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Abstract—In this paper, a novel function approximation ap-
proach based on a combination of conventional Neural Networks
and tile coding approximators is proposed. The proposed ap-
proach can maintain the desired features of both approaches
whiles eliminates the deficiencies of each method. The com-
bination will reduce the sharpness of tile coding. It will also
provide an easy way to adjust the accuracy/complexity of the
approximation according to the function being approximated
(adaptive tiling) and the subspace used on. In this algorithm, it is
possible to construct the approximator with specified and various
approximation accuracies in different subspaces. This feature
enables us to allocate an arbitrary accuracy/complexity wherever
a more accurate approximation is needed. Finally simulation
studies are presented to show the efficiency of and applicability
of the proposed approach.

Index Terms—adaptive tiling, adaptive tile coding, tile coding,
neural network, approximation memory

I. INTRODUCTION

In function approximation tasks, training very expressive
Neural Networks (NNs) have always had a high computational
cost and memory usage. Moreover, the generalization property
also decreases with the increase of the network size [1], [2],
[3]. On the other hand, small size networks have problems
in representing a wide range of functions. Several algorithms
have been proposed to make the structure of NNs and tile
coding discretization adaptive [4], [5] and reference therein,
so that the structure can change whenever the network is not
expressive enough. Another deficiency of conventional NNs
is that the approximation of one point cannot change without
changing the whole function, unless all training examples are
used in the training. However, in sequel the training with
all training examples, increases the computational cost and
causes other problems such as memory shortage, etc. On the
other hand, methods with lower cost that can change the
accuracy/complexity of approximation on subspaces, such as
tile coding [6], [7], [8] and hyperplane tile coding [8], cannot
express functions very smoothly.

In this paper, a new combination of NNs and adaptive tile
coding is proposed. The new combination is proposed so that
the approximator’s structure can change during the training
without the use of huge NNs leads to larger memory usage
during the training. One feature of the presented approach is
that the approximator can change its approximation of a sub-
space without changing the approximation of the whole space
(approximation memory). The proposed method can also learn
subspaces with different accuracies which is also a feature of
adaptive tile coding. In addition, simulation results show that
tiling of an NN can act effectively in extrapolation if the target
function can be locally approximated with considered base
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network (network of each tile). Simulation results show that the
proposed combination has better generalization capability than
the conventional neural networks over the training examples.
The rest of paper is organized as follows. In Section II tile
coding and some related methods are discussed. Then in
Section III the proposed combination is introduced and some
features are discussed. Section IV gives practical aspects of
the proposed Adaptive Tiles Neural Networks(ATNN). Finally
in Sections V the efficiency of the proposed approach is
demonstrated by means of several simulation studies.

II. BACKGROUNDS ON CONTINUOUS APPROXIMATORS

There are several methods used in function approximation;
however, most of them have one of the two main framework
ideas. First, considering a fixed structure and changing the
coefficients, so that it converges to the desired function.
Second, using a dynamic structure and changing the structure
as well as the coefficients.

A. Fixed structure and dynamic structure Neural Networks

NN approximation have been one of the most popular
approximation methods in the recent years. Usually, the struc-
ture of the network is fixed and the represented function is
fitted to the training examples with gradient descend method
and Backpropagation [9]. Dynamic structure NNs are mainly
divided into two main categories, constructive and pruning
structures [10]. In the first category, a simple network is
trained to learn the target function and when it fails to learn,
the structure of the network is changed, usually by adding
some hidden units; examples of such methods are Cascade-
Correlation [5] and [11]. Related topics are discussed in
[12]. Since the Cascade-Correlation method [5] have some
similarities with the proposed ATNN method, we discuss it
further. In the second category, a very expressive network is
trained and then the network is pruned, some methods are
expressed in [4], [13] and reference therein.

B. Tile coding and adaptive tile coding

Tile coding [14] and related methods [15], [16] for ap-
proximating functions are usually used for applications which
need to retrieve information very fast and very often and do
not need the most possible accuracy such as Reinforcement
Learning [14]. In the conventional tile coding, the input space
is discretized into several tiles and the target function is
approximated piecewise on these tiles. As considered in [6],
[7], it is often hard to decide how many tiles should the input
space be split into. On the other hand, a constant tiling rate is
not always preferred, and different tiling rates might be useful.
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Details about how and when the tiling rate is changed are given
in [6]. Note that here, another condition is used to decide when
and where to change the tiling rate.

