
Online Learning with Adversarial Delays

Kent Quanrud∗and Daniel Khashabi†

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801
{quanrud2,khashab2}@illinois.edu

Abstract

We study the performance of standard online learning algorithms when the feed-
back is delayed by an adversary. We show that online-gradient-descent
[1] and follow-the-perturbed-leader [2] achieve regret O(

√
D) in the

delayed setting, where D is the sum of delays of each round’s feedback. This
bound collapses to an optimal O(

√
T) bound in the usual setting of no delays

(where D = T). Our main contribution is to show that standard algorithms for
online learning already have simple regret bounds in the most general setting of
delayed feedback, making adjustments to the analysis and not to the algorithms
themselves. Our results help affirm and clarify the success of recent algorithms in
optimization and machine learning that operate in a delayed feedback model.

1 Introduction

Consider the following simple game. Let K be a bounded set, such as the unit `1 ball or a collection
of n experts. Each round t, we pick a point xt ∈ K. An adversary then gives us a cost function ft,
and we incur the loss `t = ft(xt). After T rounds, our total loss is the sum LT =

∑T
t=1 `t, which

we want to minimize.

We cannot hope to beat the adversary, so to speak, when the adversary picks the cost function after
we select our point. There is margin for optimism, however, if rather than evaluate our total loss in
absolute terms, we compare our strategy to the best fixed point in hindsight. The regret of a strategy
x1, . . . , xT ∈ K is the additive difference R(T) =

∑T
t=1 ft(xt)− argminx∈K

∑T
t=1 ft(x).

Surprisingly, one can obtain positive results in terms of regret. Kalai and Vempala showed that a
simple and randomized follow-the-leader type algorithm achieves R(T) = O(

√
T) in expectation

for linear cost functions [2] (here, the big-O notation assumes that the diameter of K and the ft’s
are bounded by constants). If K is convex, then even if the cost vectors are more generally convex
cost functions (where we incur losses of the form `t = ft(xt), with ft a convex function), Zinke-
vich showed that gradient descent achieves regret R(T) = O(

√
T) [1]. There is a large body of

theoretical literature about this setting, called online learning (see for example the surveys by Blum
[3], Shalev-Shwartz [4], and Hazan [5]).

Online learning is general enough to be applied to a diverse family of problems. For example, Kalai
and Vempala’s algorithm can be applied to online combinatorial problems such as shortest paths
[6], decision trees [7], and data structures [8, 2]. In addition to basic machine learning problems
with convex loss functions, Zinkevich considers applications to industrial optimization, where the
∗http://illinois.edu/~quanrud2/. Supported in part by NSF grants CCF-1217462, CCF-

1319376, CCF-1421231, CCF-1526799.
†http://illinois.edu/~khashab2/. Supported in part by a grant from Google.

1

http://illinois.edu/~quanrud2/
http://illinois.edu/~khashab2/

value of goods is not known until after the goods are produced. Other examples of applications of
online learning include universal portfolios in finance [9] and online topic-ranking for multi-labeled
documents [10].

The standard setting assumes that the cost vector ft (or more generally, the feedback) is given to and
processed by the player before making the next decision in round t+ 1. Philosophically, this is not
how decisions are made in real life: we rush through many different things at the same time with no
pause for careful consideration, and we may not realize our mistakes for a while. Unsurprisingly, the
assumption of immediate feedback is too restrictive for many real applications. In online advertising,
online learning algorithms try to predict and serve ads that optimize for clicks [11]. The algorithm
learns by observing whether or not an ad is clicked, but in production systems, a massive number of
ads are served between the moment an ad is displayed to a user and the moment the user has decided
to either click or ignore that ad. In military applications, online learning algorithms are used by radio
jammers to identify efficient jamming strategies [12]. After a jammer attempts to disrupt a packet
between a transmitter and a receiver, it does not know if the jamming attempt succeeded until an
acknowledgement packet is sent by the receiver. In cloud computing, online learning helps devise
efficient resource allocation strategies, such as finding the right mix of cheaper (and inconsistent)
spot instances and more reliable (and expensive) on-demand instances when renting computers for
batch jobs [13]. The learning algorithm does not know how well an allocation strategy worked for
a batch job until the batch job has ended, by which time many more batch jobs have already been
launched. In finance, online learning algorithms managing portfolios are subject to information and
transaction delays from the market, and financial firms invest heavily to minimize these delays.

One strategy to handle delayed feedback is to pool independent copies of a fixed learning algorithm,
each of which acts as an undelayed learner over a subsequence of the rounds. Each round is dele-
gated to a single instance from the pool of learners, and the learner is required to wait for and process
its feedback before rejoining the pool. If there are no learners available, a new copy is instantiated
and added to the pool. The size of the pool is proportional to the maximum number of outstanding
delays at any point of decision, and the overall regret is bounded by the sum of regrets of the individ-
ual learners. This approach is analyzed for constant delays by Weinberger and Ordentlich [14], and
a more sophisticated analysis is given by Joulani et al. [15]. If α is the expected maximum number
of outstanding feedbacks, then Joulani et al. obtain a regret bound on the order of O(

√
αT) (in ex-

pectation) for the setting considered here. The blackbox nature of this approach begets simultaneous
bounds for other settings such as partial information and stochastic rewards. Although maintaining
copies of learners in proportion to the delay may be prohibitively resource intensive, Joulani et al.
provide a more efficient variant for the stochastic bandit problem, a setting not considered here.

Another line of research is dedicated to scaling gradient descent type algorithms to distributed set-
tings, where asynchronous processors naturally introduce delays in the learning framework. A clas-
sic reference in this area is the book of Bertsekas and Tsitskilis [16]. If the data is very sparse, so that
input instances and their gradients are somewhat orthogonal, then intuitively we can apply gradients
out of order without significant interference across rounds. This idea is explored by Recht et al. [17],
who analyze and test parallel algorithm on a restricted class of strongly convex loss functions, and
by Duchi et al. [18] and McMahan and Streeter [19], who design and analyze distributed variants
of adaptive gradient descent [20]. Perhaps the most closely related work in this area is by Langford
et al., who study the online-gradient-descent algorithm of Zinkevich when the delays are
bounded by a constant number of rounds [21]. Research in this area has largely moved on from the
simplistic models considered here; see [22, 23, 24] for more recent developments.

The impact of delayed feedback in learning algorithms is also explored by Riabko [25] under the
framework of “weak teachers”.

For the sake of concreteness, we establish the following notation for the delayed setting. For each
round t, let dt ∈ Z+ be a non-negative integer delay. The feedback from round t is delivered at the
end of round t + dt − 1, and can be used in round t + dt. In the standard setting with no delays,
dt = 1 for all t. For each round t, let Ft = {u ∈ [T] : u+ du − 1 = t} be the set of rounds whose
feedback appears at the end of round t. We let D =

∑T
t=1 dt denote the sum of all delays; in the

standard setting with no delays, we have D = T .

In this paper, we investigate the implications of delayed feedback when the delays are adversarial
(i.e., arbitrary), with no assumptions or restrictions made on the adversary. Rather than design new

2

algorithms that may generate a more involved analysis, we study the performance of the classical
algorithms online-gradient-descent and follow-the-perturbed-leader, essen-
tially unmodified, when the feedback is delayed. In the delayed setting, we prove that both algo-
rithms have a simple regret bound of O(

√
D). These bounds collapse to match the well-known

O(
√
T) regret bounds if there are no delays (i.e., where D = T).

Paper organization In Section 2, we analyze the online-gradient-descent algorithm in
the delayed setting, giving upper bounds on the regret as a function of the sum of delays D. In
Section 3, we analyze the follow-the-perturbed-leader in the delayed setting and derive
a regret bound in terms ofD. Due to space constraints, extensions to online-mirror-descent
and follow-the-lazy-leader are deferred to the appendix. We conclude and propose future
directions in Section 4.

2 Delayed gradient descent

Convex optimization In online convex optimization, the input domain K is convex, and each
cost function ft is convex. For this setting, Zinkevich proposed a simple online algorithm, called
online-gradient-descent, designed as follows [1]. The first point, x1, is picked in K
arbitrarily. After picking the tth point xt, online-gradient-descent computes the gradient
∇ft|xt of the loss function at xt, and chooses xt+1 = πK(xt − η∇ft|xt) in the subsequent round,
for some parameter η ∈ R>0. Here, πK is the projection that maps a point x′ to its nearest point
in K (discussed further below). Zinkevich showed that, assuming the Euclidean diameter of K
and the Euclidean lengths of all gradients ∇ft|x are bounded by constants, online-gradient-
descent has an optimal regret bound of O(

√
T).

