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Solution: An action does not change any property unless there is evidence to 
the contrary 

common sense law of inertia 
Result: Non-monotonic reasoning  
 
 
Example of non-monotonic logic (abductive):  
 

Observation 1: Your daughter’s messy room 
Conclusion 1: She has school problem, or relationship problem, etc.  
Observation 2: Bookshelf has broken.  
Conclusion 2: The heavy weight of things on the shelf has broken it.  

Monotonicity of classical logic:             𝑆 ⊨ 𝑅  ⇒  𝑆 ∪ 𝐵 ⊨ 𝑅 
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Cyc (1984-present) 

(Douglas Lenant, 1984) 

Goal:  
Knowledge representation schema  
utilizing first-order relationships.  

In 1986, Doug Lenat estimated the effort to complete Cyc would be 
250,000 rules and 350 man-years of effort!  

 

Example assertions :   
“Every tree is a plant”  
“Plants die eventually” 

 

500k concepts, 17k relations, ~10M logical facts  
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Cyc (1984-present) 

(Douglas Lenant, 1984) 

Example entries:  
 
Constants:        #$OrganicStuff 

 
Variable:         (#$colorOfObject #$Grass ?someColor) 
 
Expressions:   (#$colorOfObject #$Grass #$Green) 
 
Assertions:      “Animals sleep at home” 

(ForAll ?x (ForAll ?S (ForAll ?PLACE 

  (implies (and 

  (isa ?x Animal) 

  (isa ?S SleepingEvent) 

  (performer ?S ?x) 

  (location ?S ?PLACE)) 

  (home ?x ?PLACE)))))  

 



Semantic Networks  
(Ross Quillian, 1963) 

isa 

isa 

isa isa 

Robin 

Bird 

Animal 

Red Rusty 

hasPart 

Wing 

A graph of labeled nodes and labeled, directed arcs 
Arcs define binary relationships that hold between objects 
denoted by the nodes. 
 

Link Type Semantic s  Example  

𝐴
𝑆𝑢𝑏𝑠𝑒𝑡

𝐵 𝐴 ⊂ 𝐵 𝐶𝑎𝑡𝑠 ⊂ 𝑀𝑎𝑚𝑚𝑎𝑙𝑠 

𝐴
𝑀𝑒𝑚𝑏𝑒𝑟

𝐵 𝐴 ∈ 𝐵 𝐵𝑖𝑙𝑙 ∈ 𝐶𝑎𝑡𝑠  

𝐴
𝑅
→𝐵 𝑅(𝐴, 𝐵) 𝐵𝑖𝑙𝑙

𝐴𝑔𝑒
12 

𝐴
𝑅

𝐵 
∀𝑥, 𝑥 ∈ 𝐴 ⇒ 𝑅(𝑥, 𝐵) 

𝐵𝑖𝑟𝑑
𝑙𝑒𝑔𝑠

12 

𝐴
𝑅

𝐵 
∀𝑥 ∃𝑦, 𝑥 ∈ 𝐴 ⇒ 𝑦 ∈ 𝐵 ∧  𝑅(𝑥, 𝐵) 

𝐵𝑖𝑟𝑑𝑠
𝑃𝑎𝑟𝑒𝑛𝑡

𝐵𝑖𝑟𝑑𝑠 



 
ConceptNet (2000-present) 

• Based on Open Mind Common Sense (OMCS)  
• goal was to build a large commonsense knowledge base  
• from the contributions of many people across the Web. 

 
A network represents semantic relation between concepts. 
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Frames 
(Minsky, 1974; Fillmore, 1977) 

Premise: Meaning is based on prototypical abstract scenes  

Cynthia   sold   a car   to Bob  

SELLER  PREDICATE GOODS  BUYER 

SELLER: 
PREDICATE: 
GOODS:  
BUYER: 

 Cynthia 
         sold 
 a car   
to Bob  

Bob   bought   a car   from Cynthia. 

BUYER   PREDICATE GOODS   SELLER 



Frames 
(Minsky, 1974; Fillmore, 1977) 

Hierarchical Representation with Frames 



ThoughtTreasure (1994-2000) 

(Erik Mueller, 2000) 

Procedural knowledge:  For typical actions, like inter-personal relations, 
sleeping, attending events, sending a message 
 
 
 
 
 
 
 

work-box-office(B, F) :-  

 dress(B, work-box-office),  

 near-reachable(B, F),  

 TKTBOX = FINDO(ticket-box);  

 near-reachable(B, FINDO(employee-side-of-counter)),  

 /* HANDLE NEXT CUSTOMER */  

100: WAIT FOR attend(A = human, B) OR  

 pre-sequence(A = human, B), may-I-help-you(B, A),  

/* HANDLE NEXT REQUEST OF CUSTOMER */  

103: WAIT FOR request(A, B, R)  