III. ADAPTIVE TILED NEURAL NETWORKS

The idea of tile coding is fast enough for some func-
tions approximation tasks. However when the target function
is varying very fast, the approximator’s generalization and
convergence can be less accurate and slower. On the other
hand, training a full expressive NN is expensive. Hence a
combination of both methods may be helpful. Here, the
combination of the two methods are discussed. The pseudo-

Algorithm 1 Pseudo-code of ATNN
T: Tiles of ATNN

S: Input samples

N: Base network

if T. Bound does not exist then
Initialize the tiles bounds 7. Bound so that it include all
samples.
end if
for every tile 1" that (.M SFEerror > Threshold) do
I = Find all corresponding samples
if N does not exist then
N = Initialize network
end if
N = train the network with I
if N.MSFEerror < Threshold then
T.MSFEerror = N.MSFEerror
Save the network IV for tile T
else
T.Bound = split(T. Bound)
end if
end for

code of ATNN is shown in Algorithm 1. First, approximation
region indicated by some boundaries are changed to include
all samples. Considering that there might be some tiles saved
in the structure, relative memberships of training samples to
these tiles are determined.Then, each network is trained with
the corresponding training examples. If the performance of all
networks reaches a pre-defined threshold, then the algorithm
will terminate; otherwise the corresponding tiles will split up
and retrain until all networks have the desired performance.
After the training procedure, because of tiled structure of
ATNN, we need to take care about the way that we need
to retrieve the information from the trained network. As
Algorithm 2 shows how samples’ values can be retrieved. For
retrieving a set of samples’ values, all tiles must be examined
to find the relative membership of samples to them. Then the
weighted average of all the results are calculated considering
the weight of corresponding memberships. The details of this
process are shown in Algorithm 2.

A. Validation discussions on ATNN

1T is a vector whose all elements are 1.

Algorithm 2 Pseudo-code of retrieve ATNN

for every sample S do
P = Find all corresponding predictions of sample S
W = Find the relative membership weight of sample S
to T’
O(8)=W.P/W.i!
end for

Since NNs are universal approximators, proving that an
ATNN retrieved values are universal approximations of the
corresponding samples is just a manner of justification. As it is
proven in [17], [18], and knowing that each tile training is only
influenced by near samples and approximation is done with
an NN, the base network’s approximation is accurate enough
on its tile. On the other hand, in retrieving data, it is clear
that the influence of a tile is insignificant in far subspaces.
Furthermore, neighbouring tiles might use some of the tiles
samples, close enough to satisfy the membership condition,
might be used in training. It is clear that the constant compared
with relative membership can be changed such that all samples
having significant effect from a specific tile are considered
in the training of that tile. Hence, an ATNN is a universal
approximator, similar to NN.

B. Approximation Capacity

It can be shown that the ATNN with ng2"t/™ localized
hidden nodes have the same computational cost as an NN with
ng hidden units (n; is the least number of hidden units of a
network to learn the target function). Most of NN structures
use units that have a linear combination and an activation
function; Every linear combination is equivalent to a weighted
distance of the point and a hyperplane. If the tiles are uniformly
distributed, as we discussed, every hyperplane crosses at most
k™ — (k — 1)™ tiles, in which m is the dimension of the
approximation problem and % is the number of tiles spread in
each dimension. ., n
In this case, we have £ = log,, olws) = l(&?ﬁﬂ (for the
NNs with the same computational requirement as the ATNN).
Knowing that x — 1 < |z] < z, we can say that the capacity
of a conventional NN is at most equal to an ATNN with
(s 12;;2 "= (s 12&2 ——1)" localized hidden units (note that
these localized hidden units are not independent). Comparing
nOQ% with mentioned capacity, it is obvious that the capacity
growth of the ATNN is exponential, with respect to n, but
capacity of NN grows polynomially.

On the other hand, the capacity of NN falls with the growth
of m for reasonable values of % but the ATNN’s capacity is
independent of m.