Delayed gradient descent In the delayed setting, the loss function ft is not necessarily given by
the adversary before we pick the next point xt+1 (or even at all). The natural generalization of
online-gradient-descent to this setting is to process the convex loss functions and apply
their gradients the moment they are delivered. That is, we update

x′t+1 = xt − η
∑
s∈Ft

∇fs|xs ,

for some fixed parameter η, and then project xt+1 = πK(x′t+1) back into K to choose our (t+1)th
point. In the setting of Zinkevich, we have Ft = {t} for each t, and this algorithm is exactly
online-gradient-descent. Note that a gradient∇fs|xs does not need to be timestamped by
the round s from which it originates, which is required by the pooling strategies of Weinberger and
Ordentlich [14] and Joulani et al. [15] in order to return the feedback to the appropriate learner.
Theorem 2.1. Let K be a convex set with diameter 1, let f1, . . . , fT be convex functions over K
with ‖∇ft|x‖2 ≤ L for all x ∈ K and t ∈ [T], and let η ∈ R be a fixed parameter. In the presence
of adversarial delays, online-gradient-descent selects points x1, . . . , xT ∈ K such that
for all y ∈ K,

T∑
t=1

ft(xt)−
T∑
t=1

ft(y) = O

(
1

η
+ ηL2(T +D)

)
,

where D denotes the sum of delays over all rounds t ∈ [T].

For η = 1/L
√
T +D, Theorem 2.1 implies a regret bound of O(L

√
D + T) = O(L

√
D). This

choice of η requires prior knowledge of the final sum D. When this sum is not known, one can
calculate D on the fly: if there are δ outstanding (undelivered) cost functions at a round t, then D
increases by exactly δ. Obviously, δ ≤ T and T ≤ D, so D at most doubles. We can therefore
employ the “doubling trick” of Auer et al. [26] to dynamically adjust η as D grows.

In the undelayed setting analyzed by Zinkevich, we have D = T , and the regret bound of Theorem
2.1 matches that obtained by Zinkevich. If each delay dt is bounded by some fixed value τ , Theorem
2.1 implies a regret bound of O(L

√
τT) that matches that of Langford et al. [21]. In both of these

special cases, the regret bound is known to be tight.

3

Before proving Theorem 2.1, we review basic definitions and facts on convexity. A function f :
K → R is convex if

f((1− α)x+ αy) ≤ (1− α)f(x) + αf(y) ∀x, y ∈ K,α ∈ [0, 1].

If f is differentiable, then f is convex iff
f(x) +∇f |x · (y − x) ≤ f(y) ∀x, y ∈ K. (1)

For f convex but not necessarily differentiable, a subgradient of f at x is any vector that can replace
∇f |x in equation (1). The (possible empty) set of gradients of f at x is denoted by ∂f(x).

The gradient descent may occasionally update along a gradient that takes us out of the constrained
domain K. If K is convex, then we can simply project the point back into K.
Lemma 2.2. Let K be a closed convex set in a normed linear space X and x ∈ X a point, and let
x′ ∈ K be the closest point in K to x. Then, for any point y ∈ K,

‖x− y‖2 ≤ ‖x
′ − y‖2.

We let πK denote the map taking a point x to its closest point in the convex set K.

Proof of Theorem 2.1. Let y = argminx∈K(f1(x) + · · ·+ fT (x)) be the best point in hindsight at
the end of all T rounds. For t ∈ [T], by convexity of ft, we have,

ft(y) ≥ ft(xt) +∇ft|xt · (y − xt).
Fix t ∈ [T], and consider the distance between xt+1 and y. By Lemma 2.2, we know that
‖xt+1 − y‖2 ≤

∥∥x′t+1 − y
∥∥
2
, where x′t+1 = xt − η

∑
s∈Ft ∇fs|xs .

We split the sum of gradients applied in a single round and consider them one by one. For each
s ∈ Ft, letFt,s = {r ∈ Ft : r < s}, and let xt,s = xt−η

∑
r∈Ft,s ∇fr|xr . SupposeFt is nonempty,

and fix s′ = maxFt to be the last index in Ft. By Lemma 2.2, we have,

‖xt+1 − y‖22 ≤
∥∥x′t+1 − y

∥∥2
2
=
∥∥xt,s′ − η∇fs′ |xs′ − y∥∥22

= ‖xt,s′ − y‖22 − 2η
(
∇fs′ |xs′ · (xt,s′ − y)

)
+ η2

∥∥∇fs′ |xs′∥∥22.
Repeatedly unrolling the first term in this fashion gives

‖xt+1 − y‖22 ≤ ‖xt − y‖
2
2 − 2η

∑
s∈Ft

∇fs|xs · (xt,s − y) + η2
∑
s∈Ft

‖∇fs|xs‖
2
2.

For each s ∈ Ft, by convexity of f , we have,
−∇fs|xs · (xt,s − y) = ∇fs|xs · (y − xt,s) = ∇fs|xs · (y − xs) +∇fs|xs · (xs − xt,s)

≤ fs(y)− fs(xs) +∇fs|xs · (xs − xt,s).
By assumption, we also have ‖∇fs|xs‖2 ≤ L for each s ∈ Ft. With respect to the distance between
xt+1 and y, this gives,

‖xt+1 − y‖22 ≤ ‖xt − y‖
2
2 + 2η

∑
s∈Ft

(fs(y)− fs(xs) +∇fs|xs · (xs − xt,s)) + η2 · |Ft| · L2.

Solving this inequality for the regret terms
∑
s∈Ft fs(xs)−fs(y) and taking the sum of inequalities

over all rounds t ∈ [T], we have,
T∑
t=1

(ft(xt)− ft(y)) =
T∑
t=1

∑
s∈Ft

fs(xs)− fs(y)

≤ 1

2η
·
T∑
t=1

(
‖xt − y‖22 − ‖xt+1 − y‖22 + 2η

∑
s∈Ft

∇fs|xs · (xs − xt,s) + η2 · |Ft| · L2

)

=
1

2η

(
T∑
t=1

‖xt − y‖22 − ‖xt+1 − y‖22

)
+
η

2
TL2 +

T∑
t=1

∑
s∈Ft

∇fs|xs · (xs − xt,s)

≤ 1

2η
+
η

2
TL2 +

T∑
t=1

∑
s∈Ft

∇fs|xs · (xs − xt,s). (2)

4

The first two terms are familiar from the standard analysis of online-gradient-descent. It
remains to analyze the last sum, which we call the delay term.

Each summand ∇fs|xs · (xs − xt,s) in the delay term contributes loss proportional to the distance
between the point xs when the gradient ∇fs|xs is generated and the point xt,s when the gradient is
applied. This distance is created by the other gradients that are applied in between, and the number
of such in-between gradients are intimately tied to the total delay, as follows. By Cauchy-Schwartz,
the delay term is bounded above by

T∑
t=1

∑
s∈Ft

∇fs|xs · (xs − xt,s) ≤
T∑
t=1

∑
s∈Ft

‖∇fs|xs‖2‖xs − xt,s‖2 ≤ L
T∑
t=1

∑
s∈Ft

‖xs − xt,s‖2. (3)

Consider a single term ‖xs − xt,s‖2 for fixed t ∈ [T] and s ∈ Ft. Intuitively, the difference xt,s−xs
is roughly the sum of gradients received between round s and when we apply the gradient from round
s in round t. More precisely, by applying the triangle inequality and Lemma 2.2, we have,

‖xt,s − xs‖2 ≤ ‖xt,s − xt‖2 + ‖xt − xs‖2 ≤ ‖xt,s − xt‖2 + ‖x
′
t − xs‖2.

