]]): List[Tree[Constituent]]
 
def xuPalmerCandidate(x: Constituent, y: Tree[String]): List[Relation]

def fexContextFeats(x: Constituent, featureExtractor: WordFeatureExtractor): String

…