By comparing localized hidden units of the two methods men-
tioned above, it is obvious that with the same computational
requirement, the ATNN is more expressive in high dimensional
problems.
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B 6 4 =2 0 2 s 6 8
mse = 8.3011e-007 & df = 30 &

Treshold = 1e-006 on 1000 random samples of [-3.1416,3.1416]
Fig. 1: The effect of memory when the tiled network is
retrained with a new (sample,target) set. (first trained with sine

function in (—, ) then with a line in (—1,1))

C. Approximation memory

When an NN is trained, the weights corresponding to the
network change, which affect the approximation of the NN in
the whole instance space, a measurement of such phenomena
in the conventional NNs is given in [19]. Such singular can
crumble the whole approximation, unless all the previous
training samples are considered in every training, which will
cause an increase in the computational requirement.

On the other hand, if an ATNN is trained in a subspace and
then it is trained on another subspace separate from the first
one, the approximation of ATNN for the first subspace does
not change and only the approximation of the second tile will
change (see Figure. 1).

This feature of ATNN leads to a decrease in generalization on
the untrained tiles, (the tiles having no training examples). This
deficiency is solved by considering omitting or joining tiles. In
such case the approximation will be based on the neighbouring
tiles.

D. Generalization

Adding memory to the approximator always reduces its gen-
eralization, since keeping old values means that the approxima-
tor also insist on keeping its previous not so accurate trainings;
hence training with new samples do not help generalization of
the target function. In the case of ATNN, approximation of the
tiles having no samples do not change, so other samples do not
help in correction of the tile predictions of the target function
(decreasing the generalization between tiles). Of course, at the
first training, when the tiles are being split the generalization is
considered. For solving such problems we can consider joining
the tiles.

E. Extrapolation

Usually expressive NN approximators cannot extrapolate,
and the approximators output out of the system’s training
examples’ subspace is usually constant. On the other hand,
the ATNN tiles approximators are also NNs so the results of
this approximator would be flat as shown in Figure 2, but as
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(a) an NN with 5 hidden units trained to approximate sine
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(b) an NN with 20 hidden units trained to approximate sine
function.
Fig. 2: The effect of the number of NN hidden units on the
function learned. Both are trained with sine in (—m, 7).

we discussed before, with the decrease of the DoF (degree of
freedom) of the NN the generalization increases. So if DoF
of the base network is kept small enough, the approximator
can be expressive enough and has the generalization quality
for extrapolation (see Figure 3).

IV. MORE DISCUSSION ON THE PROPOSED MODEL
A. How and when to split a tile?

The problem of determining how and when to split a tile is
one of the most challenging problems in tile coding. Here this
problem will be “After how many epochs should the algorithm
split a tile.” The number of epochs depends on the smoothness
of the target function and the Dof (degree of freedom) of the
base network. Here, we split a tile whenever it fails to get
to the desired accuracy after a fixed number of epochs. For
a faster training, other conventional termination methods like
gradient bounds might be useful.

The second problem is “How to split a tile.” In one dimensional
problems, there is only one answer, the tile will be split into
two halfs. But in high dimensional problems, deciding on what
dimension to split the tile, is difficult. Without any assumptions
about the target function, two main methods might be used. he
tile can be split along (i) the longer side or (ii) along a random
dimension. In theoretical computations it is assumed that the
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7§8 7(; 4‘t 7‘2 0
mse = 3.0994e-006 & df = 0 &
Treshold = 1e-005 on 1000 random samples of [-3.1416,3.1416]

(a) Approximation of cosine function in (—m, ) assuming the
whole system can be learned linearly.

2 4 6 8

-8 -6 -4 -2 0 2 4 6 8
mse = 4.7082e—007 & df =1 &
Treshold = 1e—007 on 1000 random samples of [-3.1416,3.1416]

(b) Approximation of cosine function assuming the whole system
can be learned with one hidden unit.

Fig. 3: The function is approximated locally and smoothly
according to the assumption.

whole tiling is uniform, so the first method will be preferred
for keeping the tiling uniform.