For the same reason, we have ‖x′t − xs‖2 ≤ ‖x′t − xt−1‖2 +
∥∥x′t−1 − xs∥∥2, and unrolling in this

fashion, we have,

‖xt,s − xs‖2 ≤ ‖xt,s − xt‖2 +
t−1∑
r=s

∥∥x′r+1 − xr
∥∥
2
≤ η

∑
p∈Ft,s

∥∥∇fp|xp∥∥2 + η

t−1∑
r=s

∑
q∈Fr

∥∥∇fq|xq∥∥2
≤ η · L ·

(
|Ft,s|+

t−1∑
r=s

|Fr|

)
. (4)

After substituting equation (4) into equation (3), it remains to bound the sum
∑T
t=1

∑
s∈Ft(|Ft,s|+∑t−1

r=s|Fr|). Consider a single term |Ft,s| +
∑t−1
r=s|Fr| in the sum. This quantity counts, for a

gradient ∇fs|xs from round s delivered just before round t ≥ s, the number of other gradients that
are applied while ∇fs|xs is withheld. Fix two rounds s and t, and consider an intermediate round
r ∈ {s, . . . , t}. If r < t then fix q ∈ Fr, and if r = t then fix q ∈ Ft,s. The feedback from round q
is applied in a round r between round s and round t. We divide our analysis into two scenarios. In
one case, q ≤ s, and the gradient from round q appears only after s, as in the following diagram.

q //

∇fq|xq
%%· · · // s //

∇fs|xs
$$· · · // r // · · · // t

In the other case, q > s, as in the following diagram.

s //

∇fs|xs

))· · · // q //

∇fq|xq
""

· · · // r // · · · // t

For each round u, let du denote the number of rounds the gradient feedback is delayed (so u ∈
Fu+du). There are at most ds instances of the latter case, since q must lie in s+1, . . . , t. The first case
can be charged to dq . To bound the first case, observe that for fixed q, the number of indices s such
that q < s ≤ dq + q ≤ ds+ s is at most dq . That is, all instances of the second case for a fixed q can
be charged to dq . Between the two cases, we have

∑T
t=1

∑
s∈Ft(|Ft,s|+

∑t−1
r=s|Fr|) ≤ 2

∑T
t=1 dt,

and the delay term is bounded by

T∑
t=1

∑
s∈Ft

∇fs|xs · (xs − xt,s) ≤ 2η · L2
T∑
t=1

dt.

With respect to the overall regret, this gives,

T∑
t=1

(f(xt)− f(y)) ≤
1

2η
+ η · L2

(
T

2
+ 2

T∑
t=1

dt

)
= O

(
1

η
+ ηL2D

)
,

as desired. �

5

Remark 2.3. The delay term
∑T
t=1

∑
s∈Ft ∇fs|xs · (xs − xt,s) is a natural point of entry for a

sharper analysis based on strong sparseness assumptions. The distance xs − xt,s is measured by its
projection against the gradient ∇fs|xs , and the preceding proof assumes the worst case and bounds
the dot product with the Cauchy-Schwartz inequality. If, for example, we assume that gradients
are pairwise orthogonal and analyze online-gradient-descent in the unconstrained setting,
then the dot product∇fs|xs · (xs − xt,s) is 0 and the delay term vanishes altogether.

3 Delaying the Perturbed Leader

Discrete online linear optimization In discrete online linear optimization, the input domainK ⊂
Rn is a (possibly discrete) set with bounded diameter, and each cost function ft is of the form
ft(x) = ct · x for a bounded-length cost vector ct. The previous algorithm online-gradient-
descent does not apply here because K is not convex.

A natural algorithm for this problem is follow-the-leader. Each round t, let yt =
argminx∈K x·(c1+· · ·+ct) be the optimum choice over the first t cost vectors. The algorithm pick-
ing yt in round t is called be-the-leader, and can be shown to have zero regret. Of course, be-
the-leader is infeasible since the cost vector ct is revealed after picking yt. follow-the-
leader tries the next best thing, picking yt−1 in round t. Unfortunately, this strategy can have
linear regret, largely because it is a deterministic algorithm that can be manipulated by an adversary.

Kalai and Vempala [2] gave a simple and elegant correction called follow-the-perturbed-
leader. Let ε > 0 be a parameter to be fixed later, and let Qε = [0, 1/ε]n be the cube of length
1/ε. Each round t, follow-the-perturbed-leader randomly picks a vector c0 ∈ Qε by the
uniform distribution, and then selects xt = argminx∈K x · (c0 + · · · + ct−1) to optimize over the
previous costs plus the random perturbation c0. With the diameter of K and the lengths ‖ct‖ of each
cost vector held constant, Kalai and Vempala showed that follow-the-perturbed-leader
has regret O(

√
T) in expectation.

Following the delayed and perturbed leader More generally, follow-the-perturbed-
leader optimizes over all information available to the algorithm, plus some additional noise to
smoothen the worst-case analysis. If the cost vectors are delayed, we naturally interpret follow-
the-perturbed-leader to optimize over all cost vectors ct delivered in time for round t when
picking its point xt. That is, the tth leader becomes the best choice with respect to all cost vectors
delivered in the first t rounds:

ydt = argmin
x∈K

t∑
s=1

∑
r∈Fs

cr · x

(we use the superscript d to emphasize the delayed setting). The tth perturbed leader optimizes over
all cost vectors delivered through the first t rounds in addition to the random perturbation c0 ∈ Qε:

ỹdt = argmin
x∈K

(
c0 · x+

t∑
s=1

∑
r∈Fs

cr · x

)
.

In the delayed setting, follow-the-perturbed-leader chooses xt = ỹdt−1 in round t. We
claim that follow-the-perturbed-leader has a direct and simple regret bound in terms of
the sum of delays D, that collapses to Kalai and Vempala’s O(

√
T) regret bound in the undelayed

setting.
Theorem 3.1. Let K ⊆ Rn be a set with L1-diameter ≤ 1, c1, . . . , cT ∈ Rn with ‖ct‖1 ≤ 1 for all
t, and η > 0. In the presence of adversarial delays, follow-the-perturbed-leader picks
points x1, . . . , xT ∈ K such that for all y ∈ K,

T∑
t=1

E[ct · xt] ≤
T∑
t=1

ct · y +O
(
ε−1 + εD

)
.

For ε = 1/
√
D, Theorem 3.1 implies a regret bound of O(

√
D). When D is not known a priori, the

doubling trick can be used to adjust ε dynamically (see the discussion following Theorem 2.1).

6

To analyze follow-the-perturbed-leader in the presence of delays, we introduce the no-
tion of a prophet, who is a sort of omniscient leader who sees the feedback immediately. Formally,
the tth prophet is the best point with respect to all the cost vectors over the first t rounds:

zt = argmin
x∈K

(c1 + · · ·+ ct) · x.

The tth perturbed prophet is the best point with respect to all the cost vectors over the first t rounds,
in addition to a perturbation c0 ∈ Qε:

z̃t = argmin
x∈K

(c0 + c1 + · · ·+ ct) · x. (5)

The prophets and perturbed prophets behave exactly as the leaders and perturbed leaders in the
setting of Kalai and Vempala with no delays. In particular, we can apply the regret bound of Kalai
and Vempala to the (infeasible) strategy of following the perturbed prophet.
Lemma 3.2 ([2]). Let K ⊆ Rn be a set with L1-diameter ≤ 1, let c1, . . . , cT ∈ Rn be cost vectors
bounded by ‖ct‖1 ≤ 1 for all t, and let ε > 0. If z̃1, . . . , z̃T−1 ∈ K are chosen per equation (5),
then

∑T
t=1 E[ct · z̃i−1] ≤

∑T
t=1 ct · y +O

(
ε−1 + εT

)
. for all y ∈ K.

The analysis by Kalai and Vempala observes that when there are no delays, two consecutive per-
turbed leaders ỹt and ỹt+1 are distributed similarly over the random noise [2, Lemma 3.2]. Instead,
we will show that ỹdt and z̃t are distributed in proportion to delays. We first require a technical
lemma that is implicit in [2].
Lemma 3.3. Let K be a set with L1-diameter ≤ 1, and let u, v ∈ Rn be vectors. Let y, z ∈ Rn
be random vectors defined by y = argminy∈K(q + u) · y and z = argminz∈K(q + v) · z, where
q is chosen uniformly at random from Q =

∏n
i=1[0, r], for some fixed length r > 0. Then, for any

vector c,

E[c · z]−E[c · y] ≤
‖v − u‖1‖c‖∞

r
.