 AND GOTO 104 OR WAIT FOR post-sequence(A, B)  

 AND GOTO 110,  

104: IF R ISA tod  

 { current-time-sentence(B, A) ON COMPLETION GOTO 103 }  

     ELSE IF R ISA performance  

 { GOTO 105 }  

     ELSE  

 { interjection-of-noncomprehension(B, A) ON COMPLETION GOTO 103}  

... 
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Neuron 
• (McCulloch,Pitts, 1943) 



Neuron 
• (McCulloch,Pitts, 1943) 
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Connectionism 
• 1949-69:  Basic forms for updates for perceptron 
• 1969:  Negative results on approximating ability of perceptron 
• 1986:  Advent of backpropagation and training multi-layer networks   
 80s:  popularization of “parallel distributed models” aka “Connectionism” 
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Classical representations:  
 
 
 
 
 
Distributed representation:  
• a symbol is encoded across all elements of the representation  
• each element the representation takes part in representing the symbol.  
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Distributed vs. Classical Representation 

Activity Connectionist  Classical Symbolic 
Systems  

Knowledge base  
And computation 

elements  

Connections, network 
architecture  

Nodes, Weights, 
Thresholds   

Rules, Premises, 
conclusions, rule 

strengths  

Processing Continuous activation  Discrete symbols  



Distributed vs. Classical Representation 

Connectionist  Classical Symbolic Systems  

Pro Robust  Given rules,  the reasoning 
can formally be done.   

Con Need a lot of training data 
No (logical) reasoning, just mapping 

from input to output 

Brittle and crisp 
Need for many rules  

 

                                              
 

                   
                   

 
                                                                                  
                                                                   



Distributed vs. Classical Representation 

Connectionist  Classical Symbolic Systems  

Pro Robust  Given rules,  the reasoning 
can formally be done.   

Con Need a lot of training data 
No (logical) reasoning, just mapping 

from input to output 

Brittle and crisp 
Need for many rules  

 

Systematicity  debate:  (Fodor and Pylyshyn) 
 

“John loves Mary” 
“Mary loves John” 

 
Connectionists do not account for systematicity, although it can be trained to.  
Responses:   Elman (1990), Smolensky (1990), Pollak (1990), etc.  
 



SHRUTI 
• (Shastri, 1989) 

Variable binding:    
• conjunctive of  elements and properties  

• Variables of logical forms 
  
 

Circle  
 

Rectangle  
 

Triangle  

Red  Blue  Green 



SHRUTI 
• (Shastri, 1989) 

Variable binding by synchronization of neurons. 



SHRUTI 
• (Shastri, 1989) 

Dynamic binding for First order logic!  



Neural-Symbolic models 
• (90s-now) 
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• MIT CSAIL, Roboticist  
• Brooks, R.A. (1990) Elephants don’t play chess. In Pattie Maes (Ed.) Designing 

autonomous agents.  Cambridge, Mass, MIT Press 
 
 
 

• Brooks, R.A. (1991) Intelligence without Representation. Artificial Intelligence, 
47, 139-159.  

• Brooks, R.A. (1991) Intelligence without Reason. In Proceedings of the 12th 
International Joint Conference on Artificial Intelligence. Morgan Kauffman.  
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• Tight connection of perception to action 
 Layerwise design, working independently and in parallel. 
• Like combination of Finite State Machines  
• No symbolic representation 

• implicit and distribution inside FSMs.  
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Subsumption Architecture 
• No central model of world 
• Internal symbolic system be given meaning, only with physical grounding 

• Robot says “pig” in response to a real pig detected in the world 
• No central locus of control.   
• Layers, or behaviours run in parallel 
• No separation into perceptual system, central system, and actuation system 
• Behavioural competence built up by adding behavioural modules 
 
Critiques: 
• Scaling? 
• How does it solve our AI problem?! 
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So what now?! 
Questions left to answer  

• "symbolic" representation necessary?  
 Unify reasoning with representation?  

 Separate knowledge base? 
 Represent uncertainty better than “probability theory”?  
 Unify distributed and logic-based representation?  

 Or do logical reasoning with statistical models ? 
• Or make more robust logical systems? 

• How knowledge should be accessed?  
• How this can be made dynamics in the case when there are 

multiple types of information?  
 
 



Thanks for coming!  



ThoughtTreasure (1994-2000) 

(Erik Mueller, 2000) 

Minsky (1988) : there is no single “right” representation for everything, 
Facts:    27,000 concepts and 51,000 assertions 
 
 
 
 
 
 
 
 

[isa soda drink] 

(Soda is a drink.) 

 

[is the-sky blue] 

(The sky is blue.) 

@19770120:19810120|[President-of country-USA Jimmy-Carter] 

(Jimmy Carter was the President of the USA from January 20, 

1977 to January 20, 1981.) 