B. Tiles trained with few samples

When splitting the tiles, this question should always be

considered: “If this tile is split, will the sub-tiles have enough
samples to be trained?” Insufficient sampled tiles lead to
approximations locally based on only few samples, decreasing
the generalization of the approximator. Moreover, tiles are not
allowed to have no samples because the localized information
in such case would be zero and the respective networks would
not have any samples to be trained with.
Hence, in splitting the tiles, the number of sub-tiles’ samples
must be considered. The tiles with no training samples might
be omitted; In that case the approximation of the subspace
would be based on neighbouring tiles.

C. Curse of dimensionality

It is obvious that if the split subroutine in the Algorithm
1 only splits the tiles in one dimension, it will take a long
time in high-dimensional problems to shatter into small enough
tiles for learning a very high-dimensional target function. This
problem can easily be solved by changing split so that it splits
tiles in all dimensions. Since it is possible that many of these
tiles do not have sufficient samples, the generalization between

tiles might be affected. However, if the tiles having no samples
are omitted, the generalization will be based on near tiles (in
Euclidean space).

D. Uniformed sample frequency of different functions in space

Assume that we have learned a specific function with a very
high frequency of samples in space. Then, the target function
is changed (for some reason), so some samples are fed into
the ATNN and it is retrained. However the tiles are split too
small to fit the first function and the samples for the modified
function are less frequent than the first samples, some tiles
might not have any samples and are not retrained. With some
tiles still representing the first function, the approximation
accuracy is critically decreased in those subspaces. The easy
solution for such problem is to join or omit the tiles with no
samples which will decrease the memory of the approximator.
Joining the tiles with no samples will result in losing the data
stored in those tiles so there must be a balance between joining
and keeping the tiles.

E. The sharpness of edges

One of the problems faced in the tile coding methods,
including ATNN, is that the approximation is not smooth. In
order to smooth the edges of the tiles, the networks should
be trained so that the edge is continuous. But smoothing the
edges in such fashion will cause growth in the computational
requirement, as will discussed later. Therefore, instead of
forcing the NNs to have the same approximation on the edges,
a fuzzy selection of NNs in retrieving data is considered.
Since fuzzy membership of samples and tiles outputs are
smooth, average of the tiles with respect to the fuzzy relative
membership (the approximation) would be smooth. Toward
this end, the process which determines the membership of
samples to the tiles should be fuzzy. Below both methods
mentioned above are discussed.

1) Overlapping bounds to force the networks to have the
same approximation on edges: In order to fix sharpness
problem, the bounds of tiles are set bigger than what they
should be. Hence they will consider the samples of other
neighbour networks in training, hence the network will have
more likelihood with neighbour networks on the edges. This
can be accomplished on split subroutine in Algorithm 1.

2) Fuzzy selection of networks: In order to find whether
a sample is in a tile or not, some inequalities are examined.
On each dimension the bound of the tile is compared to the
point’s values. If these inequalities are fuzzy, the whole process
of finding the relative memberships would be fuzzy. In the
following the structure of this fuzzy comparator is discussed.
Fuzzy comparator must have 1 value when y is much larger
than  and O value when y is much smaller than z. Also a
fuzzy comparator value must only depend on the difference of
x and y.

1
1+ esharpnessx(z—y)/Scale

compare(z,y) =

ey

Sharpness is a constant which shows the fuzziness of the
comparator, smaller sharpness correspond to fuzzier compara-
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tors and oo sharpness correspond to digital comparator. It is
obvious that a fixed sharpness is not suitable for all problems,
for example in atomic size the differences are in order of
10~° but in normal systems they are in order of 10%, so the
comparator must be scaled to the problem. In our problem the
scale can be easily obtained with width of each tile.

Since being of a sample in training set a tile cannot be fuzzy,
a threshold must be defined to be the criteria to train a tile
with a specific sample.