Proof. LetQ′ = v+Q andQ′′ = u+Q, and write y = argminy∈K q
′′ ·y and z = argminz∈K q

′ ·z,
where q′ ∈ Q′ and q′′ ∈ Q′′ are chosen uniformly at random. Then

E[c · z]−E[c · y] = Eq′′∈Q′′ [c · z]−Eq′∈Q′ [c · y].

Subtracting P[q′ ∈ Q′ ∩Q′′]Eq′∈Q′∩Q′′ [c · z] from both terms on the right, we have

Eq′′∈Q′′ [c · z]−Eq′∈Q′ [c · y]
= P[q′′ ∈ Q′′ \Q′] ·Eq′′∈Q′′\Q′ [c · z]−P[q′ ∈ Q′ \Q′′] ·Eq′∈Q′\Q′′ [c · y]

By symmetry, P[q′′ ∈ Q′′ \Q′] = P[q′ ∈ Q′ \Q′′], and we have,

E[c · z]−E[c · y] ≤ (P[q′′ ∈ Q′′ \Q′])Eq′′∈Q′′\Q′,q′∈Q′\Q′′ [c · (z − y)].

By assumption, K has L1-diameter ≤ 1, so ‖y − z‖1 ≤ 1, and by Hölder’s inequality, we have,

E[c · z]−E[c · y] ≤ P[q′′ ∈ Q′′ \Q′]‖c‖∞.

It remains to bound P[q′′ ∈ Q′′ \Q′] = P[q′ ∈ Q′ \Q′′]. If ‖v − u‖1 ≤ r, we have,

vol(Q′ ∩Q′′) =
n∏
i=1

(r − |vi − ui|) = vol(Q′)

n∏
i=1

(
1− |(vi − ui)|

r

)
≥ vol(Q′)

(
1−
‖v − u‖1

r

)
.

Otherwise, if ‖u− v‖1 > r, then vol(Q′ ∩Q′′) = 0 ≥ vol(Q′)(1 − ‖v − u‖1/r). In either case,
we have,

P[q′ ∈ Q′ \Q′′] = vol(Q′ ∩Q′′)
vol(Q′)

≤ 1− vol(Q′ ∩Q′′)
vol(Q′)

≤
‖v − u‖1

r
,

and the claim follows. �

Lemma 3.3 could also have been proven geometrically in similar fashion to Kalai and Vempala.

7

Lemma 3.4.
∑T
t=1 E[ct · z̃t−1] − E

[
ct · ỹdt−1

]
≤ εD, where D is the sum of delays of all cost

vectors.

Proof. Let ut =
∑t
s=1 ct be the sum of all costs through the first t rounds, and vt =

∑
s:s+ds≤t ct

be the sum of cost vectors actually delivered through the first t rounds. Then the perturbed prophet
z̃t−1 optimizes over c0 + ut−1 and ỹdt−1 optimizes over c0 + vt−1. By Lemma 3.3, for each t, we
have

Ec0∼Qε [ct · z̃t−1]−Ec0∼Qε
[
ct · ỹdt−1

]
≤ ε · ‖ut−1 − vt−1‖1‖ct‖∞ ≤ ε · |{s < t : s+ ds ≥ t}|

Summed over all T rounds, we have,
T∑
t=1

Ec0 [ct · z̃t]−Ec0
[
ct · ỹdt

]
≤ ε

T∑
t=1

|{s < t : s+ ds ≥ t}|.

The sum
∑T
t=1|{s < t : s+ ds ≥ t}| charges each cost vector cs once for every round it is delayed,

and therefore equals D. Thus,
∑T
t=1 Ec0 [ct · z̃t]−Ec0

[
ct · ỹdt

]
≤ εD, as desired. �

Now we complete the proof of Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.4 and Lemma 3.2, we have,
T∑
t=1

E
[
ct · ỹdt−1

]
≤

T∑
t=1

E[ct · z̃t−1] + εD ≤ argmin
x∈K

T∑
t=1

E[ct · x] +O(ε−1 + εD),

as desired. �

4 Conclusion

We prove O(
√
D) regret bounds for online-gradient-descent and follow-the-

perturbed-leader in the delayed setting, directly extending the O(
√
T) regret bounds known

in the undelayed setting. More importantly, by deriving a simple bound as a function of the de-
lays, without any restriction on the delays, we establish a simple and intuitive model for measuring
delayed learning. This work suggests natural relationships between the regret bounds of online
learning algorithms and delays in the feedback.

Beyond analyzing existing algorithms, we hope that optimizing over the regret as a function of D
may inspire different (and hopefully simple) algorithms that readily model real world applications
and scale nicely to distributed environments.

Acknowledgements We thank Avrim Blum for introducing us to the area of online learning and
helping us with several valuable discussions. We thank the reviewers for their careful and insightful
reviews: finding errors, referencing relevant works, and suggesting a connection to mirror descent.

References
[1] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proc. 20th

Int. Conf. Mach. Learning (ICML), pages 928–936, 2003.

[2] A. Kalai and S. Vempala. Efficient algorithms for online decision problems. J. Comput. Sys. Sci., 71:291–
307, 2005. Extended abstract in Proc. 16th Ann. Conf. Comp. Learning Theory (COLT), 2003.

[3] A. Blum. On-line algorithms in machine learning. In A. Fiat and G. Woeginger, editors, Online algo-
rithms, volume 1442 of LNCS, chapter 14, pages 306–325. Springer Berlin Heidelberg, 1998.

[4] S. Shalev-Shwartz. Online learning and online convex optimization. Found. Trends Mach. Learn.,
4(2):107–194, 2011.

[5] E. Hazan. Introduction to online convex optimization. Internet draft available at http://ocobook.
cs.princeton.edu, 2015.

[6] E. Takimoto and M. Warmuth. Path kernels and multiplicative updates. J. Mach. Learn. Research, 4:773–
818, 2003.

8

http://ocobook.cs.princeton.edu
http://ocobook.cs.princeton.edu

[7] D. Helmbold and R. Schapire. Predicting nearly as well as the best pruning of a decision tree. Mach.
Learn. J., 27(1):61–68, 1997.

[8] A. Blum, S. Chawla, and A. Kalai. Static optimality and dynamic search optimality in lists and trees.
Algorithmica, 36(3):249–260, 2003.

[9] T. M. Cover. Universal portfolios. Math. Finance, 1(1):1–29, 1991.

[10] K. Crammer and Y. Singer. A family of additive online algorithms for category ranking. J. Mach. Learn.
Research, 3:1025–1058, 2003.

[11] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Herbrich, S. Bowers, and J. Quiñonero
Candela. Practical lessons from predicting clicks on ads at facebook. In Proc. 20th ACM Conf. Knowl.
Disc. and Data Mining (KDD), pages 1–9. ACM, 2014.

[12] S. Amuru and R. M. Buehrer. Optimal jamming using delayed learning. In 2014 IEEE Military Comm.
Conf. (MILCOM), pages 1528–1533. IEEE, 2014.

[13] I. Menache, O. Shamir, and N. Jain. On-demand, spot, or both: Dynamic resource allocation for executing
batch jobs in the cloud. In 11th Int. Conf. on Autonomic Comput. (ICAC), 2014.

[14] M.J. Weinberger and E. Ordentlich. On delayed prediction of individual sequences. IEEE Trans. Inf.
Theory, 48(7):1959–1976, 2002.

[15] P. Joulani, A. György, and C. Szepesvári. Online learning under delayed feedback. In Proc. 30th Int.
Conf. Mach. Learning (ICML), volume 28, 2013.

[16] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods. Prentice-
Hall, 1989.

[17] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: a lock-free approach to parallelizing stochastic gradient
descent. In Adv. Neural Info. Proc. Sys. 24 (NIPS), pages 693–701, 2011.

[18] J. Duchi, M.I. Jordan, and B. McMahan. Estimation, optimization, and parallelism when data is sparse.
In Adv. Neural Info. Proc. Sys. 26 (NIPS), pages 2832–2840, 2013.

[19] H.B. McMahan and M. Streeter. Delay-tolerant algorithms for asynchronous distributed online learning.
In Adv. Neural Info. Proc. Sys. 27 (NIPS), pages 2915–2923, 2014.

[20] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. J. Mach. Learn. Research, 12:2121–2159, July 2011.

[21] J. Langford, A. J. Smola, and M. Zinkevich. Slow learners are fast. In Adv. Neural Info. Proc. Sys. 22
(NIPS), pages 2331–2339, 2009.

[22] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar. An asynchronous parallel stochastic coordiante
descent algorithm. J. Mach. Learn. Research, 16:285–322, 2015.

[23] J. C. Duchi, T. Chaturapruek, and C. Ré. Asynchronous stochastic convex optimization. CoRR,
abs/1508.00882, 2015. To appear in Adv. Neural Info. Proc. Sys. 28 (NIPS), 2015.

[24] S. J. Wright. Coordinate descent algorithms. Math. Prog., 151(3–34), 2015.

[25] D. Riabko. On the flexibility of theoretical models for pattern recognition. PhD thesis, University of
London, April 2005.

[26] N. Cesa-Bianchi, Y. Freund, D. Haussler, D.P. Helmbold, R.E. Schapire, and M.K. Warmuth. How to use
expert advice. J. Assoc. Comput. Mach., 44(3):426–485, 1997.

9

Online Learning with Adversarial Delays
Appendix

Kent Quanrud∗and Daniel Khashabi†

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801
{quanrud2,khashab2}@illinois.edu

A Mirror descent with delayed subgradients

Geometries in Rn beyond ‖·‖2 The algorithm online-gradient-descent, presented in
Section 2, is designed for convex loss functions ft whose subgradients ∇ft|x have bounded Eu-
clidean length ‖∇ft|x‖2. While ‖·‖2 is a geometrically intuitive norm to analyze, there are settings
where other norms on Rn are more natural.

For example, in expert selection, we identify each dimension i ∈ [n] with one of n experts. Each
round t ∈ [T], we select an expert i ∈ [n] and then receive a cost vector ct ∈ [−1, 1]n, where
the ith coordinate ct,i ∈ [−1, 1] measures the loss incurred by expert i for this round. More
precisely, we choose a distribution of experts defined by a point xt in the probability simplex
K =

{
x ∈ [0, 1]n : ‖x‖1

def
=
∑n
i=1|xi| = 1

}
. The ith coordinate xt,i corresponds to the proba-

bility of selecting expert i. The quantity ct · xt is the expected loss of the randomized strategy xt.
Note that the adversary selects ct with full knowledge of the randomized strategy xt, but not the
random bits that fix the choice of the ith expert.

A cost vector ct ∈ [−1, 1]n can have Euclidean norm ‖ct‖2 =
√
n, but its maximum norm is

bounded by ‖ct‖∞
def
= max{|ct,1|, . . . , |ct,n|} ≤ 1. Because it operates in the Euclidean norm,

online-gradient-descent obtains a regret bound on the order of O(
√
nT) in expert se-

lection, and one would prefer a regret bound with respect to the L∞-bound of 1 rather than the
Euclidean bound of

√
n. Indeed, a different algorithm that selects experts in proportion to the ex-

ponential of the costs (among others) improves the regret bounds from O(
√
nT) to O(

√
ln(n)T)

[1].

In this section, we analyze an algorithm called online-mirror-descent, introduced by
Nemirovski and Yudin for (offline) convex minimization [2], that generalizes both online-
gradient-descent and randomized expert selection by exponential weights‡. The algorithm
has a diverse body of analyses and interpretations [4, 5, 6, 7, 8, 9, 10], and our presentation is
particularly influenced by the survey [8] and the lecture notes [9].

Additional results from convex analysis Before discussing online-mirror-descent in
detail, we briefly review additional definitions and properties from convex analysis. These properties
∗http://illinois.edu/~quanrud2/. Supported in part by NSF grants CCF-1217462, CCF-

1319376, CCF-1421231, CCF-1526799.
†http://illinois.edu/~khashab2/. Supported in part by a grant from Google.
‡Technically, the form of online-mirror-descent presented here generalizes a lazy version of

online-gradient-descent, that applies a gradient ∇ft|xt to the unprojected point x′t rather than to the
projected point xt = πK(x′t) to obtain the next unprojected point xt. This variant of online-gradient-
descent is also analyzed in [3].

1

http://illinois.edu/~quanrud2/
http://illinois.edu/~khashab2/

are all well known. Our overview is not comprehensive and in particular we limit ourselves to Rn
for ease of exposition. We refer the reader to [11, 12, 13, 14, 15] for further background.

Let ϕ : Rn → R ∪ {+∞} be a convex function. The epigraph of ϕ is the set epiϕ =
{(x, µ) ∈ Rn × R : µ ≥ ϕ(x)} in the higher-dimensional space Rn+1. The function ϕ is closed
if epiϕ is a closed subset of Rn. The closure of a function ϕ is the closed function whose epigraph
is the closure of epiϕ. If the function ϕ is closed, then the closure of ϕ is ϕ. The domain of ϕ is the
convex set of points domϕ

def
= {x ∈ Rn : ϕ(x) <∞} where ϕ is finite. The function ϕ is proper

if domϕ 6= ∅.
Let ϕ : Rn → R ∪ {+∞} be a convex function. The Fenchel conjugate of ϕ is the function
ϕ̄ : Rn → R defined by ϕ̄(x̄) = supx∈Rn 〈x, x̄〉 − ϕ(x). The conjugate function ϕ̄ is a closed and
convex function, and proper if and only if ϕ is [11, Theorem 2.2]. The conjugate ¯̄ϕ of the conjugate
function ϕ̄ is the closure of the original function ϕ, and equals ϕ if ϕ is closed. The subgradients of
ϕ and ϕ̄ are related by the following.

Lemma A.1 ([11, Theorem 23.5]). Let ϕ : Rn → R ∪ {+∞} be a closed and proper convex
function, x ∈ Rn, and x̄ ∈ Rn. The following conditions are equivalent.

(i) x̄ ∈ ∂ϕ(x).
(ii) The function z 7→ 〈z, x̄〉 − ϕ(z) attains its supremum in z at z = x.

(iii) ϕ(x) + ϕ̄(x̄) ≤ 〈x, x̄〉.
(iv) ϕ(x) + ϕ̄(x̄) = 〈x, x̄〉.
(v) x ∈ ∂ϕ̄(x̄).

(vi) The function z̄ 7→ 〈x, z̄〉 − ϕ̄(z̄) attains its supremum at z̄ = x̄.

Consider any fixed norm ‖·‖ on Rn. The dual norm of ‖·‖ is the norm ‖·‖? on Rn defined by
‖y‖? = sup‖x‖=1|〈x, y〉|. A norm ‖·‖ and its dual norm ‖·‖? satisfy a generalized form of the
Cauchy-Schwartz inequality, 〈x, y〉 ≤ ‖x‖‖y‖?. For example, the dual norm of the Euclidean norm
‖·‖2 is again ‖·‖2. The dual norm of the L∞-norm ‖·‖∞ is the L1-norm ‖·‖1. For p > 1, the dual

norm of the Lp-norm ‖x‖p
def
= (

∑n
i=1|x|

p
)
1/p is the Lq-norm ‖·‖q , where q satisfies 1/p+1/q = 1.

Let ϕ : Rn → R ∪ {+∞} be a convex function. For a constant ρ > 0, we say f is smooth with
modulus ρ with respect to a norm ‖·‖ if it is differentiable and has ρ-Lipschitz-continuous gradients.
That is, for any two points x, y ∈ Rn, we have ‖∇ϕ|x −∇ϕ|y‖? ≤ ρ‖x− y‖. There are many
equivalent conditions for a convex function to be smooth; see, for example, [15, Theorem 2.1.5] or
[14, Section 3.5].

Let ϕ : Rn → R ∪ {+∞} be a convex function and σ > 0 a constant. The function ϕ is strongly

convex with modulus σ with respect to a norm ‖·‖ if the function ψ(x)
def
= ϕ(x) − (σ/2)‖x‖2 is

also convex. As with smoothness, there are many equivalent properties for a function to be strongly
convex; see, for example, [15, Section 2.1.3] or [14, Section 3.5]. In particular, for any two points
x, y ∈ Rn and subgradient∇ϕ|x ∈ ∂ϕ(x), we have ϕ(y) ≥ ϕ(x)+〈y − x,∇ϕ|x〉+(σ/2)‖y − x‖2.
Smoothness and strong convexity are dual properties in the following sense.