F. Comparing ATNN with Cascade-Correlation method

As mentioned before the ATNN and the Cascade-
Correlation have some similarities, and a comparison can
make advantages and disadvantages of both methods clear.
Consider the growth of a Cascade-correlation network. The
first hidden unit output determines the position of the input
relative to a hyperplane. The second hidden unit determines
the position of input relative to another hyperplane and the first
hidden unit’s output. Such that for the same relative position
to the second hyperplane and different relative position to the
first hyperplane, the second hidden unit has different outputs.
This attribute is like tiles in ATNN method, but two things
are different: (i) in the Cascade-Correlation method these
boundaries are not along axes but in ATNN all boundaries are
along the axes and (ii) the gradient of approximated function in
the Cascade-Correlation method on both sides of the boundary
(in both tiles) are the same but in ATNN the gradient can differ
in different tiles.

V. PRACTICAL RESULTS
A. Implementations of ATNN

Here we aim to make comparisons between results derived
from ATNN and NN. In these experiments we use MLP (Multi
Layer Perceptron) in our both ATNN and NN structures. The
implementations are trained with fixed sharpness parameter
and Joining of tiles is not considered. All figures shown in
this section include MSE (mean square error) of ATNN on
training samples, number of hidden units of the base network
(df), threshold (the parameter defined in Algorithm 1), number
and region of samples.

1) The sinc(x) function: The approximation of sinc(x)
function is shown in Figure 4. As mentioned before, ATNN’s
approximation generalizes the data assuming that the whole
function can be learned with the base network. Since sinc(z)
function cannot be learned with an NN consisting of one
hidden unit around its extremums the tiling rate is so high
in that area comparing to other areas. As shown in the figure,
the NN’s approximation is flat in extrapolation.

2) The smc(%) function: The approximation of sinc(%)
function is shown in Figure 5. This figure shows how ATNN
can fit the tiling rate to the target function. As it is shown,
the tiling rate is proportionately much higher near O than near
2. The approximation shows how ATNN adaptively splits the
region in order to make a proper approximation of a function.
In other words, the more variations in a function, the more
tiles we have.

05F

mse = 7.8543e-007 &df = 1 &
Treshold = 1e-006 on 1000 random samples of [-3.1416,3.1416]

Fig. 4: Approximation of sinc(z) = % function in
(=, ) by base network consisting of a hidden unit.
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Treshold = 1e-005 on 1000 random samples of [0.1,2.1]

Fig. 5: Approximation of sinc(l) = % function in

T

(0.1,2.1) by base network consisting 2 hidden units.

3) The stairs like function: The approximation of a stairs
like function is shown in 6. This figure shows that by choosing
an appropriate sharpness parameter, ATNN can approximate a
discontinuous function with sudden changes with insignificant

€error.
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mse = 4.2116e-006 & df = 2 &
Fig. 6: Approximation of u(z —2) + u(z — 1) + u(z + 1) +
u(z + 2) function in (—3,3) by base network consisting 2
hidden units.

B. More discussion on practical results

ATNN might have difficulties in approximating the
function when its sharpness parameter is not tuned well.
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Fig. 8: The figure shows some advantages and disadvantages
of ATNN in comparison to NN.

The following comparisons show that both NN and ATNN
can achieve enough accuracy with acceptable computational
effort. The Figure 7 shows the difference between ATNN and
NN in sharp points. NN’s approximation is usually smoother
than that of ATNN, so in sharp points ATNN gives a better
approximation. The Figure 8 shows how ATNN can be misled
to a sharp point when there is a smooth extremum on the tile
boundary.

VI. CONCLUSION AND FUTURE WORKS

In this paper we introduced ATNN as a new combinational
function approximator based on conventional Neural Networks
and tile coding approximators. We showed that this combina-
tion will help to make accurate enough approximations. We
introduced sharpness and threshold parameter of structure to
control the accuracy/complexity of approximation according to
the function being approximated. Experimental results derived
from comparing ATNN and NN show that ATNN approxima-
tion is usually more precise in sharp points. ATNN might be
useful in tasks which keeping approximation of old trainings
is needed. The important flaw with the sharpness parameter is
that, ATNN might have some problems in the tiles’ boundaries

with different rate of variations. This can easily be solved by
tuning the sharpness parameter manually by the supervisor.
The sharpness parameter, as introduced have significant effect
in approximation of keen of edges. One improvement for
ATNN can be about discussing on methods for automatic
fine-tuning sharpness parameter. Furthermore, here we showed
applicability of ATNN by several functions, it is of high value
to show its applicability in a more realistic application.
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