Lemma A.2 ([14, Section 3.5], [8, Lemma 2.19]). Let ϕ : Rn → R∪{+∞} be a closed and convex
function. Then ϕ is strongly convex with modulus σ with respect to a norm ‖·‖ if and only if ϕ̄ is
smooth with modulus σ−1 with respect to the dual norm ‖·‖?.

Mirror descent Let K be a closed convex set in Rn. Fix a norm ‖·‖ in Rn, and let ϕ be a closed
and strongly convex function on Rn. The strongly convex function ϕ is called the regularizer, and is
required to have subgradients in the closed input domain K. Without loss of generality, we assume
that ϕ(x) =∞ over all nonfeasible points x /∈ K.

Each round t ∈ [T], online-mirror-descent has both a primal point xt ∈ K and a dual
point x̄t ∈ Rn. We choose the first dual point to be 0. Recall that by Lemma A.2, since ϕ is strongly
convex, its Fenchel conjugate ϕ̄ is smooth and in particular differentiable everywhere. Given the
tth dual point x̄t, the primal point xt is the derivative of the conjugate ϕ̄ at x̄t, xt

def
= ∇ϕ̄|x̄t

.
Given a subgradient∇ft|xt ∈ ∂ft(xt), we update the dual point against the gradient by the formula

2

x̄t+1
def
= x̄t − η∇ft|xt . The overall process looks like,

. . . , xt
def
= ∇ϕ̄|x̄t

, x̄t+1
def
= x̄t − η∇ft|xt

, xt+1
def
= ∇ϕ̄|x̄t+1

, . . .

Intuitively, all the information (in the form of gradients) exists in the dual space (with norm ‖·‖?),
and is “mirrored” back into the primal space (with the original norm ‖·‖) via the smooth conjugate
function ϕ̄.

If we inline the role of the dual point and apply Lemma A.1, the next point xt+1 is chosen as a
function of xt as

xt+1 = ∇ϕ̄|x̄t+1
= ∇ϕ̄|x̄t−η∇ft|xt

= arg max
x∈K

{〈x, x̄t − η∇ft|xt
〉 − ϕ(x)}.

If we expand this last term further, then the algorithm can be written equivalently as

xt+1 = arg max
x∈K

{〈x, x̄t〉 − η 〈x,∇ft|xt
〉 − ϕ(x)}

= arg max
x∈K

{ϕ(xt) + 〈x− xt, x̄t〉 − η 〈x,∇ft|xt〉 − ϕ(x)}

= arg max
x∈K

{−η 〈x,∇ft|xt
〉 −Dϕ(x|xt, x̄t)}

= arg min
x∈K

{〈x, η∇ft|xt
〉+Dϕ(x|xt, x̄t)}, (1)

where Dϕ(x|xt, x̄t)
def
= ϕ(x) − ϕ(xt) − 〈x− xt, x̄t〉 is the Bregman divergence of ϕ from xt to

x with the choice of subgradient x̄t ∈ ∂ϕ(xt). The Bregman divergance Dϕ(x|xt, x̄t) measures
the amount of error between the actual value of ϕ at x and its first-order approximation from xt
with respect to the subgradient x̄t ∈ ∂ϕ(xt).

§ By convexity of ϕ, Dϕ(·|·) is always nonnegative.
Moreover, because ϕ is strongly convex,Dϕ(x|xt, x̄t) grows quadratically in the distance between x
and xt. Despite these and other nice properties, Dϕ(x|xt, x̄t) satisfies neither the triangle inequality
nor symmetry. The final formulation of mirror descent in equation (1) chooses xt+1 greedily against
the direction of the gradient, but the greediness is tempered by the Bregman diverganceDϕ(·|xt, x̄t).

The Bregman divergence satisfies the following identity that we will use. For x, y, z ∈ Rn, and
subgradients x̄ ∈ ∂ϕ(x) and ȳ ∈ ∂ϕ(y), we have

〈z − y, ȳ − x̄〉 = Dϕ(z|x, x̄)−Dϕ(z|y, ȳ)−Dϕ(y|x, x̄) (2)

(see, for example, [9, Fact 5.3.3]).
Example A.3. For a closed convex set K, consider the function

ϕ(x)
def
=

{
1
2‖x‖

2
2 if x ∈ K.

+∞ otherwise.

The function ϕ is strongly convex (with modulus 1) with respect to the Euclidean norm ‖·‖2. The
derivative of the conjugate ϕ̄ takes the dual point x̄ ∈ Rn to its closest point in K. Thus online-
mirror-descent, with this choice of norm and regularizer, resembles a lazy version of the
online-gradient-descent algorithm considered in Section 2.
Example A.4 ([16, 4]). Let K be the probability simplex in Rn, and consider the negative entropy
function

ϕ(x)
def
=

{∑n
i=1 xi lnxi if x ∈ K,

+∞ otherwise

where 0 ln 0
def
= 0. The negative entropy function ϕ is strongly convex (with modulus 1) with respect

to the L1-norm, and its Frenchel conjugate is the log-partition function ϕ̄(x̄)
def
= ln(

∑n
i=1 exp(x̄i)).

The derivative of ϕ̄ is defined coordinate-wise by (∇ϕ̄|x̄)i
def
= exp(x̄i)/(

∑n
i′=1 exp(x̄i′)). Note that

∇ϕ̄|x̄ is always a point in the probability simplex. In the context of expert selection, the online-
mirror-descent algorithm with this choice of norm and regularizer randomly selects an expert
i in round t in proportion to the exponential weight.

§We make the choice of subgradient explicit because ϕ is not necessarily differentiable.

3

Mirror descent in the delayed setting In the delayed setting, the subgradient of the loss function
ft is not necessarily given by the adversary before we update the dual and pick the next point xt+1

(or even at all). The natural generalization of online-mirror-descent to this setting is to
process the convex loss functions and apply their subgradients to the dual point the moment they are
delivered. That is, we update

x̄t+1 = x̄t − η
∑
s∈Ft

∇fs|xs

for some fixed parameter η, and then project xt+1 = ∇ϕ̄|x̄t+1
. In the undelayed setting, we have

Ft = {t} for each t, and this algorithm is exactly online-mirror-descent.
Theorem A.5. Let K ⊆ Rn be a closed convex set. For a fixed norm ‖·‖ on Rn, let ϕ : Rn →
R ∪ {+∞} be a closed and strongly convex function with modulus σ and with domϕ = K. Let
f1, . . . , fT be convex functions with subgradients satisfying ‖∇ft|x‖? ≤ L for all x ∈ K and t ∈ T .
In the presence of adversarial delays, online-mirror-descent selects points x1, . . . , xT ∈
K such that for all y ∈ K,

T∑
t=1

ft(xt)−
T∑
t=1

ft(y) = O

(
1

η
(ϕ(y)− ϕ(x1)) + η

L2(T +D)

σ

)
.

In the gradient descent setup of example A.3, the term ϕ(y)−ϕ(x1) is bounded above by the square
of the diameter ∆

def
= supx,y∈K‖x− y‖2 of K. For η = Θ(∆

√
D/L), we again achieve a regret

bound on the order of O(∆L
√
D), matching Theorem 2.1 (there we treated ∆ as a constant). In

the expert selection setting of example A.4, ϕ(y) − ϕ(x1) is bounded above by O(ln(n)), and for
η = Θ(

√
ln(n)D), we achieve a regret bound on the order of O(

√
ln(n)D).

Proof of Theorem A.5. Let y ∈ K be any fixed point in K. By convexity, we first bound the regret
by

T∑
t=1

(ft(xt)− ft(y)) ≤
T∑
t=1

〈xt − y,∇ft|xt〉 . (3)

The standard (undelayed) analysis for mirror descent proceeds to analyze each summand
〈xt − y,∇ft|xt

〉 with the knowledge that ∇ft|xt
is applied to (the dual of) xt. This is not true

in the delayed setting, and we first align each gradient ∇fs|xs
∈ Ft alongside the primal point to

which it is effectively applied.

As in the proof for online-gradient-descent, we split the sum of subgradients∑
s∈Ft

∇fs|xs applied in a single round t ∈ [T] and apply them one by one in increasing order

of their originating round s. For each s ∈ Ft, let Ft,s
def
= {r ∈ Ft : r < s} be the indices of other

gradients that are applied in round t before ∇fs|xs
. Let x̄−s

def
= x̄t − η

∑
r∈Ft,s

∇fr|xr
be the inter-

mediate dual point to which we apply∇fs|xs , and let x̄+
s

def
= x̄−s − η∇fs|xs be the intermediate dual

point after applying∇fs|xs
. Let x−s

def
= ∇ϕ̄|x̄−s and x+

s
def
= ∇ϕ̄|x̄+

s
be their projected primal points in

K.

Rearranging the sum in equation (3) and organizing the gradients by point of delivery, we have

T∑
t=1

〈xt − y,∇ft|xt〉 =

T∑
t=1

∑
s∈Ft

〈xs − y,∇fs|xs〉

=

T∑
t=1

∑
s∈Ft

〈
x−s − y,∇fs|xs

〉
+

T∑
t=1

∑
s∈Ft

〈
xs − x−s ,∇fs|xs

〉
. (4)

The first sum is familiar from the standard analysis of undelayed mirror descent and will be analyzed
by similar techniques. The second term generalizes the delay term in equation (2) from the earlier
proof for online-gradient-descent.

4

To analyze the first sum, fix t ∈ [T] and s ∈ Ft, and expand the summand〈
x−s − y,∇fs|xs

〉
=
〈
x+
s − y,∇fs|xs

〉
+
〈
x−s − x+

s ,∇fs|xs

〉
.

The subsequent primal point x+
s minimizes the function ψs(x)

def
= 〈x, η∇fs|xs − x̄−s 〉 + ϕ(x) over

x ∈ K. Since ψs is convex, K is convex, and y ∈ K, the first-order conditions at x+
s imply that

〈y − x+
s , δ〉 ≥ 0 for any subgradient δ of ψs at x+

s . In particular, at the subgradient η∇fs|xs − x̄−s +
x̄+
s ∈ ∂ψs(x+

s), we have, 〈
y − x+

s , η∇fs|xs − x̄−s + x̄+
s

〉
≥ 0;

rearranging, this implies that〈
x+
s − y,∇fs|xs

〉
≤ 1

η

〈
y − x+

s , x̄
+
s − x̄−s

〉
.

Furthermore, by the aforementioned identity in equation (2), we have〈
y − x+

s , x̄
+
s − x̄−s

〉
= Dϕ

(
y|x−s , x̄−s

)
−Dϕ

(
y|x+

s , x̄
+
s

)
−Dϕ

(
x+
s |x−s , x̄−s

)
.

Thus,〈
x−s − y,∇fs|xs

〉
=
〈
x+
s − y,∇fs|xs

〉
+
〈
x−s − x+

s ,∇fs|xs

〉
≤ 1

η

(
Dϕ

(
y|x−s , x̄−s

)
−Dϕ

(
y|x+

s , x̄
+
s

)
−Dϕ

(
x+
s |x−s , x̄−s

))
+
〈
x−s − x+

s ,∇fs|xs

〉
=

1

η

(
Dϕ

(
y|x−s , x̄−s

)
−Dϕ

(
y|x+

s , x̄
+
s

))
+

1

η

(〈
x−s − x+

s ,∇fs|xs

〉
−Dϕ

(
x+
s |x−s , x̄−s

))
. (5)

The first term will later telescope over all rounds s ∈ [T]. Consider the second term
〈x−s − x+

s , η∇fs|xs
〉 − Dϕ(x+

s |x−s , x̄−s). Since ϕ is strongly convex with modulus σ, we have
Dϕ(x+

s |x−s , x̄−s) ≥ σ
2 ‖x

+
s − x−s ‖

2
. Thus,〈

x−s − x+
s , η∇fs|xs

〉
−Dϕ

(
x+
s |x−s , x̄−s

)
≤
〈
x−s − x+

s , η∇fs|xs

〉
− σ

2

∥∥x+
s − x−s

∥∥2
by strong convexity of ϕ,

≤
∥∥x+

s − x−s
∥∥‖η∇fs|xs

‖? −
σ

2

∥∥x+
s − x−s

∥∥2
by Cauchy-Schwartz,

≤ 1

2σ
‖η∇fs|xs

‖2? by the identity 2ab− a2 ≤ b2,

= O

(
η2L2

σ

)
by assumption. (6)

Plugging equation (6) into equation (5), we have,〈
x−s − y,∇fs|xs

〉
≤ 1

η

(
Dϕ

(
y|x−s , x̄−s

)
−Dϕ

(
y|x+

s , x̄
+
s

))
+O

(
ηL2

σ

)
.

Summed over all s ∈ Ft and t ∈ [T] and telescoping, we have,
T∑
t=1

∑
s∈Ft

〈
x−s − y,∇fs|xs

〉
=

T∑
t=1

∑
s∈Ft

(
1

η

(
Dϕ

(
y|x−s , x̄−s

)
−Dϕ

(
y|x+

s , x̄
+
s

))
+O

(
ηL2

σ

))

=
1

η
(Dϕ(y|x1, x̄1)−Dϕ(y|xT+1, x̄T+1)) +O

(
ηL2T

σ

)
. (7)

arriving at the usual bound for (undelayed) mirror descent.

It remains to analyze the delay term
∑T
t=1

∑
s∈Ft

〈xs − x−s ,∇fs|xs
〉 . As in the case of online-

gradient-descent, each summand 〈xs − x−s ,∇fs|xs
〉 reflects the distance between the point

xs when ∇fs|xs is generated, and the point x−s when ∇fs|xs is applied. By Cauchy-Schwartz, the
delay term is bounded above by

T∑
t=1

∑
s∈Ft

〈
xs − x−s ,∇fs|xs

〉
≤

T∑
t=1

∑
s∈Ft

∥∥xs − x−s ∥∥‖∇fs|xs
‖? ≤ L

T∑
t=1

∑
s∈Ft

∥∥xs − x−s ∥∥.
5

Fix s and consider the distance ‖xs − x−s ‖. Applying the triangle inequality many times over, we
first write ∥∥xs − x−s ∥∥ ≤ t−1∑

r=s

‖xr − xr+1‖+ ‖xt − xt,s‖

Fix r ∈ {s, s+ 1, . . . , t− 1} and consider a single term ‖xr − xr+1‖. This is the distance
traversed by the primal point from applying the gradients

∑
q∈Fr

∇fq|xq
to xr. In terms of

derivatives of the dual regularizer, we have ‖xr − xr+1‖ =
∥∥∇ϕ̄|x̄r −∇ϕ̄|x̄r+1

∥∥, where x̄r+1 =
x̄r − η

∑
q∈Fr

∇fq|xq
. As the Fenchel conjugate of a strongly convex function with modulus σ, ϕ̄

is smooth with modulus σ−1, and in particular,

∥∥∇ϕ̄|x̄r −∇ϕ̄|x̄r+1

∥∥ = O

(
1

σ
‖x̄r − x̄r+1‖?

)
= O

 1

σ

∥∥∥∥∥∥η
∑
q∈Fr

∇fq|xq

∥∥∥∥∥∥
?

.
Similarly, we have ‖xt − xs,t‖ ≤ O

(
σ−1

∥∥∥η∑p∈Ft,s
∇fp|xp

∥∥∥
?

)
. Thus,

∥∥xs − x−s ∥∥ = O

t−1∑
r=s

1

σ

∥∥∥∥∥∥η
∑
q∈Fr

∇fq|xq

∥∥∥∥∥∥
?

+
1

σ

∥∥∥∥∥∥η
∑
p∈Ft,s

∇fp|xp

∥∥∥∥∥∥
?


= O

 η

σ

t−1∑
r=s

∑
q∈Fr

∥∥∇fq|xq

∥∥
?

+
∑
p∈Ft,s

∥∥∇fp|xp

∥∥
?


= O

(
ηL

σ

(
t−1∑
r=s

|Fr|+ |Ft,s|

))
.

With respect to the delay term, we have

T∑
t=1

∑
s∈Ft

〈
xs − x−s ,∇fs|xs

〉
≤ L

T∑
t=1

∑
s∈Fs

∥∥x−s − xs∥∥ = O

(
ηL2

σ

T∑
t=1

∑
s∈Fs

(
t−1∑
r=s

|Fr|+ |Ft,s|

))
.

This sum was encountered earlier in the proof for online-gradient-descent, and the same
argument shows that the delay term is bounded by

∑T
t=1

∑
s∈Ft

〈xs − x−s ,∇fs|xs
〉 = O(ηL2D/σ).

Plugging this inequality along with equation (7) into equation (3), we bound the regret by

R(T) ≤ 1

η
(Dϕ(y|x1, x̄1)−Dϕ(y|xT+1, x̄T+1)) + η

TL2

2σ
+O

(
η
DL2

σ

)
= O

(
1

η
(ϕ(y)− ϕ(x1)) + η

L2(T +D)

σ

)
,

as desired. �

B Late and lazy leaders

A basic application of online combinatorial optimization is adaptive data structures. For example,
in the tree update problem, one maintains a binary search tree over a collection of n items, and
serves an unknown sequence of access queries. If the cost of accessing an item is proportional to the
depth of the item in the tree, then one prefers to have frequently placed items near the root, and less
frequent items at the leaves. One classical data structure for this problem is the splay tree, by Sleater
and Tarjan, who also introduced the tree update problem [17]. Kalai and Vempala observe that this
problem can partially be solved by follow-the-perturbed-leader. We simply track the
sum of access costs for each item, and each round we rebuild an optimal binary search tree with
respect to those costs (plus a perturbation) by dynamic programming in O(n2) time. Compared to
the cost of the best fixed tree in hindsight, this algorithm has an additive loss of O(n

√
nT) to serve

6

T requests. This bound overlooks the fact that rebuilding a binary search tree between every two
queries is absurdly inefficient.

To model this and similar problems efficiently, one introduces the notion of a switching cost,
which is a fixed value that is charged every time we change our decision between subsequent
rounds. For this setting, Kalai and Vempala gave a similar algorithm called follow-the-lazy-
leader, which is nearly equivalent to follow-the-perturbed-leader, but changes deci-
sions very infrequently. Happily, follow-the-lazy-leader is just as simple as follow-
the-perturbed-leader.

Initially, the algorithm picks a point p ∈ Qε =
[
0, ε−1

]n
uniformly at random. This defines a grid,

Gε =
{
p+ ε−1z : z ∈ Zn

}
, of width ε−1 and shifted randomly. Rather than follow the perturbed

leader, we follow the leader and round it up to its nearest grid point. Formally, we define the tth
lazy leader to be the unique grid point yt ∈ Gε of the square yt +Q0. Because the grid is randomly
shifted by the same distribution as the perturbation in follow-the-perturbed-leader, the
perturbed leader and lazy leader are distributed identically and have identical expected costs [18,
Lemma 1.2]. This observation immediately implies that follow-the-lazy-leader obtains
regret O(

√
T)¶.

Extending follow-the-lazy-leader to the delayed setting has natural applications. For ex-
ample, in the tree update problem, it is preferable to be able to serve many queries simultaneously,
and to keep serving requests from an outdated search tree while building the next tree in parallel.
One simple implementation to satisfy these requirement is to keep a pointer to the tree in software
transactional memory (STM) [19]. When follow-the-lazy-leader shifts grid points, we
build the new search tree in the background and swap the pointer in the STM once the new tree
is completed. Here, the delays arise from serving requests from an outdated tree before the tree is
replaced by a new one.
Theorem B.1. Let K ⊆ Rn be a set with L1-diameter ≤ 1, let c1, . . . , cT ∈ Rn≥0 be non-negative
vectors with ‖ct‖1 ≤ 1 for all t, and let ε > 0. In the presence of adversarial delays, follow-
the-lazy-leader picks points x1, . . . , xT ∈ K such that two consecutive points xi and xi+1

differ at most εT times, and for all y ∈ K,
T∑
t=1

E[ct · xt] ≤
T∑
t=1

ct · y +O
(
ε−1 + εD

)
.

Proof. In the delayed setting, the tth delayed leader yd
t is the best point with respect to the grid point

corresponding to the sum of all feedback through the first t rounds. More formally, let g : Rn → Gε
be the mapping each point to the first grid point greater than or equal in each dimension to the point.
Formally, we have

yd
t = arg min

x∈K
x · g

(
t∑

s=1

∑
r∈Fs

cr

)
for each round t (as before, we use the superscript d to emphasize the delayed setting). Following
the lazy leader is the strategy that chooses the tth point xt as xt = yd

t−1 for each round t. Observe
that since each cost vector ci is nonnegative, and their sum has L1-norm ‖c1 + · · ·+ cT ‖1 ≤ T , yd

t
changes grid points at most εT times.

The same proof as [18, Lemma 1.2] shows that each yd
t is distributed identically as ỹd

t . By linearity
of expectation, E

[
ct · yd

t−1

]
= E

[
ct · ỹd

t−1

]
for all t ∈ [T]. Summing this equality over all rounds

t ∈ [T] and applying the regret bound for follow-the-perturbed-leader (Theorem 3.1)
gives the bounds we seek. �

References
[1] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-

algorithm and applications. Theory of Computing, 8(1):121–164, 2012.

¶Kalai and Vempala’s regret bound for follow-the-lazy-leader has the caveat that the adversary is
oblivious to the random shift p ∈ Qε, which applies here as well.

7

[2] A.S. Nemirovski and D.B. Yudin. Problem complexity and method efficiency in optimization. Wiley-
Interscience Series in Discrete Mathematics. John Wiley & Sons, 1983.

[3] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proc. 20th
Int. Conf. Mach. Learning (ICML), pages 928–936, 2003.

[4] A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex opti-
mization. Oper. Res. Lett., 31:161–175, 2003.

[5] Y. Singer and S. Shalev-Shwartz. A primal-dual perspective of onine learning algoritmhs. Mach. Learn.,
69:115–142, 2007.

[6] S. Shalev-Shwartz. Online Learning: Theory, algorithms, and applications. PhD thesis, The Hebrew
University of Jerusalem, July 2007.

[7] E. Hazan and S. Kale. Extracting certainty from uncertainty: Regret bounded by variation in costs. In
Proc. 21st Ann. Conf. Comp. Learning Theory (COLT), pages 57–68, 2008.

[8] S. Shalev-Shwartz. Online learning and online convex optimization. Found. Trends Mach. Learn.,
4(2):107–194, 2011.

[9] A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimization. Available online at http:
//www2.isye.gatech.edu/~nemirovs/Lect_ModConvOpt.pdf, Fall Semester 2013.

[10] E. Hazan. Introduction to online convex optimization. Internet draft available at http://ocobook.
cs.princeton.edu, 2015.

[11] R. T. Rockafeller. Convex Analysis. Princeton Mathematical Series. Princeton University Press, 1970.

[12] J.B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and Minimization Algorithms I, volume 305 of
Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1993.

[13] J.B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and Minimization Algorithms II, volume 306 of
Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1993.

[14] C. Zălinescu. Convex analysis in general vector spaces. World Scientific, 2002.

[15] Y. Nesterov. Introductory lectures on convex optimization, volume 87 of Applied Optimization. Springer,
2004.

[16] A. Ben-Tal, T. Margalit, and A. Nemirovski. The ordered subsets mirror descent optimization method
with applications to tomography. SIAM J. Optim., 12(1):79–108, 2001.

[17] D.D. Sleator and R.E. Tarjan. Self-adjusting binary search trees. J. Assoc. Comput. Mach., 32(3):652–686,
1985.

[18] A. Kalai and S. Vempala. Efficient algorithms for online decision problems. J. Comput. Sys. Sci., 71:291–
307, 2005. Extended abstract in Proc. 16th Ann. Conf. Comp. Learning Theory (COLT), 2003.

[19] N. Shavit and D. Touitou. Software transactional memory. Dist. Comput., 10(2):99–116, 1997.

8

http://www2.isye.gatech.edu/~nemirovs/Lect_ModConvOpt.pdf
http://www2.isye.gatech.edu/~nemirovs/Lect_ModConvOpt.pdf
http://ocobook.cs.princeton.edu
http://ocobook.cs.princeton.edu

	Introduction
	Delayed gradient descent
	Delaying the Perturbed Leader
	Conclusion
	Mirror descent with delayed subgradients
	Late and lazy leaders